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The canonical Su-Schrieffer-Heeger (SSH) array is one of the basic geometries that have spurred 

significant interest in topologically nontrivial bandgap modes. Here, we show that the judicious 

inclusion of third-order Kerr nonlinearities in SSH arrays opens rich new physics in topological 

insulators, including the possibility of supporting self-induced topological transitions, function of the 

applied intensity. We highlight the emergence of a new class of topological solutions in nonlinear SSH 

arrays localized at the array edges and with unusual optical properties. As opposed to their linear 

counterparts, these nonlinear states decay to a plateau of non-zero amplitude inside the array, 

highlighting the local nature of topologically nontrivial bandgaps in nonlinear systems. We study the 

conditions under which these states can be excited and their temporal dynamics as a function of the 

applied excitation, paving the way to new directions in the physics of topologically non-trivial edge 

states with robust propagation properties based on nonlinear interactions in suitably designed periodic 

arrays. 
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1. Introduction 

Driven by recent advances in understanding topological phases in condensed matter physics [1]-[10], 

there has been a significant interest in engineering or emulating topological states in classical [11]-[17] 

and bosonic [18]-[22] systems. While other classes of topological order, e.g., with time reversal symmetry 

broken by an applied magnetic field, or symmetry-protected topological phases, have been successfully 

demonstrated in classical systems, bosonic systems, due to their different statistics, lack one important 

class of topological protection stemming from time-reversal symmetry. This limitation has spawned 

significant activity to look into other possible mechanisms to induce topological phases, providing new 

classes of topological order for bosons, and expanding the periodic table of topological classifications 

[23]-[24]. 

To date, most investigations in the area of classical topological insulators have been limited to linear 

phenomena. While some preliminary studies of nonlinear effects in topological systems have been 

recently presented [25]-[27], the question of whether nonlinearities may induce topological order, and 

how the temporal dynamics of this process take place as a function of excitation, remains to a large extent 

unanswered. A related idea was studied in [25], where topologically protected edge states were shown to 

be self-induced around defects created by nonlinearities within the topological insulator. Here, we 

investigate a basic nonlinear topological classical system, based on the Su-Schrieffer-Heeger (SSH) 

model [28] loaded with a nonlinear staggered potential. We demonstrate that a suitable form of 

nonlinearity can result, under specific conditions, in self-induced transitions [29] from trivial to nontrivial 

topological states, accompanied by the emergence of self-trapping topological edge solitons, confined to 

the edges of the nonlinear SSH array.  

Despite its simplicity, the SSH model has attracted extensive attention in the past, due to its rich physics, 

including topological excitation, fractional charge, and nontrivial edge states [30]-[34]. Recent 
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developments in topological insulators have reignited interest in the SSH model as a simple example of a 

1D topological insulator with particle-hole and chiral symmetries (BDI class), which can host Majorana 

fermions [35]-[38]. In the context of classical waves, the SSH model can describe a variety of classical 

systems, including electromagnetic and acoustic 1D arrays of coupled resonators [39]-[41], indicating that 

these classical systems can host topological edge states. This opens new avenues to study topological 

order in classical systems in which the effective Hamiltonian can be precisely controlled, and, it becomes 

of special interest in the case studied here, when nonlinear interacting potentials are added to the picture. 

It is interesting that, while the SSH model has gained its original popularity in the context of nonlinear 

phenomena and solitons, recent developments in topological order brings back the relevance of the 

nonlinear SSH model, which turns out to be instructive to understand the unique physics of nonlinear 

topological states, self-induced topological transitions and excitations described in the following. 

2. Geometry of interest and analytical model 

We investigate the dynamics of a nonlinear SSH chain of dimers with intra-cell and inter-cell coupling 

coefficients, ν  and κ , respectively, as shown in Fig. 1. The amplitude vector of the n -th dimer is given 

by 1, 2,[ , ]T
n n na aΨ = , and the chain dynamics is described by the nonlinear Schrodinger equation 

 1 1( ) ( )n
n m n p n

d
d

i n n
t − +

Ψ = Ψ + Ψ + ΨΩ K K ,  (1) 

where the matrix 0 0[ , ; , ]ω ν ν ω=Ω  describes the intra-cell dynamics, and 0ω  and ν  are respectively the 

self-resonance frequency of an isolated resonator and the intra-cell coupling coefficient. The inter-cell 

coupling in Eq. (1) is described by the matrices 2 2
0 1, 2, 1(| | | | );0,0( ) [0, ]m n na an κ α −+ +=K  and 

2 2
0 1, 1 2,(| | | |( ) [0,0 ); ,0]np nan aκ α ++ +=K , which contain a linear coupling term 0 0κ >  and a Kerr-like 

nonlinear coefficient 0α ≥ . This model can be used to describe a broad range of classical problems in 

temporal coupled mode theory, for instance arrays of coupled optical and acoustic cavities, as well as 
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circuit resonators [42]-[43].  In the following, the coupling coefficients 0,ν κ , as well as the independent 

time t  and frequency ω variables, are normalized with respect to the resonator self-resonance frequency

0ω . The mode amplitudes 1, 2,,n naa  are also normalized such that 2 2
1, 2,| | | |n naa +  is the n-th dimer stored 

energy. Thereby, the Kerr coefficient α  has units of inverse energy. 

We begin by investigating an infinite SSH chain as in Fig. 1, assuming that the nonlinearity is weak 

enough so that the modal solution can be approximated using the Bloch-like wave function  

 0
in i t

n e ϕ ω−Ψ = Ψ . (2) 

By plugging Eq. (2) into Eq. (1), we obtain the following nonlinear eigenvalue problem  

 0 0 0( ; )  ϕ ωΨ Ψ = ΨH ,  (3) 

with 0ω ω ω= −  and 0( ; ) x x y yh hϕ σ σΨ = +H , where 1,0 2,0( , )cosx a ah ν κ ϕ= − , 1,0 2,0( , )siny ah aκ ϕ= , 

2 2
1,0 2,0 0 1,0 2,0( , ) (| | | | )a a a aκ κ α= + + , and /x yσ  are the Pauli matrices. In contrast to the linear chain, the 

solution (2) is subject to a dispersion that depends also on the mode amplitude 0Ψ .  

3. Eigenmodal properties of the infinite nonlinear SSH array 

Using Eq. (3), the nonlinear chain dispersion can be numerically solved (see Appendix A). At the edges 

of the first Brillouin zone ϕ π= ± , it is also possible to derive an analytical closed-form solution for the 

edges of the bandgap: 

 2
0 ||bg Iω ν κ α= ± − −  , (4) 

where { }2 2
1, 2,max | | | |n n na aI = +  is the mode intensity, which, under the solution ansatz in Eq. (2), 

reduces to 0I = Ψ . Eq. (4) provides insights into the array bandgap formation, showing its evolution as 
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a function of intensity. In particular, if 0ν κ> , at low intensities the bandgap is open, as shown in Fig. 

2(a), calculated for 32.3 10ν −= ×  and 3
0 2.0 10κ −= × . As the intensity increases, the gap will close at the 

threshold intensity 0( ) / 2.45thI ν κ α= − ≈ , and reopen again, as shown in Fig. 2(b) for 55 10α −= × . 

This bandgap evolution does not leave the system intact: as indicated in the figure, the system 

experiences a self-induced topological transition, switching from a trivial to non-trivial topology. In order 

to prove this claim, we need to calculate the topological invariant of the system, the winding number, as a 

function of the eigenvector intensity I .The winding number W is defined by [44] 

 0ln1
2

( ; )W d
i

d
d

π

π

ϕ ϕ
π ϕ−

Ψ= ∫ h , (5) 

where the state vector 0( ; ) x yh ihϕ Ψ = −h  completes a full circle in the complex ( ),x yh h plane as ϕ  

varies along the first Brillouin zone. Then, 1W =  or 0 depending on whether or not 0( ; )ϕ Ψh  encircles 

the origin ( ) (, 0,0)x yh h = . By increasing the intensity, the length of 0( ; )ϕ Ψh  increases and, at a certain 

critical value, coinciding with the threshold intensity at which the bandgap closes in Fig. 2(b), it starts 

encircling the origin, as illustrated in Fig. 2(c). For the given set of parameters for the example at hand, 

Fig. 2(d) shows the evolution of the winding number with applied intensity, confirming the close relation 

between bandgap re-opening and topological transition. 

This is consistent with the fact that, if the inter-cell coupling coefficient is larger than the intra-

cell coupling coefficient in the linear SSH array, the system becomes topologically non-trivial [28],[45]-

[47]. Therefore, one may expect a topological transition once the effective inter-cell coupling 1 2( , )a aκ  

increases above ν . However, the transition dynamics and the uniquely formed edge states cannot be 

explained within the scope of this simplified description, since it uses global properties to describe a 

nonlinear phenomenon that is local by nature. Particularly, in semi-infinite or finite structures the 

description based on a Bloch-like state (2) is invalid, as the amplitude along the chain cannot be uniform 
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due to the presence of boundaries, yielding inhomogeneous nonlinear coupling coefficients along the 

chain that break the periodicity. Yet, as seen in the following, this basic model powerfully captures the 

basic mechanisms observed in finite and semi-infinite nonlinear SSH arrays based on the geometry of Fig. 

1. 

4. Finite systems: the role of edges and boundaries 

Studying truncated arrays is crucial to get more insights into the unusual topological response outlined in 

Fig. 2, particularly regarding the transition from trivial to non-trivial topology, and the emergence of edge 

states, which, from the bulk-boundary correspondence principle [48], are known to exist in linear systems 

with topological order characterized by 1W = . To this end, we consider a nonlinear SSH chain of 40N =  

dimers, under a harmonic time dependence i te ω− . Using the numerical procedure discussed in Appendix 

B, the resultant 2 2N N×  nonlinear eigenvalue problem was solved iteratively for the lowest-order 

eigenvalues, and we show the results in Fig. 3 for the same values of 0, ,ν κ α  as in Fig. 2. In Fig. 3(a), we 

show the set of eigenfrequencies of the linear (low-intensity) problem, compared with the dispersion of 

the infinite structure. All eigenfrequencies, as expected, are located outside the bandgap in the passband. 

In Fig. 3(b), we explore the evolution of the two smallest eigenfrequencies (marked by bold red ‘+’ signs 

in Fig. 3(a)), as we increase the eigenvector intensity. The position of the bandgap edges, consistent with 

Fig. 2(b), is plotted as brown dashed lines. At low intensities, before the bandgap closes, the trajectories 

of the lowest eigenfrequencies follow the bandgap from outside. Remarkably, exactly at the critical 

threshold value of intensity required to close the bandgap 2.45thI = , an abrupt change in eigenfrequency 

trajectory is observed (refer to the inset in Fig. 3(b) for a zoom in this critical region), indicating the onset 

of a different response. Starting from this intensity, the eigenfrequency trajectories enter the bandgap, and 

gradually converge to 0ω = , as one would expect for an edge state. 

In order to get further understanding into this transition, we explore how the corresponding 

eigenvectors evolve as the intensity increases. In Fig. 3(c), we show the absolute value of the eigenvector 
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distribution versus the dimer index n  and the modal intensity I . At very low intensities, a typical 

standing-wave is formed across the finite array, a cosine-like bulk solution. Its profile can be also seen in 

Fig. 3(d) for the case 0I . As the intensity is increased, however, the mode profile gradually deforms, 

and it acquires a hyperbolic-cosine-like shape that eventually forms strongly decaying tails located at the 

two opposite ends of the chain. The mode profile in this case can be better seen in Fig. 3(e) for a high 

normalized intensity 60I . The figure highlights the gradual transition from trivial bulk modes near the 

bandgap to localized edge modes in the non-trivial bandgap, as the intensity grows. Interestingly, and 

very different from edge modes in linear topological insulators, the localized edge modes observed in Fig. 

3(e) do not appear to decay to zero in the bulk, but they converge to a constant level of intensity, a feature 

that will be explained in the following. Nevertheless, as seen in Fig. 3(b), the eigenfrequencies converge 

simultaneously to 0ω = , consistent with the fact that, as the intensity increases, the finite chain solution 

can be described as a combination of two nearly uncoupled solutions of the semi-infinite problem, one for 

each edge, with resonances very close to the individual resonator case. 

To gain further insights into this unusual edge response, we explore the analytical solution of the 

semi-infinite array. This solution is derived in detail in Appendix C, where we derive the analytical 

condition describing an edge-state decaying from the left edge ( 1n = ), which requires 0ω = , 

2, 0,na n≡ ∀ . Similarly, the opposite edge-state requires 1, 0na ≡ . The eigenvector magnitude of the semi-

infinite solution is shown by the red-dashed curve in Fig. 3(e), demonstrating a good agreement with the 

numerical solution of the finite chain. Using this analytical solution, the plateau level to which the 

solution converges as it decays in the bulk, depends on the array properties through 

 1, 0| (| ) /na ν κ α−= .  (6) 

This result makes perfect physical sense since this amplitude corresponds to the local threshold 

intensity that supports a zero bandgap width, as was shown after Eq. (4). The same is true for the opposite 
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edge state, but with 2, 0( )| /| na ν κ α= −  and 1, 0na = . Zero bandgap implies zero attenuation, thereby 

keeping the intensity unchanged, and yielding a self-sustained balance with constant amplitude that 

avoids the creation of a topological domain wall within the array. This observation demonstrates the 

importance of the local nature of the nonlinear problem at hand and the clear distinction from linear 

topological phenomena. 

Figure 4 shows the effect of increasing the finite chain length to outline the transition from a 

semi-infinite array to a finite array supporting localized edge modes. In panel (a), the evolution of the 

lowest-order eigenfrequency as a function of intensity is shown for different chain lengths. The drastic 

change in dynamics at the threshold intensity 2.45thI ≈  is evident. As N  increases, the intensity 

dependence converges to the semi-infinite case, especially for high intensities deep in the edge-state 

regime, as shown in (b). This is an important feature since, as opposed to linear topological edge states, 

which exponentially decrease to zero, the edge states that we find decay to a non-zero plateau along the 

array. Remarkably, despite this finite coupling, the two edge states are orthogonal, as discussed in 

Appendix C. It should be also pointed out that the edge state of the semi-infinite chain has frequency ഥ߱ ൌ 0. The frequency splitting observed in Fig. 4(a) and 4(b) is a consequence of the unavoidable 

coupling between the finite chain edges. In the linear problem, this coupling reduces as the mode is more 

confined, and the splitting shrinks as the chain length increases. However, in the nonlinear model studied 

here, the dependence on intensity is an additional important factor that controls the coupling. An increase 

in intensity leads to increased mode attenuation, and thereby reduced coupling, in such a way to 

compensate for a decrease in the chain length. This effect is demonstrated in Fig. 4(c), where for each 

chain length we plot the corresponding edge state intensity that is required to maintain a constant 

frequency splitting ഥ߱ ൌ 2 ൈ 10ି, and thereby constant coupling. 

5. Nonlinear temporal dynamics 
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The discussion so far has been based on a frequency domain analysis of the nonlinear SSH array, 

consistent with a traditional condensed matter physics approach to the problem. However, it is evident 

that the nonlinear topological states presented in this work have unique dynamical properties that depend 

on how a certain level of intensities is reached in the array. It may be possible that some of the states 

considered here may not even be reached with a physical excitation. In this section, therefore, we study 

the excitation problem of the system to provide further insights into the existence and dynamics of self-

induced topological transitions and topologically non-trivial edge states with robust properties. In this 

case, we use a time-domain analysis to examine the entire temporal spectra, providing also insights into 

the evolution of the array response upon realistic excitation schemes. Thereby, we solve a time-domain 

excitation problem described by the non-homogenous equation obtained when a source ( )n tS  coupled 

through a linear coupling coefficient ξ  (normalized to 0ω ) is added to the right-hand-side of Eq.(1). The 

source is given by a discretized Gaussian profile with temporal width τ  

 
2 2

0( ) /
1 0[ ( ),0] ,   ( ) t tT i t

n n in inS t S eS et τωδ − −−
−= =S   (7) 

In the equation, 1nδ −  stands for the Kronecker delta, thus indicating that the source is coupled only to the 

element 1,1a  of the first dimer, and 2
0S  has energy units as 2 2

1, 2,| a | ,| a |n n . In addition to a Gaussian 

profile, the source (7) is modulated in frequency, and its parameters are chosen such that the generated 

Fourier spectrum covers the entire spectral window of interest, i.e., the entire passband of the chain. The 

dynamic solution for this form of excitation is, therefore, equivalent to the system’s response to an 

incident broadband impulse. The left (right) column in Fig. 5 shows results for weak 3
0 5 10Sξ −= ×  

(strong, 1
0 10Sξ −=  ) excitation amplitude, and with source modulation frequency 0ω ω= . In Fig. 5(a) (

3
0 5 10Sξ −= × ) the time domain response of dimers at the left edge, center, and right edge are shown. The 

amplitudes in the different dimers are roughly equal, and the time domain signals exhibit an echo-like 
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shape indicating the presence of multiple reflections at the two edges, as expected in the excitation of a 

standing-wave bulk mode.  

Markedly different is the response for a strong input excitation, shown in Fig. 5 (b) ( 1
0 10Sξ −= ). 

It is readily seen that the first dimer is excited much more strongly than all dimers in the bulk and, in 

addition, no signal bounces back from the edge truncations, indicating the absence of multiple reflections. 

This agrees well with the expected localized behavior of an edge state. The corresponding spectral 

content, as given by the power spectrum of 1,1( )a t , is shown in Fig. 5(c) and (d) for the two cases, 

respectively. In (c) a clear picture of a passband, stopband, and multiple sharp peaks that correspond to 

various discrete states supported by the finite linear chain are found. However, in (d) we observe a single 

dominant peak at the frequency 0ω = , located right at the center of the bandgap. This is another clear 

manifestation of a self-trapping of the edge state in the nonlinear SSH chain, fully consistent with our 

eigenmode analysis above. 

Besides the temporal and spectral contents, the field distribution is another important indication 

of the self-trapping of the edge state due to the nonlinear topological transition described in this paper. 

This is shown in Fig. 5 (e) and (f), in which we plot the peak amplitude values at each dimer. In (e) we 

clearly see the presence of bulk modes, whereas in (f) an exponentially decaying edge state is 

demonstrated, with a plateau similar to the one predicted by our frequency domain eigenvalue analysis in 

Fig. 3(e). Finally, to fully reveal the topological nature of the self-trapped edge states, it is instructive to 

explore the topology of the chain by analyzing the topological invariant W . Given the nonlinearity, the 

array cannot be considered any longer periodic in the usual, linear sense. Therefore, in Fig. 5 (g) and (f), 

we plot the “local winding number” nW  at each node of the array, which represents the winding number 

corresponding to an infinite linear chain with coupling coefficients as that of the n -th dimer for the given 

intensity. In the weak excitation case, this quantity is identically zero all along the array (Fig. 5(g)), 

indicating that the entire structure is topologically trivial, whereas in the strong excitation the situation is 



 

11 
 

opposite (Fig. 5(h)), and the plateau intensity all along the array bulk ensures that the winding number 

stays at unity. 

It is interesting to investigate more carefully the dynamics of the topological transition between 

trivial and non-trivial states in the system. Figure 6(a) shows the local winding number versus dimer 

index and the input signal intensity. One can see that at low input intensities the entire chain is 

topologically trivial. As the input intensity reaches a threshold 0 0.02Sξ ≈ , parts of the chain in the 

proximity to the excitation point experience a transition from topologically trivial to non-trivial regime, 

leading to the emergence of a localized resonance at 0ω = . This transition then builds up very abruptly 

as an avalanche effect, due to a focusing effect around the array edges, which ends abruptly when the 

input intensity is slightly increased above the threshold value, and the entire structure becomes 

topologically non-trivial. As an illustration, in Fig. 6 (b) we plot the frequency at which the strongest 

excitation takes place. Interestingly, once a small part of the chain becomes topologically non-trivial (

0 0.02Sξ ≈ ), the strongest excitation frequency jumps from outside the bandgap right into its center 

0ω = , and an edge state is excited, in agreement with the previous description. In Fig. 6(c), we show the 

peak amplitude at the frequency of strongest excitation normalized to the input signal. As the input 

intensity increases, the power that is delivered to the edge-state increases as well, yielding a strong power 

concentration in the edge-state inside the bandgap which can become orders of magnitude larger than the 

input excitation. 

6. Conclusions 

In this work, we have introduced and discussed the rich physical platform offered by nonlinear dimer 

(SSH) arrays in the context of their topological properties. We demonstrated that such arrays exhibit self-

induced nonlinear topological phase transitions, which are accompanied by an emergence of self-trapping 

edge states, supported by an effective structural modification of the topological properties of the array as 

a function of the applied amplitude. We explored this new class of soliton-like topological edge modes in 
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semi-infinite and finite SSH chains, both in frequency and in time domain, and revealed the nature and 

dynamics of their self-trapping dynamics. This new class of nonlinear topological responses differs from 

conventional edge states in linear systems, as they locally depend on the effective environment induced 

by the non-linearity. The very emergence of such topological transitions with edge state demonstrates that 

nonlinear effects can serve as a new important class of mechanisms of topological order in classical 

systems, which can be readily extended to 2D and 3D arrays. 

 

Appendix A 

Dispersion calculation of the infinite nonlinear SSH chain  

For given modal intensity, the nonlinear eigenvalue problem in Eq. (3) of the main text should, in general, 

be solved iteratively.  However, in light of the simple nonlinear model we assume, the iterative process 

can be replaced by direct calculation. Recall that in the case of weak nonlinearity we assume Bloch-like 

solution and define the intensity by 0I = Ψ . Assuming that I  is known in Eq. (3) of the main text, the 

corresponding eigenfrequencies can be calculated through,  

 
22 2 2

0 0( ) 2 cos I Iω ϕ ν ν ϕ κ α κ α⎡ ⎤ ⎡ ⎤= ± + + + +⎣ ⎦ ⎣ ⎦ .  (8) 

The dispersion ( )ω ϕ ,  [ , ]ϕ π π∈ − , depends on the intensity. Once the frequency-phase relation is known 

for given intensity, the value of each amplitude can be also calculated using  

 { }1 2
1,0 0 2,0

iI e aa ϕω ν κ α− −⎡ ⎤= − + +⎣ ⎦   (9) 

Formula for the bandgap: The bandgap takes place at ϕ π= ± , therefore Eq. (8) yields  

 ( )2 2
0 1,0 2,0| | | |bg a aω ν κ α= ± − +−   (10) 
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which can also be written in the form of Eq. (4). Note that, if we assume that 2,0a  is real, then by Eq. (9)

1,0a  will be necessarily real as well, and therefore in this case the absolute value sign on the amplitudes in 

Eq. (10) is not required. Lastly, note that if we use Eq. (10) in Eq. (9) with ϕ π= ±  we get 1,0 2,0a a= ±  

which is true only in the case of propagating solutions, very close to the bandgap. 

 

 

Appendix B 

Solution of the nonlinear eigenvalue problem of a finite chain  

Assume that we have N  dimers in a finite chain. Then, Eq. (1) of the main text reduces to a nonlinear 

2 2N N×   matrix eigenvalue problem of the form 

 ( ) ωΨ Ψ = ΨH   (11) 

with 1 2[ ; ;..; ]NΨ = Ψ Ψ Ψ  a 2 1N ×  column vector, and where 1, 2,[ , ]T
n n na aΨ =  as defined in the main 

text. When solving Eq.(11), we simultaneously look for an eigenfrequency ω  and eigenvector Ψ  that 

satisfy this equation. In the linear case ( )≠ ΨH H  and the solution is straightforward as the spectrum can 

be determined from the secular equation det( ) 0ω− =H I where I  is the 2 2N N× unity matrix. However, 

in our case the problem is nonlinear and the Hamiltonian depends on the eigenvector. Therefore, the 

problem cannot in general be solved in any other way but iteratively. For this iterative procedure, an 

initial guess is required. Two possible candidates are the eigenvector of the weakly nonlinear problem, 

namely, with very low intensity, or the high-intensity solution that can be approximated by the analytic 

solution for the semi-infinite chain and given in Appendix C.  The letter approach is the preferred way, as 

this solution is very distinct in its shape as compared with the former solution of the problem, and it is 

indeed closer to the true solution of the finite-chain problem. Finally, note that there is an important 
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difference between the nonlinear eigenvalue problem we deal with and a linear eigenvalue problem.  In 

the latter, an eigenvector that is associated with an eigenvalue is defined up to a scaling constant. In our 

case, however, an eigenvector that corresponds to a particular eigenfrequency is uniquely defined. And if 

scaled by a constant factor it does not anymore represent an eigenvector of Eq. (11). 

 

 

Appendix C 

Calculating the mode profile of an edge-state  

Based on our numerical solutions both in the frequency and in the time domain, we expect to find edge 

state solutions at 0ω = .  This is confirmed by the convergence of the lowest eigenfrequencies of the 

finite problem to the 0ω =  axis (see Fig. 3(b) and Fig. 4(b)). This implies that we should expect to have 

solutions to the semi-infinite problem that can exhibit a vanishing coupling in the finite case. This can be 

achieved if, for the solution decaying from the left edge towards the right, one has 2, 0na = , whereas for 

the solution localized to the opposite edge one should have 1,0 0a = . We focus on the former, noting that 

the latter can be readily obtained by the simple mirror reflection operation. We assume real solution, 

therefore 2 2
1, 1,| |n na a= , in which case the frequency-domain counterpart of Eq. (1) of the main text can be 

obtained by assuming the time-harmonic solution ( ) ( ) i t
n nt e ωω −Ψ = Ψ with 0ω ω=  (recall that the solution 

eigenfrequency is expected at 0ω = ) and  Eq. (1) reduces to the cubic equation 

 3 0
1, 1 1, 1 1, 0n n na a aκ ν

α α+ ++ + =   (12) 



 

15 
 

This equation should be solved for 1, 1 1,( )n na a+  in order to get a recursion type solution of the nonlinearly 

induced edge state. To this end, we start by defining simpler equation parameters 0 /p κ α= −  and 

1, /nq a ν α= − , followed by  a change of variable 

 3
1, 1 33n

pa w
w+ = +   (13) 

which turns Eq. (12) into a much simpler quadratic equation 

 
3

2 0
27
pw qw− + =   (14) 

Eq. (14) has two real roots, one positive and one negative, 

 
2 3

2 0
1, 1,2 3

1 4
2 2 27n naw aν ν κ
α α α

± += −   (15) 

Any of these roots, when substituted back into Eq. (13), gives exactly the same three solutions of the 

cubic equation. One is real and the other two are complex. We are interested in the real solution only 

(complex 1,na would contradict the assumption under which Eq. (12) was derived), therefore, we take the 

real root of 3 w  in Eq. (13). 

Using this exact edge state solution one can show that the (localized) edge state exists, namely that 

1, 1 1,| || |n naa + <  for all n , thus indicating that the amplitude attenuates away from the edge, only if 

 0
1,0 1,TH| | aa ν κ

α
= −>   (16)  

This result makes a lot of sense, since this is exactly the condition at which the nonlinear coupling 

coefficient κ  equals a value that exactly closes the bandgap according to Eq. (4) of the main text, 

assuming that 2, 0na = . Above this threshold the chain will be topologically non-trivial, enabling the 



 

16 
 

excitation of an edge-state at 0ω = . Moreover, once the edge-state decays, the “local bandgap” is 

gradually closed and eventually the edge state will stop decaying. This will happen, again, at the critical 

threshold amplitude in Eq. (16). Therefore, we conclude that the minimum edge-state amplitude possible 

in nonlinearity induced topological insulators depends directly on the band-gap of the linear 0| |ν κ−   

problem and is inversely proportional to the nonlinear Kerr coefficientα . It is important to note that the 

mathematical solution given by Eq. (13) along with Eq. (15), represents a physical solution only when Eq. 

(16) is satisfied. In this case the solution is monotonically decreasing, whereas, if the initial intensity is 

lower than that the threshold value, the solution will be monotonically increasing, which is an unphysical 

behavior for a passive system. This proves that the edge state exists, and can be excited, only for 

sufficiently high excitation intensities, as it is demonstrated in the context of time-domain solutions 

presented in Fig. 5 and Fig. 6 and discussed in the main text. 
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Figures 

 

 

Figure 1. Geometry of interest: nonlinear SSH model. Each unit cell consists of two resonators, red 

and blue, with same resonance frequency 0ω ω=  ( 0ω =  ). The intra-cell coupling coefficient is ν , kept 

constant, whereas the inter-cell coupling coefficient κ  depends on the intensities in the two resonators 

connected by the bond.  
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Figure 2. Infinite nonlinear SSH chain. (a) For negligible intensity 0I → , the system reduces to the 

linear problem. Here 32 10ν −= × and 3
0 2.3 10κ −= × , such that the dispersion has a topologically trivial 

bandgap. (b) The bandgap width is tuned by intensity. With nonlinear Kerr coefficient 5105α −= ×  the 

bandgap is closed and reopened at modal intensity 2.45thI ≈ . (c) The edge of the eigenvector of the 

operator 0( ; )ϕ ΨH  is plotted for different intensities; each is represented by a different color shown in the 

color bar. The winding number 0W =  when the vector does not encircle the origin (indicated by the bold 

black ‘+’ sign) and 1W =  otherwise. The threshold intensity is 2.45thI ≈ . (d) W  plotted vs intensity I , 

illustrating the topological transition at 2.45thI ≈  for which the bandgap closes and reopens. 
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Figure 3. Frequency domain analysis of a finite nonlinear SSH chain. (a) Topologically trivial linear 

chain of 40N =  dimers, with 40 pairs of eigenfrequencies; all eigenfrequencies are located inside the 

passband of the infinite chain. (b) The trajectory of the smallest eigenfrequencies (marked by bold red ‘+’ 

signs in (a)) versus intensity. The bandgap versus intensity is plotted in dashed lines. At the threshold 

intensity, for which the bandgap closes and reopens, an abrupt change in eigenfrequency trajectory is 

clearly observed and the eigenfrequencies steadily converge to 0ω = . (c) The evolution of the 

corresponding mode profile versus intensity demonstrating a transition from standing wave to 

exponentially decaying solutions localized at the edges. (d) Snapshot of the mode profile at zero intensity. 

(e) Snapshot of the localized edge state at the highest mode intensity. The analytical solution for the semi-

infinite nonlinear SSH chain is plotted as a red dashed curve. 
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Figure 4. Finite chain response versus array length. (a) Evolution of the lowest order eigenfrequency 

versus intensity for different chain lengths. The threshold at which the dynamics of the eigenfrequency 

evolution change depends on the infinite chain bandgap crossing point and takes place at 2.45thI ≈ . (b) 

The same as (a) but for high intensities, deep in the edge state regime. Like in (a), as the chain length 

increases the eigenfrequency trajectory tends to converge, as expected in an edge state response. (c) 

Maximal intensity versus chain length at a fixed eigenfrequency 62 10ω −= × . In the finite chain, the 

eigenfrequencies converge to 0ω = , but never reach that limit due to the unavoidable coupling between 

the two edges of the finite chain. If the coupling coefficient is kept constant, i.e., the frequency splitting 

ω  is constant, while the chain length is reduced, the modal intensity increases in order to increase the 

attenuation rate. 
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Figure 5. Time-domain analysis of a finite 40N =  chain. Left column: excitation with a modulated 

Gaussian pulse with amplitude 3
0 5 10Sξ −= × ; Right column: same but with higher excitation amplitude 

1
0 10Sξ −= . (a) Time-domain response of the first resonator in three dimers, located at the left edge, 

center, and right edge of the chain. The amplitudes are nearly the same, and multiple reflections of the 

bulk mode are observed. (b) The same as (a) but for 1
0 10Sξ −= . Excitation of the dimers in the center and 

at the right edge of the chain is negligible. No reflections are found, indicating the emergence of edge-

states. (c) The Fourier (power) spectrum of the signals in (a). At low input intensity, the chain response is 

nearly linear, exhibiting a clear passband and a bandgap in the center. (d) Same as (c), but for 1
0 10Sξ −= . 

A dominant excitation of an edge state in the center of the bandgap is evident. (e) Amplitude distribution 

along the chain, indicating excitation of a bulk mode. (f) Same as (e), indicating the excitation of an edge-

state. (g) Local topological number calculated from the amplitudes in (e), indicating uniform 

topologically trivial chain. (h) Same as (g), indicating uniformly topologically non-trivial chain. 
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Figure 6. Evolution of an edge-state through time-domain study. (a) Local winding number versus 

input intensity and dimer index. (b) Frequency of the strongest excitation per given intensity. A sharp 

transition is observed at about 0 0.02Sξ = , which is in agreement with the transition seen in the winding 

number. The spectrum peak is located on the 0ω =  axis if an edge-state is excited. (c) Spectrum density 

at peak amplitude normalized to the input signal amplitude. The graph indicates increasing power 

concentration in the edge state as the input intensity is increased. 


