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Abstract

The recent-discovered SrxBi2Se3 superconductor provides an alternative and ideal material base

for investigating possible topological superconductivity. Here, we report that in Sr0.065Bi2Se3, the

ambient superconducting phase is gradually depressed upon the application of external pressure.

At high pressure, a second superconducting phase emerges at above 6 GPa, with a maximum Tc

value of ∼8.3 K. The joint investigations of the high-pressure synchrotron x-ray diffraction and

electrical transport properties reveal that the re-emergence of superconductivity in Sr0.065Bi2Se3

is closely related to the structural phase transition from ambient rhombohedral phase to high-

pressure monoclinic phase around 6 GPa, and further to another high-pressure tetragonal phase

above 25 GPa.
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Topological insulators and topological superconductors are new states of quantum matter

which cannot be adiabatically connected to conventional insulators and superconductors [1–

4]. Topological insulators are characterized by a full insulating gap in the bulk and gapless

edge or surface states which are protected by time-reversal symmetry. In recent years, topo-

logical insulating materials have been theoretically predicted and experimentally observed

in a variety of systems, including HgTe quantum wells, BiSb alloys, TlBiSe2 and Bi2Te3

(Bi2Se3, Sb2Te3) single crystals [5–7].

The concept of topological insulator can also be applied to superconductor, due to the

direct analogy between topological band theory and superconductivity. Of major interest in

the field of topological superconductivity is the realization of Majorana fermions, that are

predicted to exist as protected bound states in topological superconductors [3]. In recent

years, tremendous efforts have been put in order to realize a real topological supercon-

ducting material [8–13]. Among them, the Cu-intercalated CuxBi2Se3 has attracted much

attention, because large-size bulk superconducting single crystals can be obtained. Various

experimental work as well as theoretical analyses have been done, in order to reveal the

novel physical properties in the CuxBi2Se3 system [14–20]. However, whether or not the

CuxBi2Se3 is a topological superconductor is still controversial. Recently, we found that

an alternative compound, SrxBi2Se3, exhibits superconductivity with high superconducting

volume fraction [21]. The following investigations have revealed that the atomic position of

Sr in SrxBi2Se3 is completely different from that of Cu in CuxBi2Se3. That is, the copper

atoms are intercalated in the weakly van der Waals bonded Se-Se layers, while most of the

intercalated strontium atoms are located in the Se-Bi-Se-Bi-Se quintuple layer [22]. Fur-

thermore, the SrxBi2Se3 compounds exhibit well-separated topological surface state from

the bulk bands [21–24]. These facts suggest that the SrxBi2Se3 compound exhibits interest-

ing physical phenomena and could serve as an important material base for the investigation

of topological superconducting-related properties.

In this work, we perform a systematic study on the electronic transport properties and

the structural evolution of Sr0.065Bi2Se3 under high pressure. We find that the ambient su-

perconducting phase in Sr0.065Bi2Se3 is gradually depressed with the application of pressure.

Noticeably, a pressure-induced superconducting phase emerges at high pressure. It is found

that re-emergence of superconductivity and the structural phase transition in Sr0.065Bi2Se3

are quite comparable with the high-pressure induced superconductivity in the Bi2Se3 pris-
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tine topological insulator, despite of the fact that the Sr0.065Bi2Se3 is a superconductor at

ambient pressure.

Single crystal of Sr0.065Bi2Se3 with typical dimensions of 3×3×0.5 mm3 used in this work

has been reported previously [21]. High-pressure resistance measurements were conducted in

a screw-pressure-type diamond anvil cell (DAC). Diamond anvils of 200 µm culets and T301

stainless-steel gasket covered with a mixture of epoxy and fine cubic boron nitride (c-BN)

powder were used for high-pressure transport measurements. The four-probe method was

applied in the ab-plane of single crystal with typical dimension of 90×40×10 µm3. The mag-

netoresistance experiments under high-pressure were performed on the Cell5 Water-Cooling

Magnet of High Magnetic Field Laboratory of Chinese Academy of Sciences. The mea-

surements were done using a field-sweeping method at fixed temperature. The maximum

magnetic field is 33 Tesla. High-pressure synchrotron radiation x-ray diffraction measure-

ments were performed at 16BMD [25], HPCAT, Advanced Photon Source, Argonne National

Laboratory. The as-grown single crystals were ground into fine powder for the x-ray diffrac-

tion experiments with a wavelength of 0.4246 Å. A rhenium gasket was pre-indented with a

thickness of 40 µm. Then a 120 ×m hole was drilled by the laser micro-machining system

at HPCAT [26], which was served as a sample chamber. A pre-pressed powder sheet with

typical size of 30 µm×30 µm×15 µm was loaded into the chamber together with a ruby ball

and silicone oil served as pressure marker and pressure transmitting medium, respectively.

A two-dimensional area detector Mar345 was used to collect the powder diffraction patterns.

The Dioptas [27] and Rietica [28] programs were employed for the image integrations and

the XRD profile refinements, respectively. Le Bail method was used to extract the lattice

parameters. The pressure in the cell was measured at room temperature with an offline ruby

system at HPCAT.

Figure 1(a) gives the evolution of resistivity as a function of temperature for the

Sr0.065Bi2Se3 sample at relatively low pressure (P≤3 GPa). Two distinct features can be

found in this pressure region. One is that the normal state resistivity increases with in-

creasing pressure. The other is that the superconductivity is gradually depressed. If we

compare the response of superconductivity of Sr0.065Bi2Se3 with that of Cu0.3Bi2Se3 [29], we

find that the depression of superconductivity in Sr0.065Bi2Se3 sample is much faster than

that in Cu0.3Bi2Se3. The depression of superconductivity in Sr0.065Bi2Se3 can be qualita-

tively explained according to a simple model for a low carrier density superconductor where
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Tc∼ΘDexp[-1/N(0)V0], with ΘD the Debye temperature, N(0)∼m∗n1/3 the density of states

(with m∗ the effective mass) and V0 the effective interaction parameter [29]. In Sr0.065Bi2Se3,

the reduction of charge carrier density n under pressure is apparent: The temperature de-

pendence of resistivity gradually loses its metallic character with increasing pressure and the

ρ (300 K) value exhibits an increase by a factor of >2 when the applied pressure is increased

from 0.3 GPa to 2.7 GPa.

Figure 1(b) shows the temperature dependence of resistivity for the Sr0.065Bi2Se3 sample

with 2.7 GPa≤P≤40 GPa. It is interesting to notice that the normal state resistivity again

exhibits metallic-like feature, indicating an increase of charge carrier density at high pressure.

The normal state resistivity decreases continuously with increasing pressure, suggesting a

successive increase of charge carrier density at high pressure region. A striking phenomenon

is that the Sr0.065Bi2Se3 sample exhibits a re-emergent superconductivity when P≥6 GPa.

It should be mentioned that this re-emergent superconductivity has not been observed in

CuxBi2Se3 compound. In order to see the re-emergent superconductivity more clearly, we

plot in Fig. 1(c) an enlarged view near the transition temperature. The T onset
c value at

6.0 GPa is about 3.6 K. And the T onset
c slightly decreases with increasing pressure when 6

GPa≤P≤11.5 GPa. However, when P≥14 GPa, the T onset
c value is drastically increased,

reaching to a maximum of ∼8.3 K. With further increasing pressure, the T onset
c is slightly

decreased. Nevertheless, the re-emergent superconductivity of Sr0.065Bi2Se3 is quite robust

under high pressure. The superconductivity occurs even at the highest achieved pressure

of 80 GPa(Fig. 1(d)). We also notice that in iron chalcogenide superconductors, such as

Tl0.6Rb0.4Fe1.67Se2, K0.8Fe1.7Se2 and K0.8Fe1.78Se2, the re-emergent superconductivity with

higher transition temperature has been reported [30]. However, in iron chalcogenides, the

re-emergent superconductivity occurs in a much narrower pressure range comparing to the

present case.

In order to tentatively estimate the nature of the re-emergent superconductivity, we

analyze the evolution of the upper critical fieldHc2(T ) at low temperature. Figure 2(a) shows

the response of the re-emergent superconductivity on external magnetic field. The applied

pressure is fixed at 19.5 GPa. It is found that the superconducting transition temperature

is monotonously decreased with increasing magnetic field. One striking feature is that both

with and without magnetic field, the superconducting transition is rather sharp, meaning

the occurrence of bulk and homogenous superconductivity. It can be also found that the
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ρ∼T curves are almost parallel to each other, suggesting that the flux creep effects can be

completely ignored in the vortex dynamics of the re-emergent superconductivity. Figure 2(b)

plots the dependence of the reduced critical field, h∗(T )=[Hc2(T )/Tc]/[dHc2(T )/dT ]|T=Tc
, on

the normalized temperature t=T/Tc. Here the Hc2(T ) value is defined from the resistance

criterion of Rcri = 90%Rn (Rn is the normal state resistance). The experimental data is

compared to models for orbitally limited s-wave and spin-triplet p-wave superconductors.

It can be seen that the experimental h∗(T ) deviates significantly from the expected orbital-

limited behavior predicted by the Werthamer-Helfand-Hohenberg (WHH) theory for an s-

wave superconductor (h∗(0)≃0.72) [31]. Noticeably, the h∗(T ) data is very close to the

h∗(T )∼t curve expected from a p-wave superconductor (h∗(0)≃0.85) [32]. We also notice

that the better satisfying of the h∗(T ) data to a p-wave model rather than a s-wave model

has been reported in pressure-induced superconductivity in Bi2Se3 compound [33], pointing

to unconventional superconductivity in the SrxBi2Se3 system.

It is instructive to investigate the structural symmetry at high pressure. Thus we conduct

the high-pressure synchrotron x-ray diffraction (XRD) study on the Sr0.065Bi2Se3 sample

up to 41.1 GPa. In Fig. 3, the powder diffraction patterns and the lattice parameters

under high pressure are presented in detail. Selected XRD profile refinements are shown

in Supplementary Fig. 3. It is found that the ambient rhombohedra phase (R-3m) can

remain in a single phase only when P≤5.7 GPa, above which a monoclinic phase (C2/m) is

involved and coexists with the rhombohedra one. The low-pressure R-3m phase disappears

completely at 16.6 GPa and the C2/m phase persists up to 31.6 GPa. In the pressure

range of 25.0-31.6 GPa, a mixture of the C2/m phase and the high pressure body-centered

tetragonal phase (I4/mmm) shows up. Upon further compression beyond 31.6 GPa, the

I4/mmm phase can be sustained alone up to the highest pressure achieved in the present

experiment.

To obtain a comprehensive understanding of the pressure driven superconducting behav-

ior, we show the isothermal equations of state for the respective phases in Fig. 4. The

isothermal equations of state are fitted by the third-order Birch-Murnaghan formula [34]

as indicated by the red solid lines in Fig. 4(a). With B0’ fixed as 4, the isothermal bulk

modulus B0 is estimated to be ∼58(1), 85(1), and 116(2) GPa for the R-3m, C2/m, and

I4/mmm phases, respectively. It is found that at the two progressive structural transition

points (R-3m→C2/m→I4/mmm), the unit-cell volume per chemical formula (Sr0.065Bi2Se3)
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shrinks by about 4.8% and 4.0%, respectively. According to the structural symmetries under

high pressure, the superconducting phase diagram can be divided into two different regions

as shown in Fig. 4(b): the pristine superconducting phase SC-I and the pressure-induced

superconducting phase SC-II at high pressure. In the first region, the superconductivity

is gradually depressed with increasing pressure. The Tc value approaches to zero at an

extrapolated pressure of about 1.1 GPa. Note that within this pressure range, the crys-

tal structure of Sr0.065Bi2Se3 is in the rhombohedral R-3m phase without structural phase

transition. With increasing pressure, the C2/m phase is involved and coexists with the

rhombohedral R-3m phase. Meanwhile, the re-emergent superconductivity occurs above 6

GPa. The superconducting critical temperature first experiences a tiny decrement till about

12 GPa. Then the R-3m phase disappears completely, leaving the C2/m one stays alone.

At the same time, the superconducting transition temperature jumps abruptly and reaches

rapidly a maximum value of ∼8.3 K, which is followed by a slight decrease again. Upon

further compression, the C2/m to I4/mmm structural phase transition occurs at around

25 GPa. As a matter of fact, previous high pressure studies on Bi2Se3 have revealed similar

structural transition from the ambient-pressure rhombohedral (R-3m) structure to a lower-

symmetry monoclinic (C2/m) structure near 10 GPa, and then to an unknown phase above

28 GPa [33, 35]. Thus the structural phase transition in Sr0.065Bi2Se3 at high pressure is

similar to that in Bi2Se3 pristine topological insulator.

In conclusion, a novel pressure induced re-emergent superconductivity has been revealed

in SrxBi2Se3 superconducting topological insulator. The resulting phase diagrams exhibit

similar features to those of the high pressure response of Bi2Se3 pristine topological insulator,

including the role of structural transitions and the presence of unconventional superconduc-

tivity. The analysis on the pressure-invariant Tc suggests the unconventional nature of the

superconductivity in SrxBi2Se3, which deserves further investigation.
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FIGURE CAPTION

FIG. 1 (color online) (a) Temperature-dependent ab-plane resistance for Sr0.065Bi2Se3

at low pressure region. (b) Temperature-dependent ab-plane resistance for Sr0.065Bi2Se3

at high pressure region. (c) An enlarged view of the re-emergent superconductivity near

the transition temperature (Run 1). (d) The temperature dependence of resistance for the

Sr0.065Bi2Se3 at Run 2, reaching a maximum pressure of 80 GPa.

FIG. 2 (color online) (a) Temperature dependence of resistance under different magnetic

fields up to 5.0 T. The applied pressure is fixed at 19.5 GPa. (b) Temperature dependence

of the reduced upper critical field h∗ (the red circles) and the fittings according to a p-wave

polar state and the s-wave clean limit, respectively. The Tc at specific magnetic field is

determined as 90% drop of the normal state resistance.

FIG. 3 (color online) (a) Synchrotron radiation X-ray diffraction patterns at various

applied pressures. For clarity, the backgrounds have been subtracted by using the Dioptas

program. (b) The refined lattice parameters a (square), b (diamond) and c (circle) as a

function of pressure. Three structural phases, i. e., R−3m, C2/m, I4/mmm, with two

overlap pressure regions are revealed upon compression.

FIG. 4 (color online) (a) The compression data (V versus P ) was fitted by the three-

order Birch-Murnaghan equation of state (solid red line), which yields the bulk modulus

58(1), 85(1), 116(2) GPa for the R−3m, C2/m, and I4/mmm phases, respectively. (b) The

pristine superconducting phase, SC-I, occurs in the ambient rhombohedral (R−3m) phase.

The re-emergent superconducting phase, SC-II, occurs in the monoclinic (C2/m) phase and

in the tetragonal I4/mmm phase.
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