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Disordered non-interacting systems in sufficiently high dimensions have been predicted to dis-
play a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the
density of states and other physical observables. Recently the critical properties of this transition
have been extensively studied for the specific case of Weyl semimetals by means of numerical and
renormalisation-group approaches. Despite this, the values of the critical exponents at such a tran-
sition in a Weyl semimetal are currently under debate. We present an independent calculation of
the critical exponents using a two-loop renormalisation-group approach for Weyl fermions in 2 − ε
dimensions and resolve controversies currently existing in the literature.
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It was proposed1,2 30 years ago that three-dimensional
(3D) disordered systems with Weyl and Dirac quasipar-
ticle dispersion can display an unconventional disorder-
driven transition that lies in a non-Anderson universality
class. In particular, in contrast with the Anderson local-
isation transition, the density of states at this transition
has been suggested1 to display a critical behaviour, with
the scaling function proposed in Ref. 3.

Recently we have demonstrated4,5 that such transi-
tions occur near nodes and band edges in all materials
in sufficiently high dimensions d and are not unique to
Dirac (Weyl) systems. In systems that allow for locali-
sation the transition manifests itself also in the unusual
behaviour of the mobility threshold5. As the concept of
high dimensions here is defined relative to the quasipar-
ticle dispersion, possible playgrounds include a number
of systems in physical d = 1, 2, 3 dimensions, with higher
dimensions being accessible numerically. For example,
recently we have shown how this transition can be ob-
served in 1D and 2D arrays of ultracold ions in optical
or magnetic traps6.

Because Weyl semimetals (WSMs) are currently one
of the most well-known and experimentally accessi-
ble platforms7–9 for the observation of these high-
dimensional disorder-driven phenomena, tremendous re-
search efforts have been directed at studying the critical
properties of the transition in a WSM. Nevertheless, the
values of the critical exponents at the transition are cur-
rently under debate.

Quantum criticality near the transition has been stud-
ied analytically for Dirac and Weyl particles in dimen-
sions d > 2 by means of perturbative renormalisation-
group approaches10,4,5, 11, large-N (large number of val-
leys or particle flavours) analysis12, and (uncontrolled)
self-consistent Born approximation1,13,14 (SCBA), equiv-
alent to a large-N calculation in the limit N =∞.

Usually Weyl and Dirac materials have only several
nodes, N ∼ O(1), which makes large-N approaches

quantitatively inaccurate in all dimensions d [for detailed
criticism of the SCBA vs. RG see Refs. 15,16, 4 (although
Refs. 15 and 16 are devoted to graphene, their arguments
apply as well to Dirac and Weyl particles in all dimen-
sions)].

Perturbative renormalisation-group (RG) analysis are
controlled by the small parameter ε = 2 − d. Although
such RG analysis for small ε is not guaranteed to be
quantitatively accurate when analytically continued to
3D (ε = −1), already the one-loop results104,5,11 predict
the correlation-length exponent ν = 1 and the dynamical
exponent z = 3/2 that lie within 15% and several percent
of the values obtained numerically in Refs. 3, 17, 18.

Also, numerical analysis of Ref. 6, albeit carried out
for 1D chiral systems, suggest that one-loop RG results
accurately describe the critical properties of such type of
transitions. Recently a value of z = 1.49±0.02 very close
to the one-loop result z = 3/2 has been obtained numer-
ically in Ref. 19. However, the same simulations found a
value of ν = 1.47± 0.03 very different from the one-loop
prediction ν = 1. It has been argued in Ref. 20 that the
one-loop result z = 3/2 for the dynamical critical expo-
nent is exact and holds in all orders of the renormalisa-
tion, in contradiction with the analytical two-loop calcu-

lations of Ref. 11 predicting40 ν =
[
−ε− ε2

8 + . . .
]−1

≈
1.14 and z = 1− ε

2 −
3
16ε

2 + . . . ≈ 1.31. Similar analytical

two-loop RG calculations for graphene21 and for related
the Gross-Neveu model22–27, with the results for the lat-
ter being well established in the high-energy literature,
yield beta-functions inconsistent with those of Refs. 11
and 20.

In this paper we present an independent calculation
of the critical exponents for the transition in a Weyl
semimetal using a two-loop renormalisation group ap-
proach for Weyl fermions in 2 − ε dimensions and re-
solve controversies currently existing in the literature.
We obtain beta functions consistent with those obtained
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for graphene in Ref. 21 and for Gross-Neveu model in
Refs. 22–27, but in disagreement with the results of
Refs. 11 and 20. We find the critical exponents to be

ν =

[
−ε+

ε2

2
+ . . .

]−1

, (1)

z = 1− ε

2
− ε2

8
+ . . . . (2)

For a 3D Weyl semimetal (ε = −1) Eqs. (1) and (2)
give

ν ≈ 0.67, z ≈ 1.4. (3)

We emphasise, however, that higher-loop corrections for
ε = −1 will lead to deviations from these values obtained
from an RG calculation controlled by small ε.

The critical density of states in a WSM with short-
range-correlated disorder can be described in the super-
symmetric representation28 by a field theory with the
action

L = −i
∫

Φ†
[
iω − σ̂k̂

]
Φ dr +

1

2
κ0

∫
(Φ†Φ)2dr, (4)

where Φ = (χ s)T is a vector consisting of an anti-
commuting (fermionic) χ and commuting s (bosonic)
components, ω > 0 is the Matsubara frequency in
the upper half-plane, σ̂ is a vector of matrices gen-
erating a d-dimensional Clifford algebra ({σ̂α, σ̂β} =
2δαβ1), k = −i∇ is the momentum operator, and
κ0 =

∫
〈U(r)U(r′)〉dis dr

′ is the strength of the short-
range-correlated random disorder potential under con-
sideration. Equivalent field theories can be derived also
in Keldysh29 and replica30 representations.

We emphasise, that we express the action (4) in terms
of a positive Matsubara frequency ω, in contrast with the
conventional real-frequency representation28, in order to
regularise integrals in the renormalisation scheme used
below. Also, frequency ω in Eq. (4) plays the same role as
the mass m in the related Gross-Neveu model23–25. The
density of states is determined by the retarded Green’s
function GR(E, r, r′) that can be obtained from the ac-
tion (4) using analytic continuation to real frequencies
iω → E + i0.

We note, that realistic materials always have an even
number of Weyl nodes, due to the fermion doubling
theorem31, and thus in general should be described by
an action with an even number of Weyl fermion flavours.
However, for sufficiently smooth disorder internodal scat-
tering can be neglected, and the material is equivalent to
an even number of copies of single-node WSMs described
by the action (4).

In dimensions d > 2 this field theory leads to ultravi-
olet divergencies in physical observables and requires an
appropriate RG treatment.

We study the behaviour of the system at frequency ω
and at long length scales, k → 0, following the minimal
subtraction renormalisation scheme32. We use dimen-
sional regularisation by computing observables in lower

d = 2 − ε dimensions (with small ε > 0) and then ana-
lytically continue renormalised observables to the higher
dimensions of interest (ε < 0). The Lagrangian (4) in this
scheme is separated into the effective Lagrangian LE of
variables observable in the long-wave limit of interest and
the counterterms:

L = LE + Lcounter, (5)

LE = −i
∫
ψ†
(
iΩ− σ̂k̂

)
ψ dr +

1

2
κ
∫

(ψ†ψ)2dr, (6)

where the energy scale Ω and the renormalised disorder
strength κ are experimentally observable, and the coun-
terterms Lcounter cancel the divergent (in the powers of
1/ε) contributions to physical observables that come from
the Lagrangian (6).

The strength of disorder can be conveniently charac-
terised by the dimensionless parameter5

γ = 2Cdκ Ω−ε, (7)

where Cd = 21−dπ−
d
2 /Γ

(
d
2

)
. For a given “bare” disor-

der strength κ0 the renormalised dimensionless disorder
strength γ and the characteristic energy Ω of the long-
wave behaviour of disorder-averaged observables are re-
lated by the RG equation (see Appendix for a detailed
derivation)

∂γ

∂ ln Ω
= −εγ − γ2 − 1

2
γ3 + . . . . (8)

The dependence of Ω on the frequency ω is described by
the RG equation(

∂ ln Ω

∂ lnω

)−1

= 1 +
γ

2
+
γ2

8
+ . . . . (9)

Our two-loop RG equations (8) and (9) are consistent
with the previous studies of Weyl fermions in d = 2 − ε
dimensions: in the framework of Gross-Neveu model in
Refs. 22–27 and of graphene in Ref. 21.

Eq. (8) shows that the dimensionless disorder strength
grows or decreases depending on whether or not it ex-
ceeds a critical disorder strength

γc = −ε− ε2

2
+ . . . . (10)

The existence of such a repulsive fixed point signals a
transition, discussed in the literature1–5,10,11,17,19,20,33,34,
between a weak-disorder phase and a strong-disorder
phase.

Using that near the transition ∂ ln(γ−γc)
∂ ln Ω = −ν−1 and

Eq. (8) we obtain the correlation-length critical exponent
(1). The divergence of ν in the ε → 0 limit reflects the
fact that d = 2 (ε = 0) is the lower critical dimension for
this transition.

Our analysis predicts ω ∝ Ωz at the critical disorder
strength γ = γc. Eq. (9) then gives the dynamical critical
exponent (2).
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We note that for small ε � 1 the correlation-length
exponent ν, Eq. (1), satisfies Harris criterion (Chayes
inequality)35,36 ν ≥ 2/d. Because the correlation length

ξ ∝ Ω−1 ∝ ω−
1
z can be measured as a function of the

energy ω for κ = κc as well as a function of disorder
strength ξ ∝ |κ−κc|−ν for ω = 0, a similar criterion can
be applied heuristically to the exponent ν̃ = 1/z, yielding
z ≤ d/2, consistent with our result Eq. (2).

In conclusion, we have presented a two-loop
renormalisation-group analysis of the critical properties
of the unconventional disorder-driven transition for Weyl
fermions above two dimensions and found the correlation-
length and dynamical critical exponents, Eqs. (1) and
(2). The beta-functions that we obtain are consistent
with those for graphene and Gross-Neveu models stud-
ied previously in the literature41.
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Note added. After posting this paper on arXiv, the
results of Refs. 20 and 11, contradicting our conclusions
here, have been withdrawn by their authors; the claim
of z = 3/2 being the exact dynamical exponent has been
removed37 by the authors of Ref. 20, while the results of
Ref. 11 for the critical exponents have been retracted in
erratum 38.
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Appendix A: Renormalisation scheme

Disorder-averaged observables, e.g., the density of states or conductivity, calculated perturbatively in disorder
strength using action (4) in dimensions d > 2 contain ultravioletly-divergent contributions that require an appropriate
renormalisation-group treatment.

In this paper we use the minimal-subtraction renormalisation-group scheme32. The respective integrals in this
scheme are evaluated in lower d = 2− ε dimensions (ε > 0), to ensure their ultraviolet convergence, making analytic
continuation to higher dimensions (ε < 0) in the end of the calculation. Also, as we show below, the infrared
convergence of momentum integrals is ensured by using Matsubara frequencies iΩ in place of real frequencies. The
renormalisation procedure consists in calculating perturbative corrections to the disorder-free particle propagator

G(iΩ,p) = (iΩ− σ̂p)−1 = − iΩ + σ̂p

Ω2 + p2
(A1)

and the coupling κ in the Lagrangian (6) and adding counterterms Lcounter to the Lagrangian in order to cancel
divergent (in powers of 1/ε) contributions. The renormalised quantities κ and Ω can then be related to the “bare”
κ0 and ω by comparing the initial Lagrangian (4) and the Lagrangian (5) expressed in the renormalised variables.

FIG. 1: Elements of the diagrammatic technique: a) impurity line and b) propagator.

Perturbative corrections to the propagator and disorder strength can be obtained straightforwardly using the
Lagrangian (6). For convenience we utilise the conventional disorder-averaging diagrammatic technique39, Fig. 1.
The impurity line, Fig 1a, is a tensor product of two operators τ̂1 ⊗ τ̂2 in the pseudospin subspaces that correspond
to the two ends of the impurity line. Hereinafter scalar expressions for impurity lines are implied to be multiplied by
1⊗ 1.

Integrals in d = 2 − ε dimensions

When evaluating diagrams below we use the following values of momentum integrals in dimension 2− ε:

∫
p

1

p2 + Ω2
=
C2−ε

ε
Ω−ε +O(ε), (A2a)∫

p

1

(p2 + Ω2)2
=

1

2
C2−εΩ

−2−ε +O(ε), (A2b)∫
p

1

(p2 + Ω2)3
=

1

4
C2−εΩ

−4−ε +O(ε), (A2c)∫
p

1

(iΩ− σ̂p)2
=

(
1

ε
− 1

)
C2−εΩ

−ε +O(ε), (A2d)∫
p

1

(iΩ− σ̂p)3
= − iC2−ε

2
Ω−1−ε +O(ε), (A2e)
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∫
p,q

1

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
= O(1), (A3a)∫

p,q

pq

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
= −1

2

(
C2−ε

ε
Ω−ε

)2

+O(1), (A3b)∫
p,q

(pσ̂)(qσ̂)

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
= −1

2

(
C2−ε

ε
Ω−ε

)2

+O(1), (A3c)∫
p,q

(pσ̂)(qσ̂)

(Ω2 + p2)2[Ω2 + (p + q)2]
= −

(
C2−ε

ε
Ω−ε

)2 (
1− ε

2

)
+O(1), (A3d)∫

p,q

(σ̂p)(σ̂q)

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p + q)2]
= O(1), (A3e)∫

p,q

pq

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p + q)2]
= O(1), (A3f)

where the coefficient C2−ε = 2(4π)
ε
2−1/Γ

(
1− ε

2

)
is defined after Eq. (7), and

∫
p
. . . ... =

∫
dp/(2π)d . . ..

Detailed calculations of integrals (A2a)-(A2c) are presented, e.g., in Ref. 32. Integrals (A2d) and (A2e) can be
reduced to similar integrals using (iΩ− σ̂p)−1 = −(iΩ + σ̂p)/(Ω2 + p2).

Integral (A3a) can be evaluated by introducing two Feynman parametrisations32:∫
p,q

1

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
=

∫
q

1

Ω2 + q2

∫ 1

0

du

∫
p

1

[Ω2 + (1− u)p2 + u(p + q)2]2

=

∫
q

1

Ω2 + q2

∫ 1

0

du
CdΓ

(
2− d

2

)
Γ
(
d
2

)
2Γ(2)

[Ω2 + u(1− u)q2]
d
2−2 ε�1

≈ C2−ε

2

∫ 1

0

du

∫
q

1

(Ω2 + q2) [Ω2 + q2u(1− u)]
2− d

2

≈
(
C2−ε

2

)2
1∫∫
0

du dt

∫
q

t1−
d
2

[Ω2 + q2tu(1− u) + (1− t)q2]
3− d

2

≈
(
C2−ε

2

)2

Ω2−2ε

1∫∫
0

dt du
t1−

d
2

[tu(1− u) + 1− t] d
2

= O(1)

(A4)

Integral (A3b) can be reduced to the previous integrals by using that pq = 1
2 (p + q)2 − 1

2p
2 − 1

2q
2.

In order to evaluate integrals (A3c)-(A3f) we note that they are invariant under the interchange of p and q. They can
thus be reduced to the previous integrals by replacing (pσ̂)(qσ̂)→ 1

2 [(pσ̂)(qσ̂) + (qσ̂)(pσ̂)] = 1
2 (p+q)2− 1

2p
2− 1

2q
2

or pq→ 1
2 (p + q)2 − 1

2p
2 − 1

2q
2.

Appendix B: One-loop renormalisations

One-loop renormalisation is mimicked by the diagrams in Fig. 2. In what follows expressions in square brackets is
our convention for the values of the respective diagrams.

FIG. 2: Diagrams for the one-loop renormalisation: a) self-energy correction, b-e) vertex corrections.

Diagram 2a, the leading-order-in-κ self-energy of the particles, is independent of the incoming and outgoing mo-
menta and can be evaluated as

[2a] = κ
∫
p

(iΩ− σ̂p)−1 (A2a)
= −iΩκ

C2−ε

ε
+O(ε). (B1)
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Diagrams 2b-2e mimick the corrections to the disorder strength κ. Because we study the long-wavelength behaviour
of the system (at finite frequency), these diagrams can be evaluated for zero incoming and outgoing momenta,
integrating with respect to the intermediate momenta:

[2b] = [2c] = κ2

∫
p

(iΩ− σ̂p)−2 (A2d)
= κ2C2−ε

ε
Ω−ε +O(1), (B2)

[2d] + [2e] = κ2

∫
p

1

iΩ− σ̂p
⊗ 1

iΩ− σ̂p
+ κ2

∫
p

1

iΩ− σ̂p
⊗ 1

iΩ + σ̂p
= −κ2

∫
p

2Ω2

(Ω2 + p2)2
= O(1). (B3)

To cancel the divergent in 1/ε corrections to the scale Ω and to the disorder strength κ, given by Eqs. (B1) and
(B2)-(B3) respectively, we add to the Lagrangian (6) the counterterm-Lagrangian

Lcounter =

∫
δ(1)Ω ψ†ψ dr +

1

2
δ(1)κ

∫
(ψ†ψ)2dr, (B4)

δ(1)κ = −2κ2 C2−ε

ε
Ω−ε, (B5)

δ(1)Ω = −Ωκ
C2−ε

ε
Ω−ε. (B6)

Eqs. (B5) and (B6) describe the one-loop renormalisation of the system parameters. We note, that there is no
one-loop renormalisation of the particle velocity (the coefficient before σ̂k in the Lagrangian).

FIG. 3: Counterterms coming from the one-loop renormalisation.

In order to take into account these one-loop corrections when performing the two-loop renormalisation we introduce
additional elements to the diagrammatic technique, Fig. 3.

Appendix C: Two-loop self-energy renormalisation

The two-loop contribution to the particle self-energy is given by the diagrams in Figs. 4 and 5. Diagram 4a depends
on the external momentum k, while the other diagrams are momentum-independent. The momentum dependency of
the two-loop self-energy leads to the renormalisation of the particle velocity, in addition to the energy scale Ω.

1. Frequency renormalisation

In order to obtain the two-loop corrections to Ω it is sufficient to evaluate the diagrams in Figs. 4 and 5 for zero
external momenta.

FIG. 4: Contributions to the renormalisation of the self-energy.
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Diagrams 4a and 4b for k = 0 are given by (in units κ2)

[4a] = −
∫
p,q

(iΩ + σ̂p) [iΩ + σ̂(p + q)] (iΩ + σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)

(A3a)
= −iΩ

∫
p,q

(pσ̂)(qσ̂) + (pσ̂)(pσ̂ + qσ̂) + (pσ̂ + qσ̂)(qσ̂)

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
+O(1)

(A3c)
= − iΩ

2

(
C2−ε

ε
Ω−ε

)2

+O(1) (C1)

[4b]
(A2a),(A2d)

= −iΩ
(
C2−ε

ε
Ω−ε

)2

(1− ε) +O(1) (C2)

Diagrams of the second order in the disorder strength κ that contain the one-loop counterterms, Fig. 3, are shown
in Fig. 5.

FIG. 5: Two-loop contributions to the self-energy that come from one-loop counterterms, Fig. 3.

[5a] = κ δ(1)κ
∫
p

(iΩ− σ̂p)−2 (A2d),(B5)
= iΩκ2

(
C2−ε

ε
Ω−ε

)2

(1− ε) +O(1) (C3)

[5b] = 2iΩκ2

(
C2−ε

ε
Ω−ε

)2

+O(1). (C4)

2. Velocity renormalisation

The velocity renormalisation is determined by the linear-in-k contribution to the self-energy. In order to obtain it,
we expand to the linear order the k-dependent propagator in diagram 4a:

G0(iΩ,p + q− k) ≈ G0(iΩ,p + q)−G0(iΩ,p + q)(σ̂k)G0(iΩ,p + q). (C5)

The diagram, corresponding to the linear-in-k contribution, is shown in Fig. 6. In units κ2

FIG. 6: Diagram for the velocity renormalisation.

[6] = −
∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂(p + q)
σ̂k

1

iΩ− σ̂(p + q)

1

iΩ− σ̂q

= −
∫
p,q

(iΩ + σ̂p)[iΩ + σ̂(p + q)](σ̂k)[iΩ + σ̂(p + q)](iΩ + σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
(C6)

Using that (σ̂p1)(σ̂p2) + (σ̂p2)(σ̂p1) ≡ 2p1p2, Eq. C6 gives

[6] =

∫
p,q

(iΩ + σ̂p)(σ̂k)(iΩ + σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)
+ I1 (C7)
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where

I1 = −2

∫
p,q

(iΩ + σ̂p)[iΩ + σ̂(p + q)](iΩ + σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
(p + q)k (C8)

Let us demonstrate that I1, Eq. (C8), does not contain 1/ε or 1/ε2 singularities. Replacing in the numerator
(iΩ + σ̂p)[iΩ + σ̂(p + q)](iΩ + σ̂q) → p2(σ̂q) + q2(σ̂p) − 2Ω2σ̂(p + q) (as the other contributions vanish) and
using (A3a) gives

I1 = −2

∫
p,q

p2(σ̂q) + q2(σ̂p)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
(p + q)k +O(1) (C9)

Using that the integral in (C9) is invariant with respect to interchanging p and q and to changing signs of momentum
components (pα, qα → −pα,−qα), we replace (qσ̂) · [(p + q)k] ≡

∑
α,β σαqα(p + q)βkβ →

∑
α σαqα(p + q)αkα →

1
dq(p + q) · (σ̂k) and arrive at

I1 = −4

d

∫
p,q

p2q(p + q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
σ̂k

= −4

d

∫
p,q

q(p + q)

(Ω2 + q2)[Ω2 + (p + q)2]
+

4

d
Ω2

∫
p,q

q(q + p)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)

(A3f)
= O(1). (C10)

Eqs. (C7), (C8), and (C10) give

[6] =

∫
p,q

(σ̂p)(σ̂k)(σ̂q)

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
+O(1)

=

(
2

d
− 1

)∫
p,q

pq

(Ω2 + p2)(Ω2 + q2)[Ω2 + (p + q)2]
σ̂k +O(1)

(A3b)
= − 1

4ε
(C2−εΩ

−ε)2σ̂k +O(1). (C11)

Appendix D: Two-loop vertex renormalisation

The two-loop renormalisation of the disorder strength κ corresponds to the diagrams in Figs. 7–13 (we show only
topologically inequivalent diagrams). In what immediately follows we present detailed calculation of each of these
diagrams. For simplicity all expressions for the diagrams are given in units κ3.

FIG. 7: Contributions to the two-loop renormalisation of the impurity line.

[7a] =

[∫
p

1

(iΩ− σ̂p)2

]2
(A2a)

=
(
C2−εΩ

−ε)( 1

ε2
− 2

ε

)
+O(1) (D1)
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[7b] =

∫
p,q

1

iΩ− σ̂p

1

[iΩ− σ̂(p + q)]2
1

iΩ− σ̂q
=

∫
p,q

(iΩ + σ̂p)[iΩ + σ̂(p + q)]2(iΩ + σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)

=

∫
p,q

(σ̂p)(σ̂q)(p + q)2

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
− Ω2

∫
p,q

2(σ̂p)(σ̂p + σ̂q) + 2(σ̂p + σ̂q)(σ̂q) + (σ̂p)(σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
+O(1)

(A3a)
=

∫
p,q

(σ̂p)(σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)
− 2Ω2

∫
p,q

(σ̂p)(σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
+O(1)

=

∫
p,q

(σ̂p)(σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)
− Ω2

∫
p,q

(p + q)2 − p2 − q2

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
+O(1)

(A3c),(A3b),(A2b),(A2d)
= −1

2
κ3(C2−εΩ

−ε)2

(
1

ε2
− 2

ε

)
+O(1),

(D2)

[7c] =

∫
p,q

1

(iΩ− σ̂p)2

1

iΩ− σ̂(p + q)

1

iΩ− σ̂q

p+q→p,q→−q
=

∫
p,q

[iΩ + σ̂(p + q)]2

[Ω2 + (p + q)2]

iΩ + σ̂p

Ω2 + p2

iΩ− σ̂q

Ω2 + q2

= −
∫
p,q

(p + q)2(σ̂p)(σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)

−Ω2

∫
p,q

2(σ̂p + σ̂q)(σ̂p) + 2(σ̂p + σ̂q)(σ̂q)− (σ̂p)(σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2]2(Ω2 + q2)
+O(1)

= −[7b] +O(1) =
1

2
κ3(C2−εΩ

−ε)2

(
1

ε2
− 2

ε

)
+O(1) (D3)

[7d] =

∫
p

(
1

iΩ− σ̂p

)3 ∫
q

1

iΩ− σ̂p

(A2a),(A2e)
= = − 1

2ε
(C2−εΩ

−ε)2 +O(1) (D4)

[7e] =

∫
p

1

(iΩ− σ̂p)2
⊗
∫
q

1

(iΩ− σ̂q)2

(A2d)
=

(
C2−εΩ

−ε)2( 1

ε2
− 2

ε

)
+O(1) (D5)

FIG. 8: Contribution to the two-loop renormalisation of the impurity line.
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[8] =

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂(p + q)

1

iΩ− σ̂q
⊗
(

1

iΩ− σ̂q
+

1

iΩ + σ̂q

)
= 2iΩ

∫
(iΩ + σ̂p)[iΩ + σ̂(p + q)](iΩ + σ̂q)

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)2
= −2Ω2

∫
p,q

(σ̂p)(σ̂q) + (p + q)2

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)2
+O(1)

= −Ω2

∫
p,q

3(p + q)2 − p2 − q2

(Ω2 + p2)[Ω2 + (p + q)2](Ω2 + q2)2

= −3Ω2

∫
p,q

1

(Ω2 + p2)(Ω2 + q2)2
+ Ω2

∫
p,q

1

[Ω2 + (q + p)2](Ω2 + q2)2
+O(1)

(A2a),(A2b)
= −1

ε

(
C2−εΩ

−ε)2 +O(1) (D6)

FIG. 9: Contribution to the two-loop renormalisation of the impurity line.

[9] =

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂(p + q)

1

iΩ− σ̂p
⊗
(

1

iΩ− σ̂q
+

1

iΩ + σ̂q

)
= 2iΩ

∫
(iΩ + σ̂p)[iΩ + σ̂(p + q)](iΩ + σ̂p)

(Ω2 + p2)2[Ω2 + (p + q)2](Ω2 + q2)
= −2Ω2

∫
p,q

(p2 + q2)− p2 − q2

(Ω2 + p2)2[Ω2 + (p + q)2](Ω2 + q2)
+O(1)

(A3a)
= −2Ω2

∫
p,q

1

(Ω2 + p2)2(Ω2 + q2)
+ 2Ω2

∫
p,q

1

(Ω2 + p2)2[Ω2 + (p + q)2]
+O(1) = O(1) (D7)

FIG. 10: Contribution to the two-loop renormalisation of the impurity line.

[10] =

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂q

1

iΩ− σ̂p
⊗
(

1

iΩ− σ̂p
+

1

iΩ + σ̂p

)
(A2a)

=

[
−iΩC2−ε

ε
Ω−ε +O(ε)

]
· 2iΩ

∫
p

(2iΩ + σ̂p)2

(Ω2 + p2)3
= 2Ω2

[
C2−ε

ε
+O(ε)

]
·
[∫

p

1

(Ω2 + p2)2
− 2Ω2

∫
p

1

(Ω2 + p2)3

]
(A2b),(A2b)

=
1

ε
· O(ε) = O(1)

(D8)
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FIG. 11: Contribution to the two-loop renormalisation of the impurity line.

The sum of the two diagrams in Fig. 11 is given by

[11] =

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂q
⊗ 1

iΩ + σ̂p

1

iΩ + σ̂q
+

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂q
⊗ 1

iΩ− σ̂q

1

iΩ− σ̂p

=

∫
p,q

(iΩ + σ̂p)(iΩ + σ̂q)⊗
[
−2Ω2 + (σ̂p)(σ̂q) + (σ̂q)(σ̂p)

]
(Ω2 + p2)2(Ω2 + q2)2

= 2

∫
p,q

[−Ω2 + (σ̂p)(σ̂q)]⊗ (−Ω2 + pq)

(Ω2 + p2)2(Ω2 + q2)2

= 2

∫
p,q

(σ̂p)(σ̂q)⊗ pq

(Ω2 + p2)2(Ω2 + q2)2
+O(1) (D9)

Using that in the tensor product (σ̂p)(σ̂q)⊗pq =
∑
α,β,γ σαpασβqβ⊗pγqγ only the terms with α = β = γ contribute

to the integral (D9) we replace (σ̂p)(σ̂q)⊗ pq→
∑
α p

2
αq

2
α → 1

dp
2q2:

[11] =
2

d

[∫
p

p2

(Ω2 + p2)2

]2

=
2

d

[∫
p

1

Ω2 + p2
− Ω2

∫
p

1

(Ω2 + p2)2

]2

=
2

2− ε

[
1

ε
C2−εΩ

−ε − 1

2
C2−εΩ

−ε +O(ε)

]2

=

(
1

ε2
− 1

2ε

)(
C2−εΩ

−ε)2 +O(1). (D10)

FIG. 12: Contribution to the two-loop renormalisation of the impurity line.
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[12] =

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂q
⊗ 1

iΩ + σ̂p

1

iΩ + σ̂(p− q)
+

∫
p,q

1

iΩ− σ̂p

1

iΩ− σ̂q
⊗ 1

iΩ− σ̂(p− q)

1

iΩ− σ̂p

=

∫
p,q

(iΩ + σ̂p)(iΩ + σ̂q)⊗ [−2Ω2 + (σ̂p)(σ̂p− σ̂q) + (σ̂p− σ̂q)(σ̂p)]

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]

= 2

∫
p,q

(iΩ + σ̂p)(iΩ + σ̂q)⊗ [−Ω2 + p(p− q)]

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]
= 2

∫
p,q

[−Ω2 + (σ̂p)(σ̂q)][−Ω2 + p(p− q)]

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]

= 2

∫
p,q

(σ̂p)(σ̂q)⊗ p(p− q)

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]
− 2Ω2

∫
p,q

(σ̂p)(σ̂q)⊗ 1
(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]

−2Ω2

∫
p,q

1⊗ p(p− q)

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]
+O(1)

(A3e),(A3f)
=

∫
p,q

(σ̂p)(σ̂q)⊗ [p2 + (p− q)2 − q2]

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]
+O(1)

=

∫
p,q

(σ̂p)(σ̂q)⊗ 1
(Ω2 + p2)(Ω2 + q2)[Ω2 + (p− q)2]

−
∫
p,q

(σ̂p)(σ̂q)⊗ 1
(Ω2 + p2)2[Ω2 + (p− q)2]

−Ω2

∫
p,q

(σ̂p)(σ̂q)

(Ω2 + p2)2(Ω2 + q2)[Ω2 + (p− q)2]
+O(1)

(A3c),(A3d)
=

1

2

(
C2−ε

ε
Ω−ε

)2

−
(
C2−ε

ε
Ω−ε

)2 (
1− ε

2

)
+O(1) = −1

2
(C2−εΩ

−ε)2

(
1

ε2
+

1

ε

)
+O(1)

(D11)

FIG. 13: Diagrams for the two-loop renormalisation with one-loop counterterms.

Diagrams for the two-loop renormalisation that contain the one-loop counterterms, Fig. 3, are shown in Fig. 13.
Diagram 13c can be evaluated straightforwardly using Eq. A2e, and the other diagrams– similarly to the corresponding
one-loop diagrams in Fig. 2:

[13a] = [13b] = −2κ3(C2−εΩ
−ε)2

(
1

ε2
− 1

ε

)
+O(1), (D12)

[13c] =
1

2
κ3(C2−εΩ

−ε)2/ε+O(1), (D13)

[13d] = 2κ3(C2−εΩ
−ε)2/ε+O(1), (D14)

[13e] = O(1). (D15)
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Appendix E: RG equations

In the previous sections we calculated in two loops perturbative corrections to observable couplings Ω, κ, and the

quasiparticle velocity (coefficient before σ̂k̂) that come from the action (6) and contain divergent contributions ∝ 1/ε
and 1/ε2. In order to cancel these divergencies, following the minimal subtraction scheme32, we add to the action (6)
the counterterm Lagrangian

Lcounter = −i
∫
ψ†
[
δ(iΩ)− δ(σ̂k̂)

]
ψ dr +

1

2
δκ
∫ (

ψ†ψ
)2
dr, (E1)

where

δ(iΩ) = [2a] + [4a]k=0 + [4b] + [5a] + [5b] = iΩ

[
−1

ε
κC2−εΩ

−ε +
3

2

1

ε2

(
κC2−εΩ

−ε)2] , (E2)

δ(σ̂k) = −[6] =
1

4ε
(κC2−εΩ

−ε)2σ̂k (E3)

δκ = −[2b− e]− 2× [7a]− 2× [7b]− 4× [7c]− 4× [7d]− [7e]− 4× [8]− 2× [9]− 2× [10]− [11]− 2× [12]

−2× [13a]− 2× [13b]− 4× [13c]− 2× [13d]− 2× [13e] = κ
[
−2

ε
κC2−εΩ

−ε −
(
− 4

ε2
+

1

2ε

)(
κC2−εΩ

−ε)2] (E4)

where we kept only the terms divergent at ε → 0 and took into account the numbers of topologically equivalent
diagrams.

Introducing dimensionless disorder strength, Eq. (7), the full Lagrangian (5) of the system can be rewritten in terms
of the observable variables κ and Ω as

L = −i
∫
ψ†
[
iΩ

(
1− γ

2ε
+

3

8

γ2

ε2

)
−σ̂k̂

(
1 +

γ2

16ε

)]
ψ dr− γΩε

4C2−ε

(
1− γ

ε
− γ2

8ε
+
γ2

ε2

)∫
(ψ†ψ)2dr. (E5)

The renormalised observables ψ, γ, and Ω can be related to the “bare” Φ, κ0 and ω by comparing the Lagrangian
(E5) with the “bare” one, Eq. 4:

Z = 1 +
γ2

16ε
, (E6)

κ0 =
Ωε

2C2−ε
γ

(
1− γ

ε
+
γ2

ε2
− γ2

4ε

)
, (E7)

ω = Ω

(
1− γ

2ε
+

3γ2

8ε2
− γ2

16ε

)
, (E8)

where Z describes the rescaling of the particle wavefunctons: ψ = Φ/Z
1
2 .

The energy scale Ω sets the characteristic momentum of long-wavelength behaviour of the system. In order to
obtain the RG flow of the renormalised disorder strength γ as a function of Ω for a given bare disorder strength κ0,
we require

∂κ0

∂ ln Ω
= 0, (E9)

which, together with Eq. E7, gives the RG equation (8).
RG equation (9) follows straightforwardly from Eq. (E8).
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