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Abstract:  We present a method for rapidly generating efficient k-point grids for Brillouin 

zone integration by using a database of pre-calculated grids.  Benchmark results on 102 

randomly-selected materials indicate that for well-converged calculations, the grids 

generated by our method have less than half as many irreducible k-points as Monkhorst-

Pack grids generated using a more conventional method, significantly accelerating the 

calculation of properties of crystalline materials. 

I. INTRODUCTION 

The calculation of many properties of crystalline materials requires the evaluation of integrals over the 

Brillouin zone in reciprocal space.  These integrals are typically approximated using a discrete set of 

points, commonly known as k-points.  Increasing the density of k-points in the Brillouin zone can 

increase the accuracy of the calculation, but the cost of approximating the integral typically scales 

linearly with the number of symmetrically irreducible k-points (i.e. the largest subset of k-points for 

which no two k-points in the subset are symmetrically equivalent).  To minimize the cost of Brillouin 



zone integration while maintaining sufficient accuracy, several methods have been developed for the 

selection of “special” points for Brillouin zone integration. This idea was introduced by Baldereschi [1], 

expanded by Chadi and Cohen [2], and further developed by Monkhorst and Pack [3], with the latter 

approach being the most widely used today. 

In the method of Monkhorst and Pack, a regular grid of k-points is generated, and the Brillouin zone 

integral of a function is approximated by calculating the average value of the function over the k-points.  

The speed and accuracy of the approximation may be improved by shifting the grid so that no point falls 

on the high-symmetry Γ point at the center of the Brillouin zone.  The axes of the grid align with the 

reciprocal lattice vectors, so the coordinates of a k-point on an  grid are given by: 

  (1) 

where  is a vector representing the shift from the Γ point and , , and  are integers that range 

from 1 to , , and  respectively.  The reciprocal lattice vectors, ,  and , are defined by: 

  (2) 

where ,  and are the lattice vectors for a primitive unit cell in real space (here we represent 

vectors as column vectors).   

Monkhorst-Pack grids have a useful real-space interpretation.  We can define an  supercell 

of the primitive cell with lattice vectors , , and  given by  

  (3) 
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where  is a diagonal matrix in which , , and .  We will refer to the 

Bravais lattice with lattice vectors , , and  as the “superlattice”.  Bloch waves with wave vector 

with respect to the supercell take the form: 

  (4) 

where  is a function with the periodicity of the real-space supercell.  We can express  as 

a Bloch wave with respect to the primitive cell: 

  (5) 

where  is a function with the periodicity of the real-space primitive cell and  is a vector in 

reciprocal space.  Because  has the periodicity of the real-space supercell,  must satisfy 

  (6) 

where , , and  are integers.  Combining equations (3) and (6), we get: 

 . (7) 

Solving for  and combining with equation (2) yields 

 . (8) 

Combining equations (4), (5), and (8), we get an alternative expression for : 

 . (9) 

Equations (1), (4), and (9) demonstrate that each Bloch wave on a Monkhorst-Pack grid with respect to 

the primitive cell is equivalent to a Bloch wave at wave vector  with respect to the supercell.   

The real-space supercell interpretation outlined above is instructive because upon inspection, it 

becomes apparent that there is no reason the matrix  must be diagonal.  Any non-singular integer 
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matrix  can be used to define the real-space supercell, and the coordinates of the generated k-points 

are then given by 

  (10) 

where , , and  are integers.  We will refer to k-point grids described by equation (10) as 

generalized Monkhorst-Pack grids.  In these grids, the total number of k-points in the Brillouin zone is 

equal to the number of primitive cells in the real-space supercell.   

Examples of generalized Monkhorst-Pack grids on a two-dimensional rectangular lattice are shown in 

Fig. 1.  The green 2×2 supercell in real space corresponds to a 2×2 k-point grid in reciprocal space.  This 

grid is illustrative of the traditional approach for constructing k-point grids, in which the matrix  is 

diagonal.  Removing the constraint that the matrix  must be diagonal enables the construction of the 

red and blue supercells and corresponding generalized k-point grids.  The red and blue grids contain 3 

and 2 k-points per reciprocal space unit cell respectively, with k-points that are more evenly spaced than 

would be achieved by 3×1 or 2×1 (yellow) traditional Monkhorst-Pack grids. 
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FIG. 1.  A comparison of (left) real-space supercells on a rectangle lattice and (right) the corresponding k-point 
grids in a unit cell of the reciprocal lattice.  To aid visual comparison, all k-point grids are shifted so that one k-

point falls on the corner of the reciprocal space unit cell.  The yellow grid is an example of a traditional 2x1 
Monkhorst-Pack grid, and the blue grid is a generalized Monkhorst Pack grid with the same density that more 

evenly samples reciprocal space. 

 

The benefit of using generalized grids was identified by Froyen [4], who suggested choosing the real-

space supercell and shift vector in a way that minimizes the number of symmetrically irreducible k-

points in the grid.  Moreno and Soler demonstrated that generalized grids, as defined in equation (10), 

can always be expressed in terms of a diagonal matrix , provided the reciprocal lattice vectors ,  

and  are suitably chosen [5].  They expanded on Froyen’s work by proposing the following approach 

for selecting the optimal k-point grid: 

1) Select a minimum permissible distance between lattice points in the real-space superlattice.  We 

will call this distance . 

2) Of the possible superlattices in which all lattice points are separated by at least a distance of , 

find the one that corresponds to a k-point grid with the fewest symmetrically irreducible k-points. 
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There is intuitive appeal to the idea selecting k-point grids based on the minimum distance between 

points on the real-space superlattice.  The density of the grid, and hence the speed and accuracy of the 

calculation, is determined by a single parameter, .  The grid will also naturally be chosen so that the 

k-points are evenly distributed in reciprocal space.  Specifically, this approach favors fcc-like real-space 

superlattices, resulting in bcc-like k-point grids.   

Despite the apparent advantages of the k-point grid generation approach advocated by Moreno and 

Soler, it has seen little use in practice.  It has been partially implemented in the SIESTA software 

package [6], but the partial implementation does not identify the grid with the fewest irreducible k-

points.  The relatively poor adoption of this approach, compared to the much more popular Monkhorst-

Pack approach, is likely due to the fact that the Moreno-Soler approach mandates a search through all 

possible superlattices in which lattice points are separated by a distance of at least  to identify the 

one that results in the fewest number of irreducible k-points. This is significantly more complicated and 

computationally expensive than the relatively simple task of generating an  Monkhorst-Pack 

grid. 

In this paper we demonstrate that the complexity and cost of the Moreno-Soler approach can be 

significantly reduced through the use of informatics.  We have created a database of generalized k-point 

grids that can be rapidly searched to find the grid with the fewest irreducible k-points for which the 

points on the corresponding superlattice are separated by a distance of at least .  Based on 

benchmark calculations on 102 randomly-selected crystalline materials, we find that our approach has 

the potential to significantly accelerate quantum calculations on crystalline materials. 
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II. METHODOLOGY 

A. Real-space interpretation of the integration error 

We start by briefly providing an additional argument for the Moreno-Soler approach, in which k-point 

grids are selected according to .  Consider a Hamiltonian operator  with eigenvalues  

corresponding to eigenfunctions , where n  is the band index.  The total energy at each k-point is 

given by 

 . (12) 

Where  is an occupancy function.  Let  represent the average integration error due to using a 

generalized Monkhorst-Pack k-point grid to approximate the integral of  across the Brillouin zone: 

 , (13) 

where  is the volume of the primitive cell Brillouin zone and the sum is over all  k-points in the 

Brillouin zone.  Following Monkhorst and Pack [3],  

 , (14) 

where the sum is over all points  on the supercell lattice (excluding the lattice point  at the origin) 

and  

 . (15) 

A derivation of this result for generalized Monkhorst-Pack grids is provided in the supplemental 

material [7].  Thus the approximation error for a k-point grid that includes the  point (i.e.  has zero 

length) is: 
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 . (16) 

It is often desirable to shift the k-point grid by a half-multiple of one or more reciprocal lattice vectors of 

the superlattice.  In this case, by equation (14), half of the terms in the sum in equation (16) are 

multiplied by -1.   

To estimate the magnitude of , we first consider the case of an insulator with time-reversal 

symmetry.  Let  represent quasi-Bloch states generated by a unitary transformation of the 

occupied eigenstates .  Because the transformation is unitary, we can write 

 . (17) 

where 

  (18) 

For an insulator with time-reversal symmetry, the quasi-Bloch states  can be chosen so that they 

are analytic with respect to  [8].  From these states, we can construct exponentially-localized Wannier 

functions, defined as 

 . (19) 

Because we have defined  as the lattice point at the origin, equations (18) and (19) yield 

 . (20) 

By equations (15), (17), and (20),   

 . (21) 
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Thus the error due to k-point sampling is the sum of the Hamiltonian matrix elements between 

Wannier functions at the origin and symmetrically equivalent Wannier functions at all other points on 

the supercell lattice.  Because these Wannier functions can be constructed to be exponentially localized, 

it can be expected that the matrix elements will decay exponentially with  [9].  Under the 

simplifying a-priori assumption that the decay is isotropic, it follows that the k-point sampling error will 

strongly depend on the shortest distance between Wannier functions on the supercell lattice.  Thus the 

shortest distance between points on the supercell lattice becomes a natural metric for estimating the error 

due to k-point sampling. 

For insulators, the analyticity of  implies the analyticity of  and hence .  Because 

the values  are simply the coefficients of the Fourier transform of , they must decay 

exponentially with , the distance between  and the origin, when  is analytic [10].  This 

analysis is consistent with the above interpretation based on exponentially-localized Wannier functions.  

However for metals at 0 K,  is not analytic with respect to  due to the discontinuity in the 

occupancy function, and  cannot be expected to decay exponentially with .  The integration error 

will be largely determined by how well a given k-point grid is able to identify the shape of the Fermi 

surface.   Although the benefits of choosing bcc-like k-point grids (as opposed to, for example, fcc-like 

grids) are less clear in this case, we find that the evenly-spaced k-point grids returned by our method 

also work well for metals in practice.   Because in many cases it is not known a-priori whether a 

material will have a calculated band gap, we use the Moreno-Soler approach, based on , for all 

materials. 
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B. Database generation 

For three-dimensional crystalline systems with time-reversal symmetry, the symmetry of possible k-

point grids is given by one of 24 centrosymmetric symmorphic space groups [11].  For the 21 of these 

space groups that are neither triclinic nor monoclinic, the angles between lattice vectors are fixed, and 

only the lengths of the lattice vectors may change.  To represent these space groups, we generated a set 

of 9094 sample structures with different lattice parameters, where the length of the longest conventional 

lattice vector could be up to 16 times as long as the length of the shortest vector.  For each sample 

structure, we generated all possible real-space superlattices with up to 1728 (12×12×12) total primitive 

cells for orthorhombic, tetragonal, trigonal, and hexagonal space groups, and 5832 (18×18×18) total 

primitive cells for cubic space groups.  Approximately 1% of the symmetrically distinct superlattices 

generated in this way had the same point group symmetry as the primitive lattice.  When combined with 

the shift vectors described below (or no shift vector), these superlattices ensure that the set of k-points 

and all symmetrically equivalent points form a regular grid.  They also make full use of symmetry to 

reduce the number of irreducible k-points.  For these reasons, they were used to generate all k-point 

grids in the database. 

For each symmetry-preserving superlattice, we calculated , defined as the minimum spacing 

between points on the superlattice.  For each sample structure, we identified the subset of superlattices 

that are on the Pareto frontier with respect to  and the number of irreducible k-points in the 

corresponding k-point grid (Fig. 2); these are the superlattices for which there is no other superlattice 

that has greater (or equal)  and for which the corresponding k-point grid has fewer irreducible k-

points.  For any superlattice that is not on the frontier, it is always possible to find one on the frontier 

that is superior with respect to  and the number of irreducible k-points.  For this reason, only the 
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latticer

latticer
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superlattices on the Pareto frontiers were used to generate the k-point grid database.  The resulting 

database contains 58,151 k-point grids.  

 

FIG. 2.  An example of a Pareto frontier used to identify the best k-point grids for a given structure.  All 
symmetry-preserving lattices are indicated by diamonds, and the lattices on the frontier are indicated by black 

diamonds.  For any lattice not on the frontier, it is always possible to find a better lattice, in terms of the number 
of distinct k-points and , on the frontier. 

 

C. Dynamic grid generation 

For the triclinic and monoclinic space groups, we do not use a database due to the large number of 

lattices that would need to be included in the database and because the benefit of pre-calculating Pareto 

frontiers is relatively small for systems with low symmetry.  Instead we dynamically identify the 

smallest superlattices for which and the point group symmetry matches that of the primitive 

lattice.  Of these, we use the lattice that results in the fewest irreducible k-points.   

D. Large k-point grids 

To maintain fast performance for dynamic grid generation we currently limit our dynamic search to 

superlattices with no more than 216 total primitive cells.  If no superlattice with 216 or fewer primitive 
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cells is found, we identify the best superlattice for which  , where the initial value of  is 2.  

If again no superlattice with 216 or fewer primitive cells is found, we iteratively increment  by 1 until 

we find a superlattice with no more than 216 primitive cells.  We then return a k-point grid 

corresponding to a  supercell of this superlattice.  A similar method is used to generate lattices 

with more than 1728 k-points (for non-cubic space groups) and 5832 k-points (for cubic space-groups).  

For the results presented in this paper, convergence was always reached with .   

III. RESULTS 

A. Methods evaluated 

We tested three different methods for generating k-point grids.  The first, which we will refer to as the 

Generalized grid Database (GD), is the method described in the previous section.  The second, which we 

will refer to as the Diagonal grid Database (DD), is the same as GD with the exception that the matrix 

 in equation (10) is constrained to be diagonal.   

The two methods described above were compared to the automatic k-point generation scheme used in 

the Vienna Ab-initio Simulation Package (VASP) [12-16].  In this scheme, a Monkhorst-Pack grid is 

created where , the number of grid points along the  reciprocal lattice vector , is determined by 

choosing a parameter  and rounding  up to the nearest integer.  We will refer to this 

approach as a Simple Diagonal grid (SD).  The SD method is representative of common approaches for 

generating Monkhorst-Pack grids.   

In the DD and SD methods, the choice of the initial primitive cell is important, as the set of possible k-

point grids is determined by the choice of lattice vectors for the primitive cell.  We note that this is 

different from the GD method, for which identical k-point lattices are returned for any choice of the 
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primitive lattice vectors.  For all methods, we used Minkowski-reduced lattice vectors [17,18] to 

represent all structures.   

To generate shifted GD and DD grids (where the grid is shifted off the Γ point), the shift vector  was 

calculated as 

 . (22) 

where , , and  are the lattice vectors of a conventional unit cell for the k-point grid.  For 

structures with trigonal and hexagonal symmetry, the shift vector was constrained to be parallel to the 

three-fold rotational axis to avoid breaking symmetry.  For the SD method, we used the Monkhorst-Pack 

method implemented in VASP, for which  

 . (23) 

where  if  (the number of grid points in the  direction) is even, and  if  is odd.  We 

explored the common practice of using unshifted (a.k.a. Γ-centered) grids instead of shifted grids for 

trigonal and hexagonal lattices, but we found that after correcting for fatal errors (as described below) 

this made the SD results worse.   

For fcc materials, shifted grids generated using the DD method present a special case.  When using a 

Minkowski-reduced primitive cell for an fcc lattice, it is impossible to generate a symmetry-preserving 

k-point grid that does not include the Γ point.  This problem can be addressed by careful selection of the 

vectors used to define the primitive cell (in a way that is not Minkowski-reduced).  As this is not 

commonly done in practice and would amount to manually creating a GD grid, we instead chose to 

include the Γ point for all “shifted” k-point grids generated using the DD method for fcc materials. 
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B. Benchmark calculations 

To test for the effectiveness of our approach, we used density functional theory (DFT) [19,20] as 

implemented in VASP to calculate the converged energies of 102 materials randomly selected from the 

Inorganic Crystal Structure Database (ICSD) [21].  For each material, the ionic positions were pre-

relaxed, and then for benchmarking we performed a static run on the relaxed structure.  Additional 

details of our calculations and the selected structures are provided in the supplemental material [7].  To 

determine the number of k-points required to calculate a converged energy value, we generated k-point 

grids for 33 different values of  for each material using each of the three different methods.  These 

grids were generated by starting from  and incrementally reducing  by a factor of 21/6 

until we reached .  For the SD method, we used .  The lower limit of 

 was chosen to ensure that for all materials, the least-dense DD and GD grids contained 

exactly one irreducible k-point.  For four materials, a lower value of  was required to generate a SD 

grid with exactly one irreducible k-point, but generating grids using  would not have 

changed the convergence results for any of those materials. 

All calculations were done using the tetrahedron method with Blöchl corrections [22] except for when 

there were less than 4 irreducible points; in this case Gaussian smearing with a width of 0.05 eV was 

used.  For each grid, we calculated the error, , as the absolute difference between the calculated 

energy per atom and that calculated using the densest grid.  The calculation was considered to be 

converged at the least-dense grid for which  for all grids with greater or equal density was less than 

the maximum acceptable error.  For all grid-generation methods, anomalously high values of  were 

observed for some calculations that had both BRMIX and DENTET warnings in VASP.  All 496 
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calculations that had both BRMIX and DENTET warnings were re-run using Gaussian smearing, which 

removed the anomalous results. 

For nearly 40% of the shifted grids generated using the SD method, VASP threw fatal errors.  These 

errors are listed in the supplemental material [7].  In such cases, as if often done in practice, the shifted 

grid was replaced with a Γ-centered grid.  For four calculations, using SD Γ-centered grids with 

 (the densest grids), VASP threw fatal errors or stalled.  In these cases, energy was replaced 

by the average of the energies of the densest grids generated using other methods.  Because there was 

little variation in the energies per atom for the densest grids, we do not believe this substitution 

significantly affected our results.  For calculations using the DD and GD k-point grids, VASP did not 

throw fatal errors for any of the 13,332 calculations. 

C. Benchmarking results 

For the three different methods, the average number of irreducible k-points required to reach different 

levels of convergence for the calculated energy is shown in Fig. 3.  For convergence of the energy 

within 1 meV / atom, the SD method required on average 2.25 times as many irreducible k-points as the 

GD method for Γ-centered grids and 2.69 times as many for shifted grids.  Most of the gain appears to 

come from the uses of high-symmetry grids and the Pareto frontier, as the DD method also shows 

significant gains over the SD method, despite the fact that both methods result in “diagonal” grids 

aligned with the reciprocal lattice vectors.  The relative advantage of the DD and GD methods over the 

SD method increases as the convergence criterion is tightened.  This is primarily because the benefit of 

using highly symmetric grids, in terms of the reduction in the total number of irreducible k-points, is 

greater for grids that have a large number of total k-points. 

min 100 År =



 

FIG. 3.  The average number of distinct k-points required to reach convergence within different levels of 
accuracy for different grid-generation methods.  Error bars represent the standard error of the mean. 

 

Under the assumption that the computational time per k-point is constant for each material, we have 

calculated the speed of each method, relative to the SD method, for each material.  The average of these 

speed-ups across all materials is shown in Fig. 4.  The trends are similar to those for the average number 

of irreducible k-points.  For Γ-centered grids, the GD method is about 50-100% faster than the SD 

method.  For shifted grids, the difference is much greater.  This is likely due to the facts that the SD 

shifted grids include a mix of calculations using shifted and Γ-centered grids, and the SD method 

determines the shifts differently than the GD or DD methods.  The speed-up when going from DD grids 

to GD grids is roughly the same for both Γ-centered and shifted grids. 
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FIG. 4.  The average speed-up per material at different levels of accuracy for different grid-generation methods 
under the assumption that the computational time per k-point is constant for each material.  The SD method was 
used as the reference value for both Γ-centered and shifted runs.  Error bars represent the standard error of the 

mean. 

 

For high-throughput calculations, the total CPU time for the entire batch of materials (Fig. 5) is the 

metric that determines the throughput.  To estimate the total computational cost, we assumed that the 

calculation time scales linearly with the number of k-points; analysis of the benchmark calculations 

supported this assumption.  To minimize the noise in benchmark times due to e.g. running on different 

nodes at different times, for each material a single value for the average CPU time per k-point was used 

for all methods.  This value was taken from the converged SD calculation using a Γ-centered grid.  The 

benchmark time was then calculated as the number of irreducible k-points multiplied by the CPU time 

per k-point for the material, effectively weighting the number of irreducible k-points by a material-

specific computational cost per k-point. 

Shifted grids consistently resulted in lower CPU times, even for the SD method.  To reach 1 meV / 

atom convergence, the GD shifted grids resulted in 2.78 times the throughput as SD Γ-centered grids, 
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and 1.95 times the throughput as SD shifted grids.  The total performance gains shown in Fig. 5 are 

generally not as large as the average relative performance gains shown in Fig. 4.  This is primarily 

because the total performance gains are effectively weighted by the CPU time for each material, and for 

some materials with large CPU times, such as those with large unit cells for which only one irreducible 

k-point is needed, there is relatively little difference among the three different methods. 

 

FIG. 5.  The total computational time for all 102 materials in the benchmark set required to reach convergence 
within different levels of accuracy for different grid-generation methods.  Error bars represent the standard error 

of the mean. 

 

D. Determining  

In the Moreno-Soler approach, the speed and accuracy of the calculation are determined by the 

parameter , the minimum acceptable distance between points on the real-space superlattice.  Ideally, 

for a given material system, the user would test different values of  to identify the smallest value at 

which the calculation is sufficiently accurate.  However in practice, it is helpful to use a heuristic that 

allows for rapid estimation of a reasonable value for .  This is especially true for high-throughput 
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calculations, in which the selection of the k-point grid is entirely automated and separately testing for k-

point convergence for every material could be prohibitively expensive.  Here we discuss several 

approaches for estimating the appropriate value for . 

1. General trends 

We start by examining how the error in our set of 102 benchmark materials varies as a function of 

.  We consider two measures of the error: the average absolute error across all 102 materials, and the 

maximum absolute error across all 102 materials.  We divide our analysis into two classes of materials: 

metals, defined as those materials for which there is no indirect band gap for a DFT calculation using the 

densest Γ-centered GD grid (i.e. ), and non-metals, defined as all other materials.  There are 

50 metals and 52 non-metals in the benchmark set.  To calculate the errors used in this analysis, we use 

shifted GD grids, as we expect they will be the most widely used due to their superior efficiency.   The 

average absolute error, maximum absolute error, and average CPU time as a function of  are 

presented in Fig. 6.  Tabulated values are provided in the supplemental material [7]. 
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FIG. 6.  The maximum absolute error (black squares, left axis), average absolute error (white diamonds, left 
axis), and average CPU time (grey circles, right axis) for metals and non-metals as a function of .   

 

We have also calculated the fraction of the calculations that converge within a given level of accuracy 

as a function of  (Fig. 7).  For non-metals, 100% of the calculations had converged within 3 meV / 

atom, and 92.3% had converged within 1 meV / atom, at .  The results are only slightly 

worse at , where 98.1% have converged within 3 meV / atom and 100% have converged 

within 10 meV / atom.  Under the assumption that computational cost scales linearly with the number of 

irreducible k-points, calculations at  can be expected to take approximately 40% longer 

than calculations at , so the computational cost savings from reducing  might be 

enough to justify the small loss of accuracy. 
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FIG. 7.  The fraction of calculations for non-metals and metals that have reached convergence within different 
levels of accuracy as a function of .  

 

For metals, the first point at which 100% of the calculations converged within 1 meV / atom is at 

.  At , all non-metals in our data set are converged within 3 meV / atom and all 

metals are converged within 7 meV / atom.  For both metals and non-metals, the average absolute error 

is less than 1 meV / atom at .  Thus  might be a reasonable default value of  for 

calculations in which the existence of a band gap in the material is unknown and reasonably accurate 

energies are desired.  However we note that calculations at   can be expected to cost, on 
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average, about 4 times as much as calculations at , demonstrating that prior knowledge of 

the existence of a band gap can significantly reduce the required computational time. 

The above results were generated for our sample of 102 random materials, and the subsets of metals 

and non-metals only contain about 50 materials each.  To reach any given level of accuracy, there are 

almost certainly materials that require larger values of  than any material in our data set. This is 

important to keep in mind for some applications, such as phase diagram calculations, in which a single 

material with a large error in its calculated energy can dramatically affect the outcome.  If close to 100% 

convergence within a given level of accuracy is required, we advise using values of   that are larger 

than those indicated in Fig. 7. 

2. As a function of the band gap for non-metals 

For reasons discussed in section II.A, in the limit of large , the error due to k-point sampling will 

decay as  for materials with a band gap.  The rate of decay, , will be determined by the decay 

rate of the Hamiltonian matrix elements between Wannier functions, which can be expected to be the 

same as the rate of decay for the density matrix  [23,24].  In the weak-binding limit, the exponential 

decay rate of the density matrix is expected to be proportional to , the direct band gap of the 

material [24,25].  Thus it can be expected that in the weak-binding limit, the value of  required to 

reach a given level of convergence will vary roughly inversely with the direct band gap.  In the tight-

binding limit (materials with a large band gap), the relationship between  and  has not been well 

established [24]. 
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FIG. 8.  The relationship between the direct band gap ( ) and the value of  at which convergence was 
reached within a) 3 meV / atom b) 1 meV / atom.  The solid diagonal line in a) is a plot of equation (24).  The 
solid diagonal line in b) is a plot of equation (25), and the dashed diagonal line in b) is a plot of equation (26). 

 

For the 102 structures in our data set, we plot the relationship between  (the direct band gap) and 

the value of  required to reach convergence within 3 meV / atom in Fig. 8a.  For these plots,  

was calculated using DFT with a Γ-centered GD k-point grid at the maximum density ( ).  

The value of  at which convergence was reached was calculated using shifted GD grids.  As 
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expected, average values for  decrease as  increases.  The upper edge of the scatterplot in Fig. 8 

is roughly linear, and we find that all non-metals in our benchmark set would be converged within 3 

meV / atom if  were at or above the value calculated using the following equation: 

  (24) 

where  is in Angstroms and  is expressed in eV.  Similar analysis for convergence levels of 4 

meV / atom and 5 meV / atom yield the same equation. 

To reach a convergence level of 1 meV / atom for all non-metals in our data set (Fig. 8b), the 

following equation could be used to set : 

 . (25) 

If equation (24) were used to set  instead of equation (25), 86.5% of the non-metals would still be 

converged within 1 meV / atom.  As a compromise between the two approaches, the following equation 

would converge all non-metals within 3 meV / atom and 94.2% within 1 meV / atom: 

 . (26) 

The lines represented by equations (24), (25), and (26) are all plotted in Fig. 8. 

In practice, good estimates for  are often not available before a calculation has been run, but there 

is often a sense of whether a material is a semiconductor or a large band-gap insulator.  As an alternative 

to the linear bounds provided above, we note that for all materials in our data set with  of more than 

0 eV and less than 2 eV, we note that  would be sufficient to reach convergence within 3 

meV / atom.  For materials in our data set with  greater than 2 eV,  would be 

sufficient. 
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3. Relationship with other methods 

In some cases, particularly for high-throughput calculations, an automated method already exists for 

determining k-point grids.  It is helpful to consider how such methods relate to the method described in 

this paper.  For example, an alternative to using  to determine the grid density is to require that the 

grid contains at least  k-points in the Brillouin zone, where  is calculated separately for each 

material.  It is straightforward to find a value for  that guarantees that this condition is met.  For a 

given value of , the number of total k-points will be minimized by generating an fcc real-space 

superlattice.  Thus the following value of   will ensure that there are at least  total k-points in the 

Brillouin zone: 

  (27) 

With  given by equation (27), in some cases the search along the Pareto frontier might discover a 

grid with significantly more than  total k-points but relatively few irreducible k-points.  Such a grid 

can be expected to result in particularly low k-point approximation error at a low computational cost. 

A second approach to choosing values for  in a way that is consistent with other methods is to 

match the percentage of calculations that converge within a given level of accuracy.  For example, 

consider a hypothetical method for generating k-point grids which results in energy convergence within 

5 meV / atom 90% of the time.  We could define an equivalent value of  as that which would result 

in the same convergence rate.   

We illustrate the second approach by first considering the relationship between  and the number 

of k-points per reciprocal atom ( ).  The Materials Project [26], Aflowlib [27], and Open Quantum 

Materials Database [28] all use  to set the density of k-point grids.  For each of the 102 materials 
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in our database, we identified the shifted GD k-point grids at which the calculation had converged within 

1 meV / atom.  For each of these grids we calculated both  and  (based on the corresponding 

real-space superlattice).  We then generated two sorted lists of k-point grids:  the first sorted according to 

, and the second sorted according to .  Each was sorted from smallest to largest. 

Let  represent the value of  for the  item on the first list.  If grids with  were 

generated for all 102 materials, calculations using these grids for the first  materials on the first list 

would be expected to be converged within 1 meV / atom, and calculations using these grids for the 

remaining  materials would not.  Similarly, let  represent the value of  for the  item on 

the second list.  If grids with  were generated for all 102 materials, calculations using these 

grids for the first  materials on the second list would be expected to be converged, and calculations 

using these grids for the remaining  materials would not.  Thus using a lower bound of 

 k-points per reciprocal atom can be expected to yield about the same percentage of 

converged calculations as setting . 
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FIG. 9.  A plot of  vs.  for sorted lists generated at five different levels of convergence.  For the  

point on each list, there are  materials that converged with a lower (or equal) value of  and  materials 

that converged with a lower (or equal) value of .  The diagonal dashed line illustrates the best linear fit to all 
510 points, given by equation (28).  

 

In Fig. 9, we plot  vs  for five different levels of convergence: 1, 2, 3, 4, and 5 meV / atom.  

The relationship is nearly linear and along the same line for all five levels of convergence.  Linear 

regression yields the following estimate for  as a function of , with R2 = 0.988: 

  (28) 

Equation (28) allows us to establish a relationship between , the minimum allowed number of 

k-points per reciprocal atom, and , the minimum allowed value of  (Fig. 10a).   For example, a 

minimum of 1000 k-points per reciprocal atom corresponds to , and a minimum of 7000 k-

points per reciprocal atom corresponds to .   

We have done similar analysis for two other metrics for k-point grid density:  the number of k-points 

per reciprocal cubic Angstrom ( ) and the length of the longest vector in the Minkowski-reduced 
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representation of the k-point lattice in reciprocal space ( ).  We note that  is similar to the 

 value used by VASP.  The relationship between  and  (R2 = 0.993) is 

 , (29) 

and the relationship between  and  (R2 = 0.994) is 

 . (30) 

Based on equations (29) and (30), the estimated equivalent values of  for different values of  

and  are shown in Fig. 10b and Fig. 10c. 

 

 

FIG. 10.  The values of  that will yield approximately the same convergence rate as three different methods 
for setting the minimum k-point density.   

 

E. Conclusion 

We have presented a method for rapidly generating highly efficient k-point grids.  There are several 

practical advantages to using the method presented in this paper.  There is only one parameter, , that 

needs to be set by the user, and we have provided guidance on how to select a good value for this 
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parameter.  The generated k-point grids are always consistent with the symmetry of the material, which 

both preserves the symmetry of the system and maximizes the degree to which symmetry can be used to 

reduce the cost of the calculation.  The grids are independent of the lattice vectors chosen to represent 

the real-space primitive cell.  Thus the user can change the way in which the structure is represented in 

the input file without changing the results of the calculation (at least to the extent that those results 

depend on the choice of k-points).  Perhaps most importantly, grids generated using our method result in 

a significant reduction in the number of irreducible k-points required to reach a given level of 

convergence, resulting in large savings in computational time.  For Γ-centered grids, we observed 

average speed-up of about 50-100% compared to a more conventional approach (Fig. 4), and for shifted 

grids the speed-up is even greater.  

To allow others to generate k-point grids using our method, we have constructed a free and publicly 

available k-point grid server that provides access to our database of generalized k-point grids.  This 

server was used to generate all GD grids in this manuscript.  On average, it took 0.3 seconds to generate 

each of the grids for calculations converged within 1 meV / atom.  Instructions for the use of this server 

can be found in the supplemental material [7], and updates will be posted at our web site, 

http://muellergroup.jhu.edu.  

There are a number of areas in which we are working to improve our approach.  Currently, we only 

generate grids in a format suitable for use with VASP, but we will be building interfaces to other 

common software packages.  Our tool is also currently limited by the assumptions that the systems have 

time-reversal symmetry and the decay in the Hamiltonian matrix elements is isotropic, but neither of 

these assumptions is an inherent limitation of our approach.  The decay in the Hamiltonian matrix 

elements is unlikely to be isotropic for many systems [24,25,29], but prior knowledge about the nature 

of the anisotropy is usually not available.  Thus for most materials, assuming isotropic decay is a 



pragmatic approximation.  However for some systems, such as slabs separated by vacuum, the nature of 

the anisotropy is clear, and we are updating our server to allow for the generation of suitably anisotropic 

k-point grids for such systems.  In addition, we will improve the quality of our database by adding 

additional grids, including larger grids and grids representing non-centrosymmetric space groups, to it.  

Given the benchmark results presented in this paper, we anticipate that the use of this server will lead to 

significant acceleration of calculations on crystalline materials.  
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