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The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique min-
imum in the single-particle dispersion where macroscopic number of bosons can condense. Here we consider a
family of tight-binding models with macroscopically degenerate lowest energy band, separated from other bands
by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively
low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner
crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained
by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent
mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic mo-
mentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our
findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

PACS numbers: 67.85.-d, 75.10.Jm, 67.80.K, 75.10.Kt

I. INTRODUCTION

Interactions take the center stage when the kinetic energy
of particles is quenched. The most prominent example is
the fractional quantum Hall effect, where Coulomb interac-
tion lifts the degeneracy of a partially filled Landau level and
leads to formation of topological fractionalized states. There,
kinetic energy of particles is quenched due to the magnetic
field that localizes them within the magnetic length, leading
to formation of flat bands – the Landau levels. Flat bands also
appear in some tight-binding lattice models, as is the case for
the kagome lattice. Hence, a question naturally arises – what
kind of exotic states can emerge in such systems?

The problem of interacting bosons in frustrated lattices
with a flat band has been a subject of significant theoreti-
cal interest1–7. For exactly degenerate single particle spec-
trum, there is no preferred momentum state for the Bose
condensation to occur. Depending on the specific model
and parameter regime, bosonic ground states in such frus-
trated lattices may include chiral composite-fermion states
of hard-core bosons7–9 and chiral superfluid/Mott insulator
states10 which spontaneously break time-reversal symmetry,
fractional Chern insulators4,6, and other exotic broken sym-
metry states1–3,5,11,12.

From the experimental standpoint, rapid advance of artifi-
cial condensed matter systems such as cold atoms and inter-
acting photons in circuit QED system have enabled not only
the realization of geometrically frustrated lattices but also lat-
tices subject to synthetic gauge fields13–24. These recent devel-
opments make the search for accurate theoretical approaches
and concrete proposals timely.

In this article, we focus on a modified kagome lattice model,
constructed in a way to allow controlled treatment thanks to
a spectral gap. This gap can be generated by inserting an ad-
ditional gauge flux into each hexagon of the kagome lattice25.
We show that the single-particle eigenstates comprising the
gapped flat band can be chosen as localized loop states, which
typically break the lattice D6 point group symmetry. Previous
works in the context of the Bose-Hubbard model have primar-

ily considered the simple kagome lattice1,5,8,9,11,26–30. There,
the lowest band is flat but gapless since it is in contact with
another band at the Γ point1,3,5. This makes the analysis of the
interacting problem quite subtle due to the ability of particles
to leak easily into the higher band.

The introduced gap enables a well-controlled projection
onto the flat-band subspace1,31–34 in the weak-interaction
regime, U � |t|, and yields an effective low-energy Hamil-
tonian applicable to a wide filling range. This is analogous to
the lowest-Landau level projection employed in the fractional
quantum Hall effect. Depending on the filling fraction of the
lattice, we find three types of exotic nematic phases. At close
packing of maximally compact loop states, a nematic Wigner
crystal is the exact ground state of the system. In the specific
case of π-flux and higher filling fraction, our mean-field treat-
ment predicts transitions to a non-uniform nematic supersolid
followed by a uniform nematic superfluid phase.

The nematic superfluid phase is quite unusual since it is not
featureless but contains internal structure in its microscopic
many-body wavefunction. The lattice rotational symmetry
is spontaneously broken due to the anisotropic correlations
among the loop orbitals. Such anisotropic internal structure is
encoded in the momentum distribution, i.e. the Fourier trans-
form of the real-space correlation function. In addition to
the standard delta-function peak, there is an anisotropic and
squeezed continuous background in the momentum distribu-
tion. It clearly reveals a novel nematic Bose condensation and
can be detected through time-of-flight imaging in the context
of ultra-cold atoms. In addition, we show that the nematicity
can also manifest itself in macroscopic quantities, namely the
anisotropic superfluid stiffness tensor and superflow, which
can be probed with phase imprinting techniques in ultra-cold
atom setups35.

From a broader perspective, the possibility of such mi-
croscopic liquid crystalline phases has been pointed out
previously in the context of strongly correlated electronic
materials36,37. While in this article, we focus on translation-
ally invariant/periodic states, additional rich physics is associ-
ated with topological defects38 and warrants future study.
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FIG. 1: (color online). (a) Kagome lattice with positive hopping
and flux φ penetrating each hexagon. (b) Tight-binding energies as a
function of φ (Hofstadter butterfly). The lowest flat band is gapped
for non-integer φ/2π and reaches its maximum gap size at π flux.

The paper is organized as follows. Section II shows the
interacting boson model we study throughout the paper. Sec-
tion III discusses the single-particle eigenstates of the model,
including the gapped flat band structure and the presence of
localized loop eigenstates in real space and their specific prop-
erties such as “flux quantization”, with the detailed derivation
shown in Appendix A. In Section IV, we work out the exact
Wigner-crystal ground states below the close-packing filling
of loop states. In Section V, we study the quantum phases
beyond the close-packing filling. We apply a flat-band pro-
jection based on the construction of mutually orthogonal and
spatially compact Wannier states, with the details of construc-
tion shown in Appendix C. We then perform a subsequent
mean-field analysis in the Wannier basis, which predicts the
existence of nematic superfluid and supersolid phases. In Sec-
tion VI, we show the novel signatures of the nematic superflu-
idity, namely the anisotropic momentum distribution and the
anisotropic superflow. The detailed calculations of the mo-
mentum distribution can be found in Appendix F. We con-
clude our work and provide a brief outlook in Section VII.

II. MODEL

The Bose-Hubbard model on the kagome lattice subject to
gauge flux [Fig. 1] is described by the Hamiltonian

H =
∑
〈r,r′〉

(
|t|eiArr′ b†r′br + h.c.

)
+ U

∑
r

b†rb
†
rbrbr, (1)

where b†r creates a single boson on the site labeled r. The
first term is the tight-binding Hamiltonian Htb determining
the band structure of the non-interacting bosons. We de-
note the hopping amplitude by |t| to stress that it is positive
(frustrated)45. The gauge potential Arr′ is defined on each
nearest-neighbor bond 〈r, r′〉 determines the flux φ =	

∑
〈r,r′〉

Arr′ threading each plaquette in the lattice. The second term
in H captures the repulsive Hubbard interaction on each site
with strength U > 0.

FIG. 2: Band structure of kagome lattice tight-binding models at
0- and π-flux. (a) 0-flux model. There is a band touching of the
lowest flat band with the higher dispersive band occurred at the Γ-
point (kx = 0, ky = 0). (b) π-flux model. The total six bands in this
model, corresponding to its six-site unit cell. Note that the lowest flat
band(s) are doubly degenerate and gapped from the higher dispersive
bands, with the minimum gap being ∆ ≈ 0.55|t|.

III. SINGLE-PARTICLE EIGENSTATES

A. Gapped flat band in the presence of flux

We first discuss the tight-binding band structure for U = 0.
In the absence of external flux, the single-particle spectrum
has a lowest flat band as shown in Fig. 2(a). However, the
flat band touches the higher dispersive band at the Γ-point
[k = (0, 0)]. Once flux φ is inserted into each hexagon of
the kagome lattice, the single-particle spectrum E(φ) takes
the typical Hofstadter butterfly form [Fig. 1]. For non-integer
φ/2π, the lowest band46 remains flat but acquires a gap that
reaches its maximum size of ∆ ≈ 0.55|t| at π flux [Fig. 2(a)].
At this point, time-reversal (TR) symmetry is intact and the
model can be realized with real-valued hopping of positive
and negative sign. Energy and degeneracy of the flat band
are independent of flux. The latter is given by number of
hexagons in the lattice, Nsite/3 (Nsite denoting the number of
sites).

B. Localized loop eigenstates

The presence of the flat band is directly linked to the exis-
tence of degenerate eigenstates that form localized loops. The
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FIG. 3: (color online). (a-c) Maximally compact loop eigenstates for φ = 0, π and π/2. Thick bonds in (b) mark links with negative hopping
−|t|. “±” denotes the sign of the wavefunction amplitude on the corresponding sites. Note that for panel (b) and (c), the sites in the interior of
the loops have zero amplitude.

localization mechanism, called caging39,40, is due to destruc-
tive interference of the wavefunction amplitude anywhere out-
side the loop3. In the kagome lattice with positive hopping,
the flat band and localization persist as long as there is no flux
through triangles.

To be systematic, we list three important properties of the
single particle eigenstates in the flat band of the tight-binding
kagome Hamiltonian:

1. The energy of the single-particle eigenstate is exactly
-2|t|.

2. The elementary flat-band eigenstates are single-particle
loop states which have equal probability on each in-
volved site. The amplitudes on the adjacent sites out-
side the loop (on the outward and inward triangles) can-
cel due to destructive interference (caging). Any other
(non-elementary) flat-band state can be composed as a
linear superposition of loop states.

3. “Flux quantization”: any loop eigenstate encloses an in-
teger number of flux quanta

φL =	
∑

loopArr′ =
∑
loop

φ ∈ 2πN. (2)

Here, the direction of the gauge potentials Arr′ is cho-
sen to be counterclockwise (	) around the loop.

Previous studies1,3,31,32 have focused on the zero-flux case
and identified the state with amplitudes of equal magnitude
but alternating signs on the hexagon loop as maximally com-
pact eigenstates [see Fig. 3(a)]. While the existence of flat
band and localized eigenstates remains unharmed by the flux
through hexagons, we find that the shapes of loop states must
change. Specifically, in the spirit of the flux-quantization con-
dition (property 3), maximally compact loop eigenstates en-
circling two and four hexagons in Fig. 3(b) and (c), respec-
tively. Note that orientation and shape of maximally compact
loop states are not generally unique for φ 6= 0.

The main focus of this paper is the case of flux φ = π
where TR symmetry is intact and maximally compact loop
states are dimers encircling two hexagons. By a convenient
gauge choice Arr′ = π on decorated bonds [Fig. 1(b)], all
hopping elements are real and given by |t| on regular and−|t|

on decorated bonds. In this gauge, amplitudes of loop eigen-
states simply alternate in sign across positive-hopping bonds
and are identical across decorated negative-hopping bonds. In
the following, we consider occupation of these states by mul-
tiple bosons and refer to the maximally compact loop states as
Loop Orbitals (LOs).

IV. EXACT NEMATIC WIGNER CRYSTAL GROUND
STATE

We next turn to the interacting case, accounting for on-site
boson repulsion due to the Hubbard term

V =
∑
r

Vr =
∑
r

Ub†rb
†
rbrbr. (3)

Since the interaction is local, we note that any many-body
state of the form

|ψ 〉 =
∏
m∈A

L†m| 0 〉 (4)

with single-particle occupation of a set A of non-overlapping
LOs is an exact ground state of the interacting system for fill-
ing ν = |A|/Nsite

47. Here, the operator L†m creates a single
particle occupying the LO labeled by m. Indeed, the above
product state is an eigenstate with eigenenergy −2|t| per par-
ticle and interaction does not contribute since double occu-
pancy of sites is avoided.

Once the filling reaches close packing, the ground state
becomes an incompressible Wigner crystal2. No additional
particle can be placed on the lattice without incurring an
interaction-induced energy increase due to unavoidable over-
lap. At the critical filling νc of close packing, bosons occupy
maximally compact LOs while avoiding double occupation.
As discussed above, maximally compact LOs may break the
lattice point group symmetry (here, D6), which directly leads
to ground states with spontaneously broken lattice symmetry.

In general, the filling fraction νc for close packing de-
pends on flux. In the π-flux case, maximally compact LOs
are dimers and close packing occurs at νc = 1/15. Due to
the three possible orientations of a dimer [Fig. 1(b)] and the
freedom to use one Wigner crystal representative [Fig. 1(d)]
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FIG. 4: (a) Illustration of a nematic Wigner crystal ground state
which breaks C6 lattice rotational symmetry for φ = π and at close-
packing filling νc = 1/15. (b) Illustration of the hard-core loop gas
for φ = π. The average density is slightly lower than the close-
packing filling νc.

and produce four other inequivalent ones by translations to
four neighboring hexagons, we predict that the ground state is
overall 15-fold degenerate. These ground states are nematic
Wigner crystals. Here, nematicity refers to the emergence of
dimers that break the lattice rotation symmetry. In this as-
pect, the π-flux case is dramatically different from the 0-flux
case studied before in the context of both the boson model
and the antiferromagnetic Heisenberg spin model48, where the
ν = 1/9 Wigner crystal1 and the m = 7/9 valence-bond
crystal27 ground states do not exhibit any nematicity. We note
that the nematic Wigner crystal state can also be found in the
magnetization plateau of the corresponding spin model in the
presence of both positive and negative XY interaction (see
Appendix B).

We note that for φ = π and filling below νc, bosons form an
infinitely compressible hard-core loop gas with macroscopic
degeneracy determined by all possible configurations of non-
overlapping loops31,32. One such configuration is depicted in
Fig. 4(b), where an extra particle can be added to an unoc-
cupied loop orbital without costing any interaction energy.
Hence the chemical potential, i.e. energy cost per extra par-
ticle µ = ∂E

∂N , is fixed to be the flat-band energy −2|t| and
hence does not change with the filling, i.e. ∂µ∂ν = 0. Equiva-
lently, we get ∂ν∂µ =∞, which means infinite compressibility.
As shown in Fig. 4(b), by adding a local perturbation, cer-
tain loops can move freely to a nearby vacancy (dashed loops)
and hence make a transition to another state with the same
ground-state energy. The shown state (and other states which
connect to this state by a local perturbation) breaks the lattice
rotational symmetry and hence is also nematic. Finally, we
mention that there are infinitely many incompressible glassy
states below νc, which cannot be connected to other ground
states by a local perturbation. We will leave the discussion of
these glassy states to future works.

V. NEMATIC SUPERFLUID AND SUPERSOLID

A. Flat-band projection and construction of Wannier orbitals.

In the following, we exclusively focus on the π-flux case.
For filling above close packing, interaction cannot be avoided
anymore and hence no exact solution in the above manner is
possible. To make approximations, we derive a low-energy
effective Hamiltonian by adapting the approach by Huber and
Altman1, consisting of a projection onto the subspace spanned
by flat-band eigenstates. In our case of nonzero flux, how-
ever, we forego the more subtle situation of an ungapped band
encountered in1. In the presence of a gap and in the weak-
interaction limit, boson occupation is to a good approxima-
tion limited to the flat band and the projection is appropriate
unless the filling fraction becomes too large (details depend
on the ratio U/|t|).

To facilitate the projection, we construct an orthonormal
basis of the flat band. For π flux, the unit cell is doubled and
contains a left and right hexagon, L and R, which differ by
the relative positions of negative-hopping bonds [Fig. 5(a)].
Due to the unit-cell doubling there are, strictly speaking, two
degenerate flat bands. Accordingly, we choose two sets of
maximally compact dimer LOs aligned in the e3 direction
[Fig. 5(a)] as our basis for the two degenerate flat bands. We
distinguish left-dimer states only containing L hexagons from
right-dimer states only containing R hexagons. Although
these sets of LOs together form a basis of the two degener-
ate flat bands, not all basis states are mutually orthogonal.
We thus need to determine appropriate superpositions of the
dimer LOs to form a set of mutually-orthogonal Wannier or-
bitals (WOs). As usual, there is not a unique set of WOs and
different choices can vary significantly in their real-space lo-
calization. Since we will ultimately employ local-decoupling
mean-field theory, it is particularly important to obtain well-
localized WOs49.

Our construction scheme for suitable WOs involves an im-
portant step of orthogonalizing the sets of left and right LOs
by means of a symmetrized version of the Gram-Schmidt pro-
cedure (see Appendix C for details). The results for two adja-
cent WOs are depicted in Fig. 5(b). The major part of the real-
valued WO amplitude is essentially concentrated on each orig-
inal dimer [Fig. 5(a)]. From there, the amplitudes decrease
rapidly (asymptotically in an exponential fashion). This is in
contrast to the slower power-law decay of WO amplitudes in
the 0-flux case which is caused by the touching of bands1.
The WOs we obtain respect translational symmetry (in terms
of probability), TR symmetry, and preserve the mirror sym-
metry along their major axes, just as the original dimer LOs.
They weakly break mirror symmetry along their minor axes.

We define the creation operator for occupation of these
Wannier orbitals by

w†j ≡
∑
r

wj(r)b†r, (5)

where the Wannier function wj(r) gives the amplitudes of the
dimer-type WO centered at position j of the effective triangu-
lar lattice [Fig. 5(a)] on each site r of the underlying kagome
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FIG. 5: (color online). (a) The two types of dimer LOs used to con-
struct the Wannier basis. Disks in orange/blue (light/dark gray) rep-
resent positive/negative amplitudes of the LO. The shaded area on top
shows a single unit cell, containing two hexagons, L andR. The cen-
ters of LOs form a triangular lattice (bottom). (b) Two neighboring
orthogonal Wannier orbitals. The area of each disk is proportional to
the amplitude of the wavefunction on that site. Bottom panels show
four types of effective interactions: (c) on-site repulsion, (d) density-
density repulsion, (e) assisted-hopping, and (f) ring-exchange.

lattice. The flat-band projection corresponds to the inverse
transformation

b†r →
∑
j

w∗j (r)w†j , (6)

where the Wannier states of the dispersive bands have been
dropped as an approximation. Upon projection and switch-
ing to the grand-canonical ensemble, the effective Hamilto-
nian takes the form

H → Heff =
∑
j

(−2|t| − µ)w†jwj +
∑
ijkl

Iijklw
†
iw
†
jwkwl,

(7)
where µ is the chemical potential. For convenience, we may
define the shifted chemical potential µ′ = µ + 2|t| which ab-
sorbs the energy constant of the flat band. The coefficients
Iijkl ≡ U

∑
r w
∗
i (r)w∗j (r)wk(r)wl(r) determine the strength

of the effective interaction terms and involve overlaps of four
Wannier functions centered on specific sites i, j, k, and l of the
triangular lattice. Due to the localization of WOs, the interac-
tion is short range and falls off rapidly with growing spatial
distance between the four sites. We note that Iijkl is transla-
tionally invariant and real-valued (since the constructed Wan-
nier functions are real-valued themselves).

The distinct spatial configurations of the four dimer WOs
labeled i through l give rise to different types of interaction
terms. Whenever all four indices coincide, the contribution
corresponds to an effective onsite repulsion

∑
j U
′w†jw

†
jwjwj

with strength U ′ = Ijjjj = 0.11U . Among the set of all ef-
fective interaction terms, this on-site repulsion term has the
largest strength. The next sub-leading terms come from two
other types of effective interaction, namely density-density re-
pulsion VDD=

∑′
i,j I

d
ijninj [Fig. 5(d)], and assisted hopping

VAH =
∑′
i,j

∑
k I

ah
ijkw†iwjnk [Fig. 5(e)]. Here, nj≡w†jwj de-

notes the Wannier number operator, and the primes on sums
signal that those terms with coinciding summation indices
are to be omitted. The strengths of density-density interac-
tion and assisted hopping depend on the specific arrangement
of the involved WO dimers. The largest contributing terms
are Id

0,e1
=0.0483U and Iah

0,e1,−e3
=−0.055U , and thus sig-

nificantly smaller than the on-site repulsion strength U ′.
Within the low-density regime ν<1/3 (i.e., νeff<1 in the

effective triangular lattice), we therefore employ a hard-core
approximation which forbids double occupation of WOs1.
Within this approximation, interaction terms with repeated
Wannier operators on the same site, w†jw

†
j or wjwj , drop out.

This includes effective onsite interaction as well as pair hop-
ping

∑′
i,j Iiijjw

†
iw
†
iwjwj . Besides density-density repulsion

and assisted hopping, the only remaining interaction type is
ring-exchange [Fig. 5(f)], in which the Wannier functions are
centered on four different sites on the triangular lattice. We
find that the maximum strength of ring exchange is 0.00814U
which is significantly weaker than both density-density repul-
sion and assisted hopping.

B. Mean-field theory.

While density-density repulsion favors density-wave order
and formation of a Wigner crystal, assisted hopping may lead
to melting and formation of a superfluid. In addition, this
competition also allows for an intermediate supersolid phase
in which both types of order are present. Here, we study com-
petition between different types of orders within mean-field
theory (MFT). We adopt the Gutzwiller approach41 and em-
ploy a product ansatz consistent with the hard-core constraint

|ψMF 〉 =
∏
j(fj,0 + fj,1w†j)| 0 〉, (8)

which decouples sites on the effective triangular lattice of
WOs. The mean-field ansatz naturally captures the nematic
Wigner crystal phase since it is a product of single-particle
states with occupation of non-overlapping LOs (in this case
approximated by WOs). Above close packing, mean-field
solutions continue to break the C6 symmetry due to the
anisotropic nature of the Wannier orbitals.

To describe states with density-wave order such as the ne-
matic Wigner crystal, we must allow for the dependence of
the mean-field amplitudes fj,n on the spatial index j. To ob-
tain mean-field solutions, we decouple the effective Hamil-
tonian, replacing density-density interaction and assisted-
hopping terms by

VDD →
∑
i,j

′
2Id
ijni〈nj〉

VAH →
∑
i,j

′∑
k

Iah
ijk〈w

†
i 〉〈wj〉nk

+
∑
i,j

′∑
k

Iah
ijk(w†i 〈wj〉+ h.c.)〈nk〉. (9)

(We have verified that inclusion of ring-exchange does not
lead to significant changes.) With this, we obtain a mean-



6

Nematic Superfluid 

P
ha

se
 

Se
pa

ra
ti

on

Nematic 
Supersolid

Nematic
 Wigner
 Crystal

H
ar

d-
co

re
 L

oo
p 

G
as

Nem. Wigner Crystal

(a)

(b)
(c)

(d)

(b) (c) (d)Nematic Supersolid Nematic Superfluid

FIG. 6: (color online). (a) Mean-field phase diagram and plot of
average density 〈ν〉, 〈νeff〉 on the effective triangular lattice, average
density-wave order 〈χdw〉 (blue dots) and average superfluid order
〈ψsf〉 (red squares) versus chemical potential. Dashed lines show the
exact solution with LOs. (b-d) Results from MFT for ground states
in the three phases. The area of depicted dimers is proportional to
the local occupation number ni, arrows show the phase angle θi.
Results are obtained for a lattice of 200 sites using a self-consistency
calculation.

field Hamiltonian
∑
i hi({ψj}, {nj}) where hi depends on

the mean-field order parameters ψj = 〈wj〉 and nj = 〈nj〉
on each site of the triangular lattice. Starting from a ran-
dom initial set of order parameters on a lattice of 200 sites
with periodic boundary conditions, we repeatedly solve for
the eigenstates and re-calculate order parameters until reach-
ing self-consistency (see Appendix E for details).

For a range of chemical potentials, we calculate results
for the mean filling 〈ν〉 ≡

∑
i ni/Nsite, density-wave or-

der parameter 〈χdw〉 defined as the difference between max-
imum and average density taking into account the six sur-
rounding sites, and the mean superfluid order parameter
〈ψsf〉≡

∑
i ψi/Nsite. The key results from this calculation

are presented in Figure 6. MFT reproduces the exact ne-
matic Wigner crystal [Fig. 6(b)] for µ′ ' 0.05U at close
packing 〈ν〉 = 1/15, showing maximum density-wave or-
der 〈χdw〉 = 1 and vanishing superfluidity 〈ψsf〉 = 0. Below
close packing, MFT produces a gradual change of average fill-
ing and superfluid order, which differs from the exact solution
discussed above based on LOs. The exact solution exhibits
a density plateau at νc containing the entire nematic Wigner
crystal phase, and a vertical jump corresponding to the hard-
core loop gas phase which is more appropriately represented
in the canonical ensemble.

Above µc, superfluid order sets in and 〈ψsf〉 grows gradu-
ally while, at the same time, the density-wave order parameter
〈χdw〉 remains nonzero and decays slowly, overall suggesting
a second-order transition to a nematic supersolid [Fig. 6(c)] in

F.B.Z.

FIG. 7: (color online). TOF image probing the momentum distri-
bution of the superfluid phase. Besides the anisotropic background
revealing the internal correlations of loop orbitals, the delta function
peaks correspond to the condensate in k-space. Only the four peaks
(corresponding to equivalent points in the reciprocal space) on the
first-Brillouin Zone boundary (yellow box) are shown.

which a fraction of the bosons condense on interstitial sites be-
tween the Wigner-crystal structure. Further on at µc2'0.18U ,
the density-wave order 〈χdw〉 abruptly drops to zero, accom-
panied by a sudden increase in the superfluid order 〈ψsf〉. This
indicates a sudden melting of the Wigner-crystal structure and
a first-order transition into a superfluid phase [Fig. 6(d)].

Based on our MFT, we predict that the superfluid phase
is nematic since condensation of bosons is based on hopping
among anisotropic dimer WOs. Within the superfluid phase,
phase angles θi = Arg[ψi] form stripes in which neighboring
stripes differ by a π-phase difference. The nematic supersolid
has similar phase stripes, the only difference being that sites
with maximum density have an additional π-phase flip. Fi-
nally, we find a narrow region in which non-monotonic de-
pendence of the density on chemical potential suggests phase
coexistence between the superfluid and supersolid.

VI. THE SIGNATURES OF NEMATIC SUPERFLUIDITY
AND DETECTION METHODS

The interesting aspect of the uniform superfluid phase
which we find is that it is a nematic. Its internal structure, i.e.
the correlation in the loop/Wannier orbitals, is encoded in the
momentum distribution, which can be probed through time-
of-flight (TOF) imaging in the context of cold-atom experi-
ments. The nematicity can also be identified through macro-
scopic quantities, such as the superfluid stiffness tensor and
the anisotropic superflow, which can be probed with phase
imprinting technique35. In the following two sections, we
discuss microscopic and macroscopic signatures, along with
methods to detect them.

A. Momentum distribution and time-of-flight experiments

The microscopic signature, i.e. the ground-state momen-
tum distribution 〈nq〉, as mentioned above, can be directly
measured experimentally through the time of flight images.
It serves as a useful probe of the correlation properties of
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sample (16 × 16). The configuration of phase angles illustrates the situation of ∆θ1 = ∆θ3 = π. (b) Contour plot showing the mean-field
energy distribution as a function of the phase differences, i.e. E(∆θ1,∆θ3). The energy profiles along the two cuts (blue solid and red dashed
lines), E(∆θ1, 0) and E(0,∆θ3), are shown in panel (c).

the ground state. The momentum distribution is equal to the
Fourier transform of the single-particle density matrix:

〈nq〉 =
1

Nsite

∑
r1,r2

eiq·(r1−r2)〈b†r1br2〉. (10)

Recall that for the nematic Wigner crystal (NWC)
ground state, the wavefunction can be expressed as
|NWC 〉=

∏
j∈A L

†
j | 0 〉. Here, j is the label of the loops and

A is the set of non-overlapping loop states forming the crys-
tal. Since the loops do not overlap, we have the correlation
〈b†r1br2〉 6= 0 if and only if r1 and r2 are sites on the same
loop. Thus, we get

〈nq〉NWC =
1

Nsite

∑
j∈A

∑
α,α′

eiq·(rα−rα′ )〈 0 |Ljb†αbα′L†j | 0 〉,

(11)
where b†α represents the boson operator on the loop (α =
1, 2, 3, ..., 10). There are two types of loops: one encircles
the left hexagons and the other encircles the right hexagons,
as shown in Fig. 5(a). As we can see, the nonzero contri-
butions for the single-particle density matrix in Eq. (11) are
±〈 0 | 1

10bαb
†
αbα′b†α′ | 0 〉 = ± 1

10 , where “±” is determined by
the sign of the overlap of wavefunction amplitudes.

Now we discuss the momentum distribution of the nematic
superfluid phase (see Appendix F for derivation). It is shown
in Fig. 7. The continuous background originates from the
correlation within the loop orbitals; apart from a prefactor
it is identical to NWC. It is squeezed in the direction of the
major axis (along which the loop is elongated). This con-
tinuous background encodes the internal correlation of the
loop/Wannier orbitals. The delta-function peaks (represented
by white circles) originate from the Bose condensation. Only
the four equivalent peaks on the boundary of the first Brillouin
zone are shown in the plot. Such a momentum distribution of a
uniform superfluid implies a novel scenario of Bose condensa-
tion, where the ground state is unstable against developing an
additional nematic order which, spontaneously breaks the lat-
tice rotational symmetry. Therefore in the corresponding TOF
experiment, one expects that the sample prepared under simi-

lar conditions repeatedly would spontaneously pick up one of
the three directions in which the image pattern is squeezed.

B. Superfluid stiffness tensor and anisotropic superflow

Now we discuss the macroscopic signature of the nematic
superfluid phase. We consider the superfluid stiffness ten-
sor ρIJ= ∂2E

∂∆θI∂∆θJ
|∆θI,J=0, where I, J = 1, 3 refer to the

directions along e1 and e3. Note that e3 direction is spe-
cial because it aligns with the major axis of the dimers. To
study this quantity, we apply phase differences ∆θ1 and ∆θ3

across the boundaries of the finite sample (16× 16), as shown
in Fig. 8(a). Experimentally such phase difference can be
achieved with the phase imprinting technique developed in the
cold atom setup35.

The phase differences across the boundaries induce super-
flow in the corresponding directions and hence increase the
kinetic energy. The contour plot in panel (b) shows the mean-
field energy as a function of the phase differences, namely
E(∆θ1,∆θ3). The superfluid stiffness tensor corresponds to
the curvature of the energy profile in the vicinity of the origin.
The anisotropy of the energy contours suggests that the super-
fluid stiffness is also anisotropic. To see this more clearly, we
make cuts along the x- and y-axis (blue solid and red dashed
line). We then show the energy profile along the two cuts,
namely E(∆θ1, 0) and E(0,∆θ3), in panel (c). It is obvious
that, in the vicinity of the origin, the curvature of the blue solid
line is larger than that of the red dashed line, which means that
ρ11 ≡ ∂2E

∂∆θ21
|∆θ1=0 is larger than ρ33 ≡ ∂2E

∂∆θ23
|∆θ3=0. This

suggests that the superfluid stiffness along the two directions
is different. Now we consider the first derivative, jI ≡ ∂E

∂∆θI
,

which is the current generated when applying a phase differ-
ence at direction I . We can see that, not far away from the
origin, j1 is always larger than j3. This is consistent with
the results in Appendix D, where we show that the effective
nearest-neighbor hopping along the major axis (e3 direction)
is zero in the nematic superfluid phase (within mean-field ap-
proximation). Only successive hopping along other directions
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will contribute to superflow in the e3 direction. On the other
hand, the large effective nearest-neighbor hopping in the other
two directions (e1 and e2) leads to larger superflow in those
directions.

In sum, the anisotropy of the two macroscopic quantities,
the superfluid stiffness and superflow, reveals breaking of dis-
crete rotational symmetry and hence microscopic nematicity
of the superfluid phase.

VII. CONCLUSION

We studied the emergence of nematic phases in a kagome
lattice with a gapped flat band, obtained when a flux π is
threaded through each hexagon of the lattice. Single-particle
localized loop states can be combined to construct many-body
eigenstates below a critical filling. This critical filling corre-
sponds to close packing of non-overlapping loop states and
marks the formation of a nematic Wigner crystal ground state.
For larger filling, the effective Hamiltonian based on flat-band
projection using dimer-shaped Wannier orbitals and subse-
quent mean-field treatment predict nematic supersolid and su-
perfluid phases. The latter is a uniform quantum liquid with
anisotropic internal structure, which is encoded in the mo-
mentum distribution and can be probed by time-of-flight ex-
periment. Interesting future directions include the study of
phases at higher density, especially the possibility of a feature-
less Mott insulator42 at 1/3 filling, resonating valence bond
states and fermionized ground states in the strong-interaction
regime.
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Appendix A: Derivation of the properties of loop eigenstates

In this appendix, we show the derivation of some properties
of loop eigenstates stated in Sec. III B.

The flux quantization condition (property 3) can be derived
from properties 1 and 2 as follows. The positive-hopping
tight-binding lattice Hamiltonian in the presence of additional
gauge field A has the form:

Htb =
∑
〈r,r′〉

|t|eiArr′ b†r′br + H.c. ≡
∑
〈r,r′〉

Trr′ , (A1)

where Trr′ is the hopping operator on the nearest-neighbor
bond 〈r, r′〉. Assuming that there exist single-particle wave-
functions of the loop eigenstate type, they can be expressed
as

|ψL 〉 =
∑
r∈L

ψrb
†
r| 0 〉, (A2)

where the summation index r runs over all sites on the loop
L. When acting with the Hamiltonian Htb on the loop eigen-
states, we can split the expressions into two parts, namely

Htb|ψL 〉 =
∑
〈r,r′〉∈L

Trr′ |ψL 〉+
∑

〈r,r′〉∈L,l/∈L

[Trl +Tr′l]|ψL 〉.

(A3)
The first sum includes hopping along the bonds 〈r, r′〉 on the
loop L, while the second sum corresponds to hopping from
the bonds 〈r, r′〉 on the loop to the adjacent sites l on the out-
ward/inward triangles, as illustrated in Fig. 9 by red dashed
lines. The cancellation of the probability amplitude outside
the loop (caging, property 2) requires the second sum to be
zero (see Appendix A), while the requirement of eigenenergy
being −2|t| (property 1) implies the first sum being equal to:∑

〈r,r′〉∈L

|t|[eiArr′ψrb
†
r′ + e−iArr′ψr′b

†
r]| 0 〉 (A4)

= −2|t||ψL 〉 ≡
∑
〈r,r′〉∈L

−|t|[ψr′b
†
r′ + ψrb

†
r]| 0 〉.

The above equation leads to the following relation between
the amplitudes of neighboring sites,

ψr′ = −ψre
iArr′ . (A5)

That is, the wavefunction has equal probability on every site
along the loop, and adjacent sites differ by a minus sign and
an additional phase shift due to the gauge potential Arr′ on
the bond 〈r, r′〉. Note that in the 0-flux case (Arr′ = 0),
Eq. (A5) simplifies to alternating signs on the loop, includ-
ing the hexagon loop state shown in Fig. 3(a). By applying
Eq. (A5) around the loop and requiring the probability ampli-
tude ψr to be single-valued, we derive the flux quantization
condition for a loop eigenstate (property 3), namely

φL =
∑
〈r,r′〉

	 Arr′ = 2πn, n ∈ N. (A6)

Now we consider the cancellation of the second sum in
Eq. (A3) which leads to caging, and get

[Trl + Tr′l]|ψL 〉

=|t|[eiArlψrb
†
l + e−iAr′lψr′b

†
l + H.c.]| 0 〉 = 0. (A7)

This in turn leads to ψr′ = −ψre
i(Arl+Alr′ ). Combined with

Eq. (A5), we get

φ∆ = Arl +Alr′ +Ar′r = 0. (A8)

Thus, we have just shown the necessary condition for the per-
sistence of lowest flat band with energy−2|t|, which we stated
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FIG. 9: Illustration of a generic single-particle loop eigenstate, where
r and r′ label sites on the loop, and l labels a site outside the loop
where destructive interference (illustrated by red dashed lines) oc-
curs.

in the beginning of Sec. III B, is that the flux threading all the
outward/inward triangles must be zero (gauge-equivalent to
π-flux in the negative hopping model).

To understand one additional feature of the loop state, now
we consider the gauge-invariant current operator on the bond
〈r, r′〉 (from site r to site r′), namely,

Jrr′ = 2|t|i[ b†r′bre
iArr′ − H.c.]. (A9)

Its expectation value is given by

〈ψL |Jrr′ |ψL 〉 = 2|t|i[ψ∗r′ψre
iArr′ − H.c.], (A10)

which equals zero after applying Eq. (A5). Therefore, for
any flux value φ, the loop states in the flat band carry no cur-
rent, and thus do not break time-reversal (TR) symmetry, even
though the Hamiltonian itself breaks TR except at φ = 0, π.
From the butterfly spectrum in Fig. 1(b), we observe that the
lowest flat band does not change as a function of φ, which
leads to zero current due to the linear response formula of the
current J = ∂E

∂φ = 0. The fact that there is no current can
also be understood in another way, i.e. the Chern number for
the lowest flat band is always zero. This is in contrast to the
higher bands near φ = 0 [Fig. 1(b)], which are essentially
Landau levels with nonzero Chern numbers C = 1, 2, 3, etc..

Appendix B: Connection to frustrated spin models

Although the current paper focuses on the interacting bo-
son models, some of the results, such as the Wigner crystal
phases, also apply for the frustrated spin models correspond-
ing to the same type of frustrated lattice. Here, we consider
the frustrated anisotropic Heisenberg model with spin-s in the
presence of external magnetic field:

H =
∑
〈ij〉

[J⊥ij (Sxi S
x
j + Syi S

y
j ) + JzijS

z
i S

z
j ]− h

∑
j

Szj . (B1)

Here, J⊥ij determines the XY interaction and Jzij determines
the zz (Ising) interaction. The isotropic situation (J⊥ij = Jzij)

corresponds to the usual Heisenberg model. The external
magnetic field h acts as the chemical potential of magnons
and has nothing to do with the gauge flux which we discuss
throughout the whole paper. To make the connection with the
boson model more explicit, we rewrite it as:

H =
∑
〈ij〉

[
1

2
J⊥ij (S+

i S
−
j + S−i S

+
j ) + JzijS

z
i S

z
j ]− h

∑
j

Szj .

(B2)
From above, one can see that the transverse XY interaction
can be written as a flip-flop term, which in the s = 1

2 case
actually corresponds to hopping of hard-core bosons. The zz
term induces nearest neighbor interactions between hard-core
bosons. If the magnetic field h is sufficiently large, the ground
state is the magnon vacuum | 0 〉=| ↑↑↑ · · · ↑↑↑ 〉. For the flat-
band hopping models, a single magnon on the loop m is cre-
ated by the operator L†m =

∑
j∈m ψjS

−
j out of the magnon

vacuum | 0 〉, where ψj represents the wavefunction amplitude
on each site of the loop. Just like in the case of on-site interact-
ing bosons, the magnon loop gas and the loop crystal are the
eigenstates of the Hamiltonian (the zz term does not change
that since the adjacent loops do not occupy neighboring sites.

Indeed, for the antiferromagnetic Heisenberg model (J⊥ij =
Jzij > 0), a valence-bond crystal phase (equivalent to the
Wigner crystal) formed by non-overlapping hexagon loop
magons has been found in Ref.27 (earlier than its boson ana-
log). This valance-bond crystal phase, in the spin-1/2 case,
corresponds to the m = 7/9 magnetization plateau (m=0 cor-
responds to no polarization; m = ±1 corresponds to full po-
larization in the up/down direction), and is equivalent to the
1/9 state of the interacting boson model. We note that the
valence-bond crystal phase is not limited to spin-1/2 case, but
actually exists for arbitrary spin s27.

To implement the π-flux model described in the main text,
one can choose different signs of the transverse coupling Jij
according to the hopping signs of the corresponding boson
model. Thus, there will be a nematic valence-bond crystal (at
13/15 magnetization plateau) in the spin model which corre-
sponds to 1/15 nematic Wigner crystal in the boson model. To
make sure the density-density interaction between magnons is
repulsive and hence stabilizes the valence-bond crystal as the
ground state, it is preferable that the zz-interaction is positive,
namely Jzij > 0. However, we caution that, if the anisotropy
ratio |Jzij/J⊥ij | is sufficiently small, the sign of the zz-term
does not matter since the zz-term can be treated as a small per-
turbation. To experimentally realize such a sign-tunable spin
model, a promising candidate is the nitrogen-vacancy center
array43, although in that case the spin-spin interaction is not
restricted to nearest-neighbors but has a power-law decay due
to its dipole-dipole nature.

Besides the nematic Wigner crystal (nematic valence-bond
crystal) phase, the nematic supersolid or superfluid phases
may also occur in the spin systems. However, due to the hard-
core nature of the spin system (especially for spin 1/2), the
projection approach may break down at certain critical fill-
ing. Only below that critical filling, the predicted phase for
the weakly-interacting boson model is expected to apply.
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Appendix C: Construction of orthogonal Wannier Orbitals

For the π-flux case, the unit cell is doubled with respect to
the 0-flux case and hence includes 6 sites (labeled as A, B, C,
D, E, and F), as shown in Fig. 10(a). Hence, the lowest flat
bands are doubly degenerate, which means that there is an ar-
bitrary choice to decompose the two flat bands, since for each
k one can arbitrarily choose two orthogonal Bloch vectors in
the 2-dimensional degenerate subspace. Sensible choice of
basis has to be physically motivated and has to respect certain
symmetries.

For the sake of convenience, we choose loops along the e3-
direction as our preferred flat band basis (total numberNsite/3
equals the number of flat-band degeneracy). The operators
L†s,R which create the two types of loops within each unit cell
can be represented by the original lattice boson operators as:

L†1,R =bA†R − b
B†
R + bC†R − b

E†
R − b

E†
R−a2

+ bF†R−a1

− bF†R−a1+a2
+ bB†R+a2

− bA†R+2a2
+ bC†R+a2

,

L†2,R =bB†R+a1
− bB†R+a1−a2

− bC†R − b
C†
R+a2

+ bD†R − b
D†
R+2a2

+ bE†R + bE†R+a2
− bF†R + bF†R+a2

. (C1)

Here, the index s = 1, 2 labels the loops encircling left/right
hexagons. The wavefunctions of the two types of loops are al-
ready shown in Fig. 3(a). Here, the lattice vectors R ≡ (m,n)
labels the enlarged 6-site unit cell and the lattice vectors
a1≡(1, 0) and a2≡(0, 1) translate the cells in the two oblique
directions [shown in Fig. 10(a)].

One can construct two classes of Bloch states by
translationally-invariant superposition (with a particular
wavevector k) of the two types of loop states respectively, i.e.

L†s,k =
∑
R

e−ik·RL†s,R. (C2)

Here, left/right label s=1, 2 can also be thought as the band
index and in this particular case labels the two degenerate flat
bands. The generated state L†s,k| 0 〉=

∑
l u
l
s,kb

l†
k | 0 〉 can be

represented by a 6-component Bloch vector ~us,k, where we
have l=A,B..., F and bl†k =

∑
R e
−ik·Rbl†R. The two Bloch

vectors got from the two chosen loop states are represented
as

~u1,k =(1− e−i2k·R2 ,−1 + e−ik·R2 , 1 + e−ik·R2 , 0,

− 1− e−ik·R2 , eik·R1 − eik·(R1−R2))T ,

~u2,k =(0, e−ik·R1 − e−ik·(R1−R2),−1− e−ik·R2 , (C3)

1− e−i2k·R2 , 1 + e−ik·R2 ,−1− e−ik·R2)T .

However, the Bloch vector ~us,k is not yet normalized. We
call the normalized Bloch vectors ~βs,k, and define the normal-
ized Bloch state as |βs,k 〉=L̃†s,k| 0 〉=

∑
l β

l
s,kb

l†
k | 0 〉, where

the redefined operator L̃†s,k now becomes canonical bosonic
operators satisfying the commutation relation [L̃s,k, L̃

†
s,k′ ] =

δk,k′ . Thus, we get a set of orthonormal Bloch states for each

of the two flat bands, and can be transformed into two sets of
Wannier states as:

w†s,R =
1√
Nsite

∑
k

eik·RL̃†s,k ≡
∑
R′,l

wls,R(R′)bl†R′ , (C4)

where the Wannier wavefunction is given by

wls,R(R′) =
1√
Nsite

∑
k

eik·Rβls,ke
−ik·R′

. (C5)

Here, the Wannier wavefunction sits on the coordinate (R′, l).
The coordinate (R, s) labels where the center of the wave-
function locates. We note that the more detailed notations,
w†s,R and wls,R(R′), which we use here, are equivalent to the
more compact notations we have used in the main text, namely
w†j and wj(r). The direct correspondence is r ≡ (R′, l) and
j ≡ (R, s). The two sets of wavefunctions are illustrated in
Fig. 10(b), where the s=1 one encircles only the left hexagons
in every unit cell and the s=2 one encircles only the right
hexagons. The major part of the real-valued Wannier func-
tions are essentially the two dimer loop states which we start
with. The amplitude tail spreads out and decays exponentially
along the major axis of the loop which ensures orthogonal-
ization. However, the two sets of Wannier functions are not
mutually orthogonal to each other (for example, those neigh-
boring ones will still have finite overlap) since the two sets of
Bloch vectors are not mutually orthogonalized yet.

For each k, one can orthogonalize the two Bloch vectors
through the Gram-Schmidt process, i.e.

| γ1,k 〉 =
|β2,k 〉 − |β1,k 〉〈β1,k |β2,k 〉
||β2,k 〉 − |β1,k 〉〈β1,k |β2,k 〉|

, (C6)

which generates a normalized | γ1,k 〉 orthogonal to |β1,k 〉.
Similarly, one can get a normalized | γ2,k 〉 which is orthog-
onal to |β2,k 〉. Therefore, one can choose either orthogonal
pair as the flat-band basis. However, from either choice, the
acquired Wannier wavefunctions belonging to the two bands
have completely different shapes and hence lose translational
symmetry. To preserve translational symmetry and being
closer to a dimer shape, we can make a symmetric superposi-
tion as:

|α1,k 〉 =
1√
2

[
|β1,k 〉+ eiθk | γ2,k 〉

]
,

|α2,k 〉 =
1√
2

[
|β2,k 〉+ eiθk | γ1,k 〉

]
, (C7)

where |α1,k 〉 and |α2,k 〉 are the mutually-orthogonal sets of
Bloch states we choose. The additional free choice of phase
factor eiθk will give rise to different Wannier states. The sen-
sible choice of the phase factor makes sure that the Bloch vec-
tors are analytically continuous in k-space, which ensures that
the generated Wannier function is exponentially localized44

and hence is more compact.
The Bloch states generated from the Gram-Schmidt pro-

cess, | γs,k 〉, are unfortunately not analytically continuous.
For example, as shown in Fig. 10(c), the A-component of one
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FIG. 10: (color online). (a) The unit cell of the π-flux kagome lattice, which contains two hexagons and six sites. (b) Illustration of two
Wannier functions transformed from the two Bloch vectors ~β1,k and ~β2,k via Eq. (C5). (c) The contour plot which shows the distribution of
the A-component of the Bloch vector ~γ1,k in k-space. There are diagonal discontinuity cuts in the k-space. (d) The improved distribution in
panel (c) after a sign flip in every other strip. Now the discontinuities are removed. (e) Illustration of the symmetrized Gram-Schmidt process.

of the Bloch vectors, γA1,k, has a diagonal discontinuity cut in
its real part. Same cut happens for its imaginary part and most
of the other components of | γ1,k 〉, and | γ2,k 〉.

Thus, one has to take advantage of the additional phase fac-
tor eiθk to remove the discontinuity. In this particular case,
a simple sign flip of every other strip in the k-space, which
can be expressed as a square-wave function: sgn[sin[(kx, ky) ·
(1,
√

3)]], is able to remove the discontinuity [see Fig. 10(d)].
In addition, we employ an extra phase factor eik·a2 to ensure
no breaking of TR symmetry and closeness in shape to the
dimer loop state. Thus, our choice of phase factor eiθk for
Eq. (C7) is eik·a2sgn[sin[(kx, ky) · (1,

√
3)]] (a k-independent

relative sign or phase factor does not affect the probability
distribution of the Wannier functions). This particular choice
yields the complete Wannier basis illustrated in Fig. 3(b).

Our Wannier Orbitals (WOs) preserve the mirror symmetry
(in terms of probability) with respect to its major axis, simi-
lar to the original Loop Orbitals (LOs) which they are based
on. However, due to the additional phase factor we choose
to keep the analytical continuity, the mirror symmetry along
the minor axis is slightly broken. We can see that the lower
part of the WO has slightly larger probability than the upper
part. If we replace part of the phase factor eik·a2 with e−ik·a2 ,
the shape of the WO will be flipped with respect to the minor
axis, namely the higher part will have larger probability. We
also note that we do not claim that we have found the maxi-
mally compact WOs, even though the construction is based on
the maximally compact LOs. In general, it should be possible
to numerically/analytically determine such maximally com-
pact WO which also preserve both types of mirror symmetries.
Thus, our current approach is just a simple mathematical con-
struction which aims to approximate the maximally compact
WOs, since the shape we have acquired is not too far from the
original LOs which they are based on.

Finally we note that, since we have successfully found a
complete orthogonal Bloch or Wannier basis from superpo-
sition of the dimer loop states, we have explicitly shown the
completeness of the loop states which is mentioned in prop-
erty 2 of Sec. III B.

Appendix D: Summary of terms in the effective Hamiltonian

Here we classify all types of effective interaction∑
ijkl Iijklw

†
iw
†
jwkwl, not limited by the hard-core con-

straint. The types of terms are listed below:
(1) On-site repulsion:

Vonsite =
∑
j

U ′w†jw
†
jwjwj , (D1)

where U ′ = Ijjjj ≈ 0.11U is the largest energy scale in the
effective Hamiltonian.

(2) Density-density repulsion:

VDD =
∑
(i,j)

2Idijw
†
iwiw

†
jwj =

∑
i,j

′
Idijw

†
iwiw

†
jwj , (D2)

where (i, j) means sum over pairs of sites (i 6= j). Thus,
(i, j) and (j, i) correspond to the same term and should not
be double counted. Now we determine the coefficients Idij of
the effective interaction. Four terms in the effective interac-
tion correspond to the pair (i, j), namely Iijjiw

†
iw
†
jwjwi +

Iijijw
†
iw
†
jwiwj + Ijijiw

†
jw
†
iwjwi + Ijiijw

†
jw
†
iwiwj =

4Iijjiw
†
iwiw

†
jwj . Thus, we get Idij=2Iijji.

(3a) Onsite pair-hopping (involving two different sites):

VPHa =
∑
(i,j)

Ipij(w†iw
†
iwjwj + H.c.) =

∑
i,j

′
Ipijw

†
iw
†
iwjwj ,

(D3)
where Ipij = Iiijj .

(3b) Off-site pair-hopping (involving three different sites):

VPHb =
∑
(i,j)

∑
k 6=i,j

[Ipijk(w†iw
†
j + w†jw

†
i )wkwk + H.c.]

=
∑
i,j,k

′
Ipijk[w†iw

†
jwkwk + H.c.], (D4)

where Ipijk = Iijkk.
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I.   Onsite Repulsion:

0.115 

II.    Density-Density Repulsion:

2×0.0242 2×0.0240 2×0.00888 2×0.00203 2×0.00136 2×0.00899 2×0.0242 

Mirror Mirror

2×0.00899 

Mirror

III.    Assisted hopping terms:

(a).     NN Hopping term 1 :

-0.0138×4 -0.00850×4 0.00177×4 0.00139×4 

0.0138×4 0.00850×4 -0.00177×4 0.00139×4 0.00365×4 -0.00330×4 -0.00179×4

(b).     NN Hopping term 2:

0.00358×4 -0.00358×4 0.00774×4 -0.00774×4 0.0101×4 -0.0101×4 0 0 

IV.   Ring-exchange interaction:

0.00204×4 0.00204×4 0

Mirror Mirror Mirror Mirror Mirror Mirror Mirror

Mirror Mirror Mirror

0.00365×4 0.00330×4 0.00179×4

2×0.00136 

(a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8)

(a1m) (a2m) (a4m) (a5m) (a6m) (a7m) (a8m)

(b1) (b1m) (b2) (b2m) (b3) (b3m) (b4) (b5)

 -0.00250×4

0.00250×4

Mirror

(a3m)

FIG. 11: (color online). Table summarizing the leading terms and their coefficients (in units of Hubbard interaction strength U ) of the effective
onsite repulsion and the other three types of effective interactions which survive under the hard-core constraint.

(4a) Assisted-hopping (involving three different sites):

VAHa =
∑
(i,j)

∑
k 6=i,j

Iah
ijk(w†iwjw

†
kwk + H.c.) (D5)

=
∑
i,j,k

′
Iah
ijkw†iwjw

†
kwk. (D6)

Four terms (and their H.c.) in the effective interaction
correspond to the pair (i, j), namely Iikjkw†iw

†
kwjwk +

Iikkjw
†
iw
†
kwkwj + Ikijkw†kw†iwjwk + Ikikjw

†
kw†iwkwj =

4Iikjkw†iwjw
†
kwk. Thus, we get Iah

ijk = 4Iikjk (i 6= j 6= k).
(4b) Assisted-hopping (involving only two different sites):

VAHb =
∑
(i,j)

[Iah
ijj(w†iwj + H.c.)w†jwj + Iah

jii(w†iwj + H.c.)w†iwi]

=
∑
i,j

′
Iah
ijj(w†iwj + H.c.)w†jwj . (D7)
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Here, we have Iah
ijj = 2Iijjj , due to the presence of two

terms of each type, e.g. Iijjjw
†
iwjw

†
jwj + Ijjijw

†
jwjw

†
iwj =

2Iijjjw
†
iwjw

†
jwj .

(5) Ring-exchange interaction:

VRing =
∑

(i,j),(k,l)

IRing
ij,kl(w†iw

†
jwkwl + H.c.). (D8)

Here,
∑

(i,j),(k,l) means each term in the sum selects two pair
of sites (none of the four sites coincide), one pair with creation
operators and the other pair with annihilation operators. Due
to the fact that (i, j) and (j, i) correspond to the same thing,
there are 2×2 = 4 terms from effective interaction correspond
to the same type. Thus, we get IRing

ij,kl = 4Iijkl. Note that, for
each plaquette (i, j, k, l), there are (4

2) = 4 different types of
terms, due to the different choices of creation and annihilation
operators.

After imposing the hard-core approximation, namely re-
placing the Wannier operators w†j by the Pauli operator σ+

j ,
only the density-density repulsion (2), assisted hopping in-
volving three different sites (4a) and the ring-exchange inter-
action (5) survive. Other types of term vanish due to the dou-
bling of Pauli operators on the same site, namely (σ+

j )2 = 0.
We list the leading terms of these types in Fig. 11.

There are certain pairs of effective terms illustrated in
Fig. 11 which are associated with a mirror reflection along the
major axis (e3). For the density-density repulsion, terms in
such pair have exactly the same coefficients. For the assisted
hopping, terms in the mirror pair have the same magnitude for
coefficients, but may have opposite signs. In particular, for
the assisted hopping in row (b) (hopping along the major axis
e3), terms in all the mirror pairs have opposite signs. One can
see that for uniform density case (e.g. nematic superfluid) and
within the mean-field approximation, the assistive number op-
erator of the dimer (green) can be replaced by a constant num-
ber. Thus, the mirror terms will cancel out exactly and there
will be no effective hopping along the major axis (e3) of the
dimer. The finite effective hopping of the dimers only occur in
the other two directions (e1 and e2). Therefore, in a nematic
superfluid, the hopping of the bosons is anisotropic.

Appendix E: Details of the self-consistent mean-field theory on a
large lattice

With the decoupling of effective interaction mentioned in
the main text, we search for the self-consistent solution on a
large periodic lattice (torus) with randomized initial distribu-
tion of the mean-field order parameters. We use a local update

algorithm:

1. randomly pick up a site i in each step and find the
local ground state | g 〉i of the decoupled Hamiltonian
hi({ψj}, {nj});

2. Calculate the expectation values of the correspond-
ing Wannier operator and Wannier number operator
and use them as updated order parameters for site i,
i.e. ψi =i〈 g |wi| g 〉i and ni =i〈 g |ni| g 〉i;

3. Repeat the previous two steps until the order parameters
on each site have converged and hence reach the self-
consistent mean-field solution.

We have done calculations on lattice with different types of
geometry, as shown in Fig. 12(a-c) (with the periodic bound-
ary conditions illustrated by the wires). For all the cases, the
nematic Wigner crystal states are produced (as shown in the
figure), as well as the other two phases. However, the conver-
gence time of the simulation differs from the lattice geometry.
We find lattice (a) has the fastest convergence, possibly due
to the fact that it respects the mirror symmetry of the dimers
along their major axis. Therefore, we use lattice (a) to calcu-
late all the curves shown in Fig. 4(a). For each chemical po-
tential, we do several independent simulations with different
randomized initial conditions and pick the one with the lowest
energy as our solution. This is due to the fact that sometimes
the configuration may be trapped in certain local energy mini-
mum and stop evolving into the true mean-field solution. The
complete image of the simulation results (a nematic supersolid
state and a nematic superfluid state) from Fig. 4(c,d) is shown
in Fig. 12(d,e).

Appendix F: Calculation of momentum distribution for nematic
superfluid and supersolid phases

For the nematic superfluid and supersolid phases, the calcu-
lation in the above manner becomes more sophisticated since
the correlation between particles on different loops also con-
tribute significantly. A more convenient way is to do the cal-
culation in the Wannier basis, since the mean-field wavefunc-
tion for these two types of ground states is already known and
can be expressed by Eq. (8). The coefficients fj,0 and fj,1
are determined by the numerical self-consistent solution dis-
cussed in Sec. V B and Appendix E. Now we see that the
single-particle density matrix takes the following form,

〈ψ | b†r1br2 |ψ 〉 = 〈 0 |
∏
j1

(f∗j1,0 + f∗j1,1wj1)
∑
j,j′

[w∗j (r1)w†j ][wj′(r2)wj′ ]
∏
j2

(fj2,0 + fj2,1w†j2) | 0 〉. (F1)

Here, we have already rewriten the original bosonic operators
in terms of Wannier operators by flat-band projection Eq. (6).

One can find that the nonzero contributions in Eq. (F1) and
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FIG. 12: (color online). (a,b,c) The nematic Wigner crystal ground states from self-consistent mean-field calculations on three different
lattices. The periodic boundary condition is illustrated by the wires. The lattices contain 200, 225 and 225 sites respectively. (d,e) The nematic
supersolid and nematic superfluid states calculated form the self-consistent mean-field theory on the periodic lattice shown in panel (a).

simplify it to:

〈ψ | b†r1br2 |ψ 〉 =
∑
j

|fj,1|2(1− |fj,0|2)〈 0 |wjb
†
r1br2w

†
j | 0 〉+

∑
j,j′

′
fj,0f

∗
j,1f

∗
j′,0fj′,1w

∗
j (r1)wj′(r2).

The first term originates from the correlation between par-
ticles in the same Wannier orbital. It is proportional (up to
a constant prefactor) to the single-particle density matrix we
calculated in Sec. VI A for the NWC states [inside Eq. (11)]
with the approximation that replaces the loop orbitals (Lj)
with the Wannier orbitals (wj). For either nematic super-
fluid or nematic supersolid states, the background contribution
to the momentum distribution from this term (after a Fourier
transform), denoted by 〈n(1)

q 〉, does not change up to a con-
stant prefactor. More concretely, this background contribution
for superfluid and supersolid states is reduced since a certain

portion of the occupation moves to the condensation peaks as
will be explained in the following paragraphs.

The second term originates from the correlation between
particles in different Wannier orbitals. Clearly it only becomes
nonzero when fj,0, fj,1, fj′,0 and fj′,1 are all nonzero. Thus,
this term disappears for the NWC phase where each Wannier
orbital is in a number state (Fock state), either with n = 0 or
n = 1. It becomes nonzero when certain Wannier orbitals are
in superposition states, which implies superfluidity and pres-
ence of off-diagonal long-range order. The Fourier transform
of the second term can be expressed as

〈n(2)
q 〉 =

1

Nsite

∑
j,j′

′
fj,0f

∗
j,1f

∗
j′,0fj′,1e

iq·(Rj−Rj′ )
∑
r1

eiq·(r1−Rj)wj(r1)
∑
r2

e−iq·(r2−Rj′ )w∗j′(r2). (F2)

Here, Rj refers to the coordinate of the center of Wannier
orbital j [equivalent to the composite label (R, s) in Ap-

pendix C]. Note that the Fourier transform of the Wannier
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function is the Bloch function [inverse transform of Eq. (C5)],
therefore we get

1√
Nsite

∑
r1

eiq·(r1−Rj)wj(r1) =
∑
l

β̃ls(j)(q). (F3)

Here we have already performed an additional summation
over the ten Bloch vector components labeled by l (note that

∑
r1

actually corresponds to a double sum
∑

R1

∑
l, where

R1 labels all the unit cells and l labels the sites in each unit
cell). The label s(j) (which depends on the Wannier center
j) is the band index. In the π-flux case, it labels left (s = 1)
and right (s = 2) Bloch/Wannier states (two degenerate flat
bands) as mentioned in Appendix C. Therefore, we can fur-
ther simplify the above expression as

〈n(2)
q 〉 =Nsite

 1√
Nsite

∑
j

ψ∗j e
iq·Rj

∑
l

β̃ls(j)(q)

 1√
Nsite

∑
j′

ψj′e
−iq·Rj′

∑
l

β̃∗ls(j′)(q)

 . (F4)

Here, we have expressed the result in terms of
ψj=〈wj〉=eiϕj 1

2 sin(θj), namely the mean-field super-
fluid order parameter parameterized by the two Bloch-sphere
angles of a pseudo spin- 1

2 (equivalent to hard-core bo-
son). We can also express the mean-field parameters as
fj,0=cos(θj/2) and fj,1=eiϕj sin(θj/2), which implies the
relation ψj=fj,0fj,1.

Now we first consider the simple 0-flux case, when there
is only one flat band. Hence, the summation of the Bloch
components are site-independent. We can factorize the above
expression into

〈n(2)
q 〉0-flux = Nsite

∣∣ψ(q)
∣∣2 · ∣∣∣∣ 3∑

l=1

β̃l(q)

∣∣∣∣2, (F5)

where ψ(q) is the Fourier transform of the superfluid order
parameter ψj on the effective triangular lattice. Thus, for the
superfluid and supersolid phases, the momentum distribution
will have the same set of delta-function peaks as those ac-
quired from Fourier transforming the superfluid order param-
eter on the effective triangular lattice. However, an additional
form factor |

∑
l β̃

l(q)|2 changes the weights of the delta-
function peaks (e.g. in the supersolid phases). The simplicity
here is essentially due to the fact that, for the 0-flux kagome
lattice and the effective triangular lattice have the same recip-
rocal lattice.

In the π-flux case, there are two degenerate bands due to
doubling of unit cell size, and the size of the 1st-Brillouin
zone is reduced by half. In this case we can split the effec-
tive triangular lattice into two sub-lattices: one corresponds to
the centers of the left Wannier states, labeled by jL, and the
other corresponds to the centers of the right Wannier states,
labeled by jR. Note that these two sub-lattices correspond to
the same reciprocal lattice of the π-flux kagome lattice, the
size of which is reduced by half. Thus, we can re-express the
momentum distribution as:

〈n(2)
q 〉π-flux =Nsite

∣∣∣∣ψL(q)

6∑
l=1

β̃∗ls=1(q) + ψR(q)

6∑
l=1

β̃∗ls=2(q)

∣∣∣∣2,

where ψL(q) and ψR(q) corresponds to the Fourier trans-
form of the order parameters on the left and right effective
sub-lattices. The delta-function peaks of the momentum dis-
tribution come from the momentum peaks of the superfluid
order parameter of both sub-lattices.

The continuous backgrounds in the three phases (nematic
Wigner crystal, nematic superfluid and nematic supersolid)
have the same pattern up to a constant prefactor. On top of
that, the nematic superfluid and supersolid have additional
delta-function peaks in their momentum distributions, origi-
nating from 〈n(2)

q 〉. While the superfluid phase has only one
peak in each Brillouin zone, the supersolid phase actually has
five peaks in each Brillouin zone.

Appendix G: Localized orbitals preserving C6 symmetry

In Sec. V we have constructed Wannier basis close to the
maximally compact dimer LOs. Our effective flat-band pro-
jected Hamiltonian is represented on this basis. In princi-
ple, there are an infinite number of Wannier bases one can
choose to construct effective Hamiltonians. These effective
Hamiltonians are equivalent and only differ by a basis change.
However, the mean-field ansatz and the mean-field decoupled
Hamiltonian [see Eq. (9)] constructed from different bases
are not equivalent. Therefore, the nematic phases acquired in
Sec. V is a direct consequence of choosing mean-field ansatz
based on anisotropic WOs oriented in the same direction.

Here we show that it is actually also possible to construct a
localized orbital which preserves the C6 rotational symmetry
of probability distribution. The most compact C6-symmetric
orbital can be constructed by the superposition of six dimer
loop orbitals as shown in Fig. 13. In panel (a), we have six
dimer loop orbitals (with the amplitude labeled for each site)
sharing the same left hexagon. The superposition of the six
orbitals generate a C6-symmetric orbital in panel (b), cen-
tered on the left hexagon. We note that in order to preserve
the C6-symmetry of probability, one has to introduce relative
phase between the orbitals, and in this example a π/2 phase.
This leads to the imaginary number i in certain amplitudes
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FIG. 13: (color online). (a) Six dimer loop orbitals (with amplitudes labeled for each site) sharing the same left hexagon. (b) A C6-symmetric
localized orbital centered on the left hexagon. The orbital is superimposed by the six dimer loop orbitals in panel (a). (c) A C6 symmetric
localized orbital centered on the right hexagon. The orbital has the same probability distribution as the one in panel (b).

and breaking of TR symmetry. In this case, the time-reversal
partner is obtained by turning i into −i. This orbital also pre-
serves the C6-symmetry and has the opposite current. The
reason of TR-symmetry breaking is that the C6-symmetric or-
bital includes seven (odd number) π-fluxes, which gives rise
to the doubly degenerate eigenstates with opposite chirality.
A similar construction can generate a C6-symmetric orbital
centered on the right hexagon, by the superposition of the six
surrounding dimer loops. Thus, for each unit cell, one can
generate a C6-symmetric orbital centered on right hexagons
with the same probability distribution. These orbitals form a
complete and spatially uniform basis of the gapped flat band
and can also be orthogonalized to form Wannier orbitals.

The physical reasoning on the choice of maximally com-
pact dimer LOs/WOs, instead of C6-symmetric ones, is based

on energetic consideration that particles can avoid each other
by occupying the maximally compact orbitals with at most
one particle. In the case of Wigner crystal and supersolid
phases as shown in Fig. 6, the orbitals with large occupation
probability do not overlap with each other (ignoring the ex-
ponential tails). Therefore, the energetic advantage of being
nematic is obvious. For the uniform nematic superfluid phase,
all the LOs/WOs are equally populated. Due to the fact that
dimer LOs enclose two hexagons (while the number of dimer
LOs are equal to the number of hexagons), there are signifi-
cant overlap between neighboring dimer LOs. Still, the over-
lap is not as large as the case of more extended C6-symmetric
orbitals, as shown in Fig. 13. Therefore, nematicity is still
energetically favorable even for the uniform phase.
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40 W. Häusler, Phys. Rev. B 91, 041102 (2015).
41 D. S. Rokhsar and B. G. Kotliar, Phys. Rev. B 44, 10328 (1991).
42 S. A. Parameswaran, I. Kimchi, A. M. Turner, D. M. Stamper-

Kurn, and A. Vishwanath, Phys. Rev. Lett. 110, 125301 (2013).
43 J. Cai, Nat. Phys. 9, 168 (2013).
44 W. Kohn, Phys. Rev. B 7, 4388 (1973).
45 In ultracold-atom experiments, the natural negative hopping can

be turned positive by threading triangles of the kagome lattice
with a π flux.

46 The term “band” is applied loosely here. For rational flux, the unit
cell is enlarged and the flat band decomposes into multiple ones.
No such simple picture applies to irrational flux.

47 Note: for filling below close packing, there will generally be a
large number of degenerate ground states.

48 Note: the Wigner crystal state, is first discovered in the spin con-
text, and termed as valence-bond crystal. It is the exact ground
state corresponding to the m = 7/9 magnetization plateau27 of
the antiferromagnetic kagome Heisenberg model in an external
magnetic field. See Appendix B for details.

49 Note: it is possible to construct C6 symmetric but less compact
localized orbitals as our flat-band basis. However, the mean-field
ansatz with such orbitals has much larger interaction energy cost
due to larger overlap and hence is not energetically favorable (see
Appendix G for details).


