
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Ferromagnetic resonance phase imaging in spin Hall
multilayers

Feng Guo, Jason M. Bartell, and Gregory D. Fuchs
Phys. Rev. B 93, 144415 — Published 18 April 2016

DOI: 10.1103/PhysRevB.93.144415

http://dx.doi.org/10.1103/PhysRevB.93.144415


Ferromagnetic resonance phase imaging in spin Hall multilayers
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We experimentally image the magnetic precession phase of patterned spin Hall multilayer sam-
ples to study the rf driving field vector using time-resolved anomalous Nernst effect (TRANE)
microscopy. Our ferromagnetic resonance (FMR) measurements quantify the phase and amplitude
for both the magnetic precession and the electric current, which allows us to establish the total
driving field orientation and the strength of spin Hall effect. In a channel of uniform width, we
observe a large spatial variation of the FMR phase laterally across the channel. We interpret our
findings in the context of electrical measurement using the spin-transfer torque ferromagnetic reso-
nance technique and show that observed phase variation introduces a systematic correction into the
spin Hall efficiency if spatial phase and amplitude variations are not taken into account.

I. INTRODUCTION

When a spin current traverses the interface between a
normal metal and a ferromagnetic metal, it generates a
spin-transfer torque1–3 that efficiently manipulates mag-
netization. Accurate quantification of current-induced
torques is pivotal to first understanding and then engi-
neering spintronic devices for future magnetic memory
and information technology. Experimentally, most stud-
ies of spin Hall effect (SHE)-driven torques4–6 have relied
on electrical measurements of devices, which are effective
because they provide a large signal-to-noise ratio. Typ-
ical electrical techniques are spin torque ferromagnetic
resonance (ST-FMR)7–9 for in-plane magnetic moments,
and harmonic Hall voltage analysis10–13 for perpendic-
ularly magnetized devices. An essential assumption of
these methods is that both the driving current and the
magnetic response are uniform. To gain deeper under-
standing of SHE-driven torques and go beyond approx-
imate treatments, we quantify the relationship between
the driving current and the dynamic magnetic response
using phase sensitive magnetic microscopy. Our measure-
ments show that while the assumption of uniform driving
current is valid, the assumption of uniform magnetic re-
sponse is not.

Dynamic magnetic imaging provides a method of
characterizing the uniformity of a magnetic response
and measuring spin torques. Several techniques have
been developed to sense local magnetization dynam-
ics in micro- and nano-structures, including microfo-
cused Brillouin light scattering (BLS)14–17, ferromag-
netic resonance force microscopy (FMRFM) dynamics
imaging18–21, time-resolved magneto-optical Kerr effect
(MOKE) microscopy22,23, and x-ray magnetic circu-
lar dichroism (XMCD)24–26. Imaging of phase-resolved
propagating spin-waves has been demonstrated using
BLS-based technique27. Additionally, an optical tech-
nique based on polar MOKE for measuring a dc-driven
spin-torque vector was recently introduced28,29. How-
ever, very few phase-sensitive imaging techniques provide
a full set of information — a quantitative image of both
drive and magnetic response up to gigahertz frequencies.

In this work, we use time-resolved anomalous Nernst

effect (TRANE) microscopy30,31 to quantify spin Hall
efficiency by detecting local ferromagnetic resonance
(FMR) precession phase in spin Hall multilayers. By
imaging the amplitude and phase of the precessing mag-
netization in relation to the driving current, we find that
the driving field direction in a sample with strong spin
torque is different from that in a sample where the spin
torque is blocked with a 2 nm thick Hf spacer. More
importantly, we demonstrate that even under a uniform
driving current, the FMR phase has a large spatial varia-
tion, despite the common assumption of quasi-uniformity
that is widely applied to the analysis of electrical FMR
measurements. In particular, we analyze the conse-
quences of spatial variations in precession phase in the
context of device-level measurements such as ST-FMR.
We show that for the samples studied in this work, ST-
FMR measurements of the spin Hall efficiency has a siz-
able systematic error.

II. METHODS

A. Measurement technique

To simultaneously probe the local magnetic orienta-
tion and the rf driving current, we focus 3 ps laser pulses
from a Ti:Sapphire laser on the the sample, as illustrated
in Fig. 1(a). The vertical component of the transient
thermal gradient that is induced by local laser heating
generates a voltage pulse corresponding to the magneti-
zation projection in y direction, through the anomalous
Nernst effect (ANE)32–34. To excite FMR in our samples,
we inject a radio-frequency current Irf into the sample,
through a circulator, using an arbitrary waveform gener-
ator with a fixed frequency of 5.7 GHz. The driving cur-
rent has a controllable phase, and it is frequency-locked
to the stroboscopic repetition rate of the laser pulses,
thus enabling measurement of the FMR with a selectable
relative phase between the driving current phase and the
probe time. Additionally, the increase in the local resis-
tivity due to transient heating produces a voltage corre-
sponding to the stroboscopic time-slice of Irf , enabling us
to image the local driving current amplitude and phase31.
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FIG. 1: (a) Schematics of the measurement principle for the
time-resolved anomalous Nernst effect (TRANE) microscopy.
(b) Example of a ferromagnetic resonance (FMR) spectrum
using field modulation. Images measured at a fixed field of
208 G: (c) field modulated FMR signal, (d) rf current with
chopping signal and (e) laser reflectivity.

For materials with a large longitudinal spin Seebeck effect
(LSSE)35, the vertical thermal gradient will also generate
a voltage signal proportional to my, if the ferromagnetic
layer is interfaced with a spin Hall material (like Pt) be-
cause of the inverse spin Hall effect. We point out that
although LSSE is indistinguishable from ANE, the pres-
ence of LSSE will not affect our results and conclusions.

To perform FMR measurements, an external field is
applied along the length of the sample (along x̂). The
in-plane magnetization component, my, is recorded as
a function of applied field. To establish the phase of

FMR precession, we fit the signal to A(dχ′(H)
dH cosϕFMR +

dχ′′

dH sinϕFMR), where χ′ and χ′′ are the real and imag-
inary dynamic susceptibility functions, A is the local
FMR amplitude, and ϕFMR is the FMR phase at reso-
nance. Fig. 1 (b) shows an example of an FMR spec-
trum with ϕFMR = −57◦ ± 4◦. With a fixed magnetic
field, we can simultaneously image the FMR signal, the
rf current signal, and the laser reflectivity (Figs. 1 (c)
- (e), respectively). A more detailed description of the
TRANE technique can be found in prior work31.

B. Samples

The samples were dc sputtered on the thermally con-
ductive sapphire substrates and subsequently patterned
into a 5 µm× 12 µm bar geometry using photolithogra-
phy. For this study, we fabricate samples with a stack
structure of Fe60Co20B20(4 nm)/Hf(tHf)/Pt(4 nm). We
use two hafnium thicknesses, tHf=0.3 nm and tHf=2 nm.
The 0.3 nm Hf samples, which we will simply refer to
as the “spin torque samples”, present a reasonably large
spin torque owing to the spin Hall effect, while maintain-
ing a low damping parameter. From a previous study, a
thin Hf spacer layer (near 0.5 nm) is helpful to enhance
the spin Hall effect efficiency36. In contrast, the samples

with 2 nm thick Hf, or the “non spin torque samples”,
have a minimal spin torque. Since the thickness of the Hf
spacer already exceeds the spin diffusion length of 1.5 nm
in Hf12, the Hf layer blocks the spin current flowing from
the Pt layer. The spin Hall efficiencies of these two sets
of samples are also confirmed with ST-FMR measure-
ments, summarized in Table I. As discussed later, we use
the non spin torque sample to establish the local driving
field angle in the spin Hall sample via precesion phase
measurements.

III. RESULTS AND DISCUSSIONS

A. FMR phase and driving field angle

First we analyze the effective driving field angle with
respect to the sample plane, θ, from measurements of the
FMR precession phase. In general, the FMR phase ϕFMR

simply follows the current phase ϕrf and the driving field
angle θ. When on resonance, ϕ±FMR = ±(ϕrf + θ±) − 90◦

with intersection coordinates (ϕint
rf , ϕ

int
FMR) = (−(θ+ +

θ−)/2, (θ+ − θ−)/2 − 90◦). The superscripts “+” and
“−” denote the positive and negative field directions re-
spectively.

We note that there are two torques contributing to
the effective driving field: Oersted torque and the spin
torque (anti-damping like)46. In order to explain the
physical meanings of the intersection (ϕint

rf , ϕint
FMR), we

first discuss the different symmetries between the Oer-
sted driving field and spin torque driving field. As il-

lustrated in Figs. 2 (a) and (b), the Oersted field ĥOe

does not change sign when the magnetization reverses,

while the spin torque driving field ĥST = m̂ × σ̂ does.

Because of this difference in symmetry between ĥOe and

ĥST, the two coordinates (ϕint
rf , ϕint

FMR) have different phys-
ical interpretations. −ϕint

rf is the averaged effective field
angle θeff = (θ+ + θ−)/2, whereas ϕint

FMR is determined
by the difference between θ+ and θ−, which is sensi-
tive to the Oersted field orientation. In the Supplemen-

tary Information37 we show that ϕint
rf ≈ −hST/h

‖
Oe and

ϕint
FMR ≈ h⊥Oe/h

‖
Oe−90◦, under the assumption of hST/h

‖
Oe,

h⊥Oe/h
‖
Oe � 1 (h⊥Oe and h

‖
Oe are the out-of-plane and in-

plane components of the Oersted field, respectively).
We only focus on the FMR precession mode that is

excited with direct electrical excitation by the spin Hall
effect in concert with the Oersted field, consistent with
the method used in electrical techniques. Figs. 2 (c) and
(d) show the phase dependent rf current and FMR sig-
nals, measured at the center of the channel. To investi-
gate the spatial dependence of the phase, we repeat the
measurement in Fig. 2 (d) for the top and bottom edges
of the channel. The points of intersection (ϕint

rf , ϕ
int
FMR) for

different positions in the spin torque sample are plotted
in Fig. 2 (e). We also include the intersection measured
at the center of the non spin torque sample (2 nm Hf
spacer) as reference. In the absence of the spin transfer
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FIG. 2: Diagrams of spin torque field hST and Oersted field
hOe for (a) positive and (b) negative applied fields. The
charge current is set to the positive (+x̂) for both cases. Nor-
malized current signal (c) and FMR phase (d) as functions of
rf current phase, measured at the center of the channel. (e)
The points of intersection measured at the top edge, center
and bottom edge of the channel. The intersection measured
at the center of a non spin torque sample is also included
(hollow square) in (e).

torque, only Oersted field is responsible for the effective
driving field, and we expect it to be nearly in-plane at
the center of the channel. When the spin torque is turned
on, given the stack sequence and the positive spin Hall

angle for platinum, we expect ĥST ‖ +ẑ. As a result, the
spin torque tilts θeff out of the sample plane, towards the
+ẑ direction. As the driving field angle increases, ϕint

rf
will decrease, in agreement with Fig. 2 (e).

B. Quantification of spin Hall efficiency via phase
measurements

Now we quantify spin Hall efficiency by measuring local
FMR phases in the middle of the channel for each sam-
ple. Because the FMR phase and current phase do not
share an absolute reference37, we use the non spin torque
sample to define the zero current phase, by assuming that
the non spin torque sample has an in-plane driving field
at the channel center [i.e. ϕint

rf = 0, see the green point in
Fig. 2 (e)]. We also assume that the temporal profiles of
both the temperature and thermal gradient remain the
same between the two samples, since they have nearly
identical structures47. Finally, using the FMR phase of
the non spin torque sample, we obtain a driving field an-
gle of θ0

eff = 10.1◦ ± 4.2◦ at the center of the spin torque
sample, corresponding to a (Js/Jc)

0 = 0.048±0.020. The
comparisons between ST-FMR electrical measurements
and FMR phase measurements are shown in Table I.

Another important feature of the data is the position

Amplitude (�V)��FMR (deg)

5 �m

(b)(a)

FIG. 3: By fixing ϕFMR = −24◦ and using 6 FMR images at
various applied fields, we can decompose (a) the relative FMR
phase variation and (b) the FMR amplitude.

dependent FMR phase for the spin torque sample. As
shown in Fig. 2 (e), ϕint

rf near either the top or bottom
edge is less than that measured at the center, indicat-
ing a larger θeff at the edges. However ϕint

FMR near either
the top or bottom edge shifts towards opposite directions
with respect to the center, suggesting a gradual change

in h⊥Oe/h
‖
Oe. Furthermore, h⊥Oe is expected to be positive

at the top edge and negative at the bottom edge, which is
consistent with the vertical sequence of the three points
in Fig. 2 (e).

C. FMR phase imaging

Next we demonstrate an approach to image the FMR
phase. Instead of recording the FMR spectrum at each
location, we combine multiple FMR images to calculate
the phase variation. In this example, we fix the rf cur-
rent phase corresponding to a FMR phase of −24◦ at the
channel center. We then combine 6 FMR images at var-
ious applied fields (from 185 G to 215 G), to reconstruct
both phase and amplitude images, shown in Fig. 3 (a) and
(b) respectively. The main feature of the phase image is
that the phase is quasi-uniform near the center, and it
increases near the edges, in quantitative agreement with
data in Fig. 2(e) [also see Fig. S1 (a) in Supplemental In-
formation]. The phase variation is more prominent along
the y-direction than that in the x-direction. In contrast,
the FMR amplitude is large near the center and decreases
towards either edge, as expected.

Next we speculate on the origin of the phase varia-
tion, then we evaluate its influence on global electrical
measurements. We point out the precession phase vari-
ation is not a result of a nonuniform driving current.
Instead, the effective driving field (and thus FMR phase)
is not uniform. In a magnetic micro- or nanostructure
under a uniform applied field, the internal magnetic field
is highly nonuniform near the edges due to the demag-
netizing field38–42. Similarly, for the rectangular chan-
nel structure samples used in this study, the transverse
driving field experiences an inhomogeneous demagnetiz-

ing field. Consequently the in-plane driving field h
‖
Oe

inside the ferromagnet48 has a substantial spatial varia-
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tion, which plays an important role in the observed phase
variation. In contrast, the out-of-plane hST is uniform
across the sample given a uniform current density distri-

bution. As a result, h
‖
Oe is weaker at the channel edges

and the effective driving field close to the edges has a
larger angle than that at the center, as illustrated in the
inset of Fig. 4. We suspect that the spatial variation of
the rf driving field is determined by a number of factors,
including sample geometries, rf current uniformity, edge
properties, and magnetic anisotropy fields. Therefore the
details of the phase variations are expected to be sample
specific.

D. Evaluation of systematic correction in ST-FMR

In the following, we discuss the analysis used in ST-
FMR and then we introduce a method to evaluate the
systematic correction due to a spatially varying pre-
cession mode. The analysis of ST-FMR relies on two
assumptions: one is the uniformity of the precession
mode and the other is the uniformity of the rf cur-
rent. Under the macrospin spin approximation, a rec-
tified voltage from ST-FMR is obtained by mixing the
rf current with an oscillating magnetoresistence: Vmix ∝
θp {χ′(H) cos(ϕrf − ϕFMR) + χ′′(H) sin(ϕrf − ϕFMR)}. By
fitting the spectrum Vmix(H) to a linear combination of
the symmetric and anti-symmetric Lorentzian functions,
one obtains ϕrf − ϕFMR and thus the spin Hall efficiency
for the normal metal/ferromagnet combination.

Our results show the measured driving current is
uniform, while the assumption of uniform precession
breaks down. To understand how observed spatial varia-
tions in FMR phase influence ST-FMR measurements,
we develop a model to calculate the ST-FMR volt-
age 〈Vmix〉 that includes measured variations in preces-
sion amplitude (θp) and phase (ϕFMR). We rewrite the
averaged 〈Vmix〉 as the integral of the mixing voltage
weighted by the precession amplitude (θp) (see supple-
mental material37 for derivation):

〈Vmix〉 ∝ χ′
∫

dr θp(r) cos
[
ϕrf − ϕFMR(r)

]
+ χ′′

∫
dr θp(r) sin

[
ϕrf − ϕFMR(r)

]
. (1)

Therefore, we find the equivalent phase difference be-
tween the FMR and rf current that would be obtained
from the global measurement is:

〈ϕFMR − ϕrf〉 =

tan−1

[ ∫
dr θp(r) sin

[
ϕFMR(r)− ϕrf

]∫
dr θp(r) cos

[
ϕFMR(r)− ϕrf

]] (2)

We can substitute ϕ0
FMR + δϕFMR(r) for ϕFMR in Eq. 2 and

rewrite to obtain 〈ϕFMR − ϕrf〉 = ϕ0
FMR − ϕrf + ∆. The

phase correction ∆ that is determined only by the spatial
varying component of the FMR phase variation δϕFMR(r)
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FIG. 4: Top inset: driving field diagrams at various locations

of the channel, showing a uniform hST and a nonuniform h
‖
Oe.

Spatial distributions of (a) the normalized precession ampli-
tude and (b) effective driving field angle. The blue curves in
(a) and (b) are the polynomial fits of the data (gray points).
The red line in (b) is the resultant driving field angle that
would be obtained from ST-FMR, using Eq. 2. ∆ is the phase
correction discussed in the text.

and the precession amplitude θp(r), and is independent
of the overall offset ϕ0

FMR.

To numerically evaluate the correction resulting from
the phase nonuniformity, we use the polynomial fits of the
precession amplitude θp(y) and driving field angle θeff(y)
to mimic the experimental results, plotted in Fig. 4. For
simplicity we assume both the phase and amplitude of
the precession are uniform in the x direction and we
only consider the spatial variation along the y direction.
We get an “averaged” value of the effective driving field,
〈θeff〉 = θ0

eff + ∆, shown as the red line in Fig. 4 (b). In
this example, the phase correction ∆ = 7.5◦ ± 1.8◦.

Table I shows the calculated 〈Js/Jc〉, which accounts
for the large spatially varying phase in the spin torque
sample, and (Js/Jc)ST-FMR measured directly from ST-
FMR. The fact that 〈Js/Jc〉 and (Js/Jc)ST-FMR are consis-
tent validates the previously described method of evalu-
ating ST-FMR result using measured precession profiles
and Eq. 2. We note that there is a substantial discrep-
ancy between (Js/Jc)

0 measured at the channel center
and the ST-FMR results. The local value of (Js/Jc)

0

reflects a more “genuine” spin Hall efficiency since it is
least affected by the effect of spatial variation. Thus,
we conclude that the ST-FMR technique does not nec-
essarily reflect the phase value (and thus spin Hall effi-
ciency) in the middle of the sample, rather it provides a
spatially averaged phase. Although electrical techniques
have a superior sensitivity, we show that for our 5 µm
wide channels it is essential to include a correction for
spatial variations of both precession phase and ampli-
tude to correctly quantify the spin Hall efficiency from
electrical measurements.
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TABLE I: The spin Hall efficiency, (Js/Jc)ST-FMR, measured
with ST-FMR and calculated from the spatial variation of the
FMR phase. θ0

eff is the angle of effective driving field at the
center, and ∆ is the phase correction due to the phase vari-
ation. (Js/Jc)

0 is the ratio only at the center, corresponding
to θ0

eff ; while 〈Js/Jc〉 is integrated ratio with the phase vari-
ation included. The uncertainty of ∆ is calculated using the
standard errors of the polynomial fits in Fig. 4.

Sample
spin torque non spin torque
(0.3 nm Hf) (2 nm Hf)

ST-FMR (Js/Jc)ST-FMR = 0.076±0.002 0.010±0.003

P
h
a
se

va
r.

in
cl

u
d
ed

θ0
eff = 10.1◦ ± 4.2◦ assume: 0
∆ = 7.5◦ ± 1.8◦ 3.4◦ ± 1.9◦

(Js/Jc)
0 = 0.048± 0.020 assume: 0

〈Js/Jc〉 = 0.086± 0.031 0.015± 0.008

IV. CONCLUSIONS

In summary, we have studied the FMR phase in uni-
form width spin hall multilayers. Using TRANE mi-
croscopy, we have measured the amplitude and phase of
both FMR precession and rf driving current, which en-
ables us to determine the angle of driving field vector.
In a sample with substantial spin torque, we found that
the driving field points to be around 10◦ out of the sam-
ple plane at the center. More importantly, we observed a

substantial precession phase variation across the width of
the channel. As a result, for the 5 µm wide samples stud-
ied, the spatially integrated spin Hall efficiency to nearly
double compared to the efficiency in the middle of the
channel. Therefore, although electrical measurements are
very effective techniques to quantify the spin Hall effect,
we conclude the spatial variations of both precession am-
plitude and phase can play an important role in the dy-
namics of confined magnetic structures and should not be
overlooked. Finally, we have shown that phase-sensitive
imagining is valuable for quantitative studies of the spin
Hall effect, and it also provides a general approach for
studying precession phase shift induced by the spin-orbit
torques recently discussed for various systems43–45.
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