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In most iron-based superconductors, the transition to the magnetically ordered state is closely
linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However,
recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-
based superconductors. This novel magnetic ground state can be understood as a double-Q spin
density wave characterized by two order parameters M1 and M2 related to each of the two Q
vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-
vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer
spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic
configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-
energy itinerant models do support a transition from single-Q to double-Q magnetic order, but
with nearly-degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions
of these low-energy models including additional electronic interactions tip the balance in favor of
the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this
paper, we revisit the phase diagram of magnetic ground states of low-energy multi-band models in
the presence of weak disorder. We show that impurity scattering not only promotes the transition
from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex
crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in
the presence of disorder supports the experimental finding that the splitting between the structural
and stripe-magnetic transition is enhanced by disorder.

I. INTRODUCTION

One of the common features of iron-based supercon-
ductors (FeSC) is the emergence of superconductivity in
close proximity to a magnetic instability.1,2 Even more
intriguingly, superconductivity coexists with magnetism
in some of the iron-based compounds.3,4 Thus it is im-
perative to study the nature of the magnetic order in
the FeSC compounds in order to better understand the
superconducting state in these materials.

Most of the undoped compounds of the FeSC family ex-
hibit magnetic stripe order with the spins on the iron sites
lying in the planes and being aligned ferromagnetically
along one direction, and antiferromagnetically along the
other. In addition to the continuous O(3) spin-rotational
symmetry broken below the magnetic transition temper-
ature TN, this stripe-magnetic (SM) state also breaks an
additional Z2 Ising-like symmetry since the ordering vec-
tor of the spin density wave (SDW) S(r) = MeiQ·r is
either Q = (0, π) or Q = (π, 0). This Z2 (or, equiv-
alently, C2) symmetry breaking can occur at tempera-
tures Ts > TN and entails a structural transition from
tetragonal (C4) to orthorhombic (C2). Furthermore, if
the transitions are split, this allows for an intermediate
phase with broken Z2 symmetry but no magnetic long-
range order. This intermediate phase is dubbed nematic
order5–7. Interestingly, the splitting ∆T = Ts − TN be-
tween the two transitions, and the stabilization of an
intermediate nematic phase, depends on disorder.8–10.

Uncovering the origin of the nematic phase – either a
spin-driven or an orbital-driven mechanism – may also
elucidate the mechanism for superconductivity.

Recently, C4-magnetic phases have been observed
in the hole-doped compounds Ba(Fe1−xMnx)2As2,11

Ba1−xNaxFe2As2,12,13, Ba1−xKxFe2As2,14–17 and
Sr1−xKxFe2As2

18, suggesting that such phases might
be a general feature in the phase diagram of hole-
doped FeSC19. The magnetic Bragg peaks of these
C4-magnetic phases occur at the same momenta
Q1 = (π, 0) and Q2 = (0, π) as in the stripe-ordered
state and, consequently, such a state can be un-
derstood as the superposition of two spin density
waves S(r) = M1eiQ1·r + M2eiQ2·r, i. e. a double-Q
SDW, as illustrated in Fig. 1. As in the case of stripe
antiferromagnetism, which is preceded by nematic
order, these double-Q magnetic states can in principle
be melted in two stages as well, passing through an
intermediate state of vestigial charge or chiral order.20

The existence of double-Q magnetic states as addi-
tional ground states for the FeSC has also been es-
tablished by different theoretical approaches,21–29 all of
which suggest the two possible double-Q ground states
visualized in Fig. 1 in addition to the single-Q stripe-
magnetic order. Fig. 1(a) shows the charge-spin density
wave (CSDW) that arises from aligning M1 and M2 ei-
ther parallel or antiparallel. This results in a nonuni-
form magnetization with vanishing average moment at
the even lattice sites and staggered-like order at the odd
lattice sites, or vice versa. This magnetic state is ac-
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FIG. 1. Illustration of the two double-Q magnetically ordered states (upper panels) as a superposition of two single-Q stripe-
magnetic states (lower panels). (a) Aligning the order parameters M1 = ±M2 (anti)parallel yields a charge-spin density wave.
This order is favorable if g < |w| and w < 0. (b) Aligning the order parameters M1 ⊥M2 perpendicular to each other leads to
the formation of a spin-vortex crystal. This state is favorable if g < 0 and w > 0. Otherwise, single-Q stripe order is favored.

companied by charge density wave order since it couples
naturally to a modulation of the density:20 The charge
couples to the square of the magnetization, thus the mag-
netic sites acquire a charge that is different from the non-
magnetic sites. If M1 and M2 are orthogonal, the result-
ing spin-vortex crystal (SVC) is characterized by a non-
collinear magnetization that is illustrated in Fig. 1(b).

All three magnetic states, the stripe-magnetic and the
two double-Q magnetic states, can be rationalized in
terms of a Ginzburg-Landau expansion of the free energy
in terms of the two magnetic order parameters Mi

20,26,30,

F [Mi] = a
(
M2

1 + M2
2

)
+
u

2

(
M2

1 + M2
2

)2
− g

2

(
M2

1 −M2
2

)2
+ 2w (M1 ·M2)

2
. (1)

Depending on the quartic coefficients u, g, and w, the
corresponding energy is minimized by one of the three
magnetic ground states described above, provided that
u > max(0, g,−w).

For g > max(0,−w), the stripe-ordered C2-magnetic
phase is the magnetic ground state of systems described
by the free energy (1), and it is accompanied by a struc-
tural transition from tetragonal to orthorhombic. This
scenario is supported by itinerant as well as by localized
approaches to magnetism in FeSC, and it is experimen-
tally well established that stripe-SDW is the magnetic
ground state of many compounds of this family of mate-
rials. If, on the other hand, g < max(0,−w), one of the
two above described possibilities of C4-magnetic phases
is realized, depending on whether w > 0 (leading to a

spin vortex crystal) or w < 0 (implying a charge-spin
density wave). Note that further away from the mag-
netic phase transition, higher-order terms that favor the
stripe-magnetic state might become relevant. Indeed, the
experimentally observed re-entrance of the C2-magnetic
phase upon lowering the temperature can be explained in
terms of a Ginzburg-Landau expansion of the clean three-
band model if sixth-order terms are taken into account.28

Experimentally, several probes18,31,32 established that
the magnetic moments in the C4-magnetic phase ob-
served in hole-doped FeSC are aligned parallel to the
c axis, i. e. pointing out of plane, and that the magnetic
moment vanishes at every second lattice site while it is
doubled at the others. These features uniquely identify
this C4-magnetic phase as a realization of a charge-spin
density wave, corresponding to w < 0. Therefore, it is
important to elucidate theoretically which generic fea-
tures of low-energy models yield w < 0 and g < |w|.

Localized approaches based on the J1-J2 Heisenberg
model favor the single-Q stripe-ordered state,33 whereas
itinerant approaches allow for both signs of g. Focus-
ing on the three-band itinerant low-energy model previ-
ously employed in the literature19,22,26, one finds a sign-
change from g > 0 near perfect nesting to g < 0 away
from perfect nesting, implying a transition from single-
Q to a double-Q state. This sign change coincides with
a decrease of the magnitude of the coupling constant,28

indicating that the overall weakening of magnetic order
allows for the C4 phase. However, due to phase space
restrictions, this same model generically gives w = 0 (for
details, see Sect. II A), leaving the noncollinear SVC and
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FIG. 2. Evolution of the phase diagrams of the possible magnetic ground states of our three-band minimal model of iron-based
superconductors upon increase of the scattering rate. Here, we used Γinter

e−e = 0.1Γintra
h , and the phase diagrams are obtained

in the limit δµ � 2πT and δm � 2πT . The regime of single-Q stripe order (SM) is shown in green, the double-Q spin-vortex
crystal (SVC) order is indicated by blue, and the yellow region represents the double-Q charge-spin density wave (CSDW). In
the clean regime, where all scattering rates are zero, SVC and CSDW order are degenerate and we indicated this region with
w = 0 in red. The crosses mark the points in the phase diagram at which we plotted g and w as a function of scattering rate
in Fig. 5 and Fig. 7, respectively.

the nonuniform CSDW order degenerate [see Fig. 2(a)].
Extensions of this model tend to favor w > 0, in dis-
agreement with the recent experiments – this is indeed
obtained by including residual electronic interactions19,22

or, as we will show below, an incipient fourth pocket.
We note that although Ref. 30 proposed that the prox-
imity to a Néel-like state can favor w < 0, this scenario
is only applicable to Ba(Fe1−xMnx)2As2, since the com-
pound BaMn2As2 displays Néel order – which is not the
case for Ba1−xNaxFe2As2 or Ba1−xKxFe2As2. Note also
that Ref. 34 showed that the spin-orbit coupling leads to
anisotropic quadratic terms in the free energy (1) that
favor the CSDW order, even though w = 0. This how-
ever only works near the magnetic transition, since at
low temperatures the quartic terms are the ones that de-
termine the ground state.

Therefore, understanding which additional features
can lead to w < 0 is essential to shed light on the mech-
anisms behind the formation of the C4 phase. Since
charged potential impurities can locally stabilize charge-
spin density wave order,21,29 one promising approach is
the inclusion of doping effects beyond a rigid-band model.
In this paper, we consider the effect of impurity scatter-
ing on the quartic coupling constants g and w of the itin-
erant minimal three-band model. We find that, in the
regime where g > 0 in the clean system, the inclusion
of disorder suppresses g, and may even change its sign.
One of the consequences of this result is that the split-
ting ∆T = Ts − TN between the structural and magnetic
transitions to the stripe-ordered state may, depending on
the vicinity of the system to a tricritical point, enhance
upon increasing disorder, in agreement with recent ex-
periments on BaFe2As2 subject to electron irradiation9.

Furthermore, disorder itself may cause a transition from
single-Q to double-Q order near perfect nesting, as shown
in Figs. 2(b) and (c). Our most important result, how-
ever, is the fate of the vanishing coefficient w in the pres-
ence of disorder. We find that disorder generally lifts the
degeneracy between CSDW and SVC, favoring w < 0
(and therefore CSDW) near perfect nesting [Figs. 2(b)
and (c)]. Consequently, this opens the interesting possi-
bility of controlling the magnetic ground state in FeSC
with controlled disorder introduced via irradiation or re-
moved via annealing.

The paper is structured as follows. Section II intro-
duces the microscopic model including disorder, which
we use to calculate the free energy. We start by reca-
pitulating that w = 0 follows immediately from a three-
band model in Section II A, followed by the discussion of
a fourth band in Section II B which only allows for w > 0.
Consequently, we study the effect of disorder as an alter-
native route and show in Section II C that the presence
of impurities can indeed render w < 0 already within
the simpler three-band model. The nature of the mag-
netic ground state is determined by the coefficients g and
w, and their dependence on disorder is discussed in Sec-
tion III, also elucidating the disorder dependence of the
splitting between nematic and magnetic transition. Fi-
nally, we combine our results to obtain a phase diagram
of magnetic ground states in the presence of disorder,
which complements the discussion of our conclusions in
Section IV.
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II. MICROSCOPIC MODEL

We consider a minimal multi-band model22,26 for iron-
based superconductors (FeSC), consisting of two circu-
lar hole pockets centered around the Γ point and the
M point of the Fe-only Brillouin zone, i. e. around (0, 0)
and (π, π), respectively, and two elliptical electron pock-
ets centered around X and Y at Q1 = (π, 0) and
Q2 = (0, π), respectively. The pocket at the M point
however is not a generic feature of this class of materials
since it exists only in some of the iron-based compounds.
Moreover, even in the compounds in which the pocket at
the M point exists, this band is not guaranteed to cross
the Fermi level for all values of kz. Our analysis in Sec-
tion II B will show that the presence of such an incipient
hole pocket at the M point cannot explain the formation
of a charge-spin density wave and hence can be neglected
in the remainder of this paper.

The noninteracting part of the model is described by
the Hamiltonian

H0 =
∑
k,σ,λ

ελ,kc
†
λ,k,σcλ,k,σ , (2)

where the fact that the bands are centered around dif-
ferent momenta is reflected in the band index λ ∈
{h1,h2, e1, e2} where the hole bands are labeled by h1 ≡
hΓ and h2 ≡ hM , and the electron bands by e1 ≡ eX and

e2 ≡ eY . Thus c†λ,k,σ creates an electron in band λ with
spin σ, and the respective dispersions near the Fermi en-
ergy can, for simplicity, be parametrized by

εh1,k = −εk ,
εe1,k = εk − δµ + δm cos(2θ) ,

εe2,k = εk − δµ − δm cos(2θ) ,

εh2,k = −εk − EM , (3)

close to the parameter regime of perfectly nested electron
and hole bands which corresponds to EM = δµ = δm = 0.

Here, we introduced εk = k2

2m−ε0 and θ = arctan(ky/kx).
Note that changes of δµ involve changes of the chemical
potential, and therefore can be associated with doping,
with δµ = 0 denoting perfect nesting. On the other hand,
δm is a measure of the ellipticity of the electron bands.
The top of the hole band at the M point is lower in
energy than the top of the hole band at the Γ point,
i.e. EM > 0, such that it is not guaranteed to cross
the Fermi surface even if it does exist. The respective
noninteracting single-particle Green’s functions are given
by Gλ,k(νn) = (iνn − ελ,k)−1 with νn = 2πT (n + 1/2)
being a fermionic Matsubara frequency.

The four-band model of the iron-based superconduc-
tors as introduced above allows for eleven fermionic in-
teractions connecting the different parts of the Fermi sur-
face, as discussed in Ref. 35. These interactions can be
decomposed into different density-wave and pairing chan-
nels. Since in this work, we are concerned with magnetic

order in these systems, we restrict ourselves to the con-
tributions in the spin density wave channel,

Hint = −V
∑
q

∑
i,j

Sijq · S
ij
−q , (4)

where Sijq =
∑
k

∑
σ1,σ2

[
c†hi,k,σ1

σσ1,σ2
cej ,k+q,σ2

+ c†ej ,k,σ1
σσ1,σ2

chi,k+q,σ2

]
. (5)

The interaction can be decoupled by means of a Hubbard-
Stratonovich transformation upon which two magnetic
order parameters arise, M1 and M2, associated with the
two ordering vectors Q1 = (π, 0) and Q2 = (0, π), re-
spectively.

Their coupling to the electronic degrees of freedom on
the mean-field level is given by

Hint[Mi] = −
∑
k,i

Mi ·
(
c†ei,k,σ1

σσ1,σ2
ch1,k,σ2

+ h. c.
)

−
∑
k,i

Mi ·
(
c†h2,k,σ1

σσ1,σ2
ceī,k,σ2 + h. c.

)
(6)

where ī = 2, 1 if i = 1, 2. For details on the Hubbard-
Stratonovich decoupling and the further derivation of the
Ginzburg-Landau expansion, we refer to Appendix A.
In the vicinity of the magnetic phase transition, we can
integrate out the electronic degrees of freedom and derive
the free energy expansion of the system

F [Mi] =
∑
i

ai|Mi|2 +
∑
i,j

uij |Mi|2|Mj |2

+ 2w(M1 ·M2)2 , (7)

where the coefficients ai, uij and w can be calculated
from the microscopic model introduced above. Due to
the rotational symmetry connecting the electron bands,
it holds that a1 = a2, u11 = u22, and u12 = u21. The free
energy (7) can thus be brought to the form of Eq. (1)
using u ≡ u12 + u11 and g ≡ u12 − u11.

The transition temperature is determined by the
quadratic part of the free energy. Since the C2 ↔ C4

transition is associated with a tricritical point, a cor-
responding kink in the transition temperature TN is to
be expected. The nature of the magnetic ground state,
however, is solely determined by the interplay of the
quartic coefficients g and w in this expansion as long
as u > max(0, g,−w). Since our goal is to explain the
formation of charge-spin density waves in a low-energy
model of the FeSC, we are mainly interested in scenarios
that yield w < 0. In the remainder of this section, we
show that neglecting the incipient hole pocket atM yields
w = 0 in the clean case as a consequence of phase space
restrictions. However, including the incipient pocket in
a clean model leads to w > 0 and thus the spin-vortex
crystal would be favorable. Only the inclusion of dis-
order can yield w < 0 and thus render the nonuniform
charge-spin density wave order favorable.
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A. Clean three-band model

We start our considerations with the clean three-band
model, i. e., disregarding the second hole pocket at the
M point which is not present in all FeSC compounds.
The coefficients in the expansion of the free energy, pre-
viously defined in Ref. 26, are given by

ai =
1

4V
+ 2

∫
k

GhΓ,k(νn)Gei,k(νn) ,

u =
1

2

∫
k

G2
hΓ,k(νn)[Ge1,k(νn) +Ge2,k(νn)]2 ,

g = −1

2

∫
k

G2
hΓ,k(νn)[Ge1,k(νn)−Ge2,k(νn)]2 ,

w = 0 , (8)

where we abbreviated
∫
k
. . . ≡ T

∑
n

∫
dk

(2π)2 . . . For con-

venience, we write u and g here in the symmetrized
form, namely u = 1

2 (u11 + u12 + u21 + u22) and g =

− 1
2 (u11 − u12 − u21 + u22). The coefficient w vanishes

in the clean model as a consequence of the trace in spin
space34: The most generic quartic diagram [see Fig. 3(a)]
is proportional to

tr

[∑
ijkl

M
(i)
λ1
σiM

(j)
λ2
σjM

(k)
λ3
σkM

(l)
λ4
σl

]
= 2
[
(Mλ1 ·Mλ2)(Mλ3 ·Mλ4)

− (Mλ1 ·Mλ3)(Mλ2 ·Mλ4)

+ (Mλ1
·Mλ4

)(Mλ2
·Mλ3

)
]
. (9)

Within the minimal model, introduced in Eqs. (2) and
(6), and with the additional simplification of neglecting
the pocket at the M point, the absence of scattering as
well as interactions between the electron bands require
that either λ1 = λ2 and λ3 = λ4, or λ1 = λ4 and λ2 = λ3

holds, as can be seen from Fig. 3(a). Both conditions
result in tr[(Mλ1

· σ)(Mλ2
· σ)(Mλ3

· σ)(Mλ4
· σ)] =

2|Mλ1
|2|Mλ3

|2 and thus imply w = 0 in the clean case.
On the contrary, the inclusion of interband scattering or
interactions between the two electron pockets at Q1 and
Q2 allows for contributions where λ1 = λ3 and λ2 = λ4,
rendering w finite since then tr[(Mλ1

·σ)(Mλ2
·σ)(Mλ3

·
σ)(Mλ4

· σ)] = 2
[
2(Mλ1

·Mλ2
)− |Mλ1

|2|Mλ2
|2
]
.

B. Incipient hole pocket at the M point

The inclusion of an incipient hole pocket at (π, π) al-
lows for contributions that render w finite in an analo-
gous manner. The contribution to the planar coupling w
that survives the spin trace as a consequence of the pres-
ence of the second hole pocket is depicted diagrammat-
ically in Fig. 3(b). We consider the simplest case where
δµ = δm = 0, i. e., perfect nesting of the hole band at the
Γ point and the two electron bands, since this yields a

finite value for the planar coupling,

w ≈

{
7ρFζ(3)
2π2T 2 ≈ 0.43 ρF

T 2 , EM � T ,
4ρF

E2
M

, EM � T ,
(10)

where ζ(z) is the Riemann zeta function, and we assumed
the density of states at the Fermi level to be given by a
constant ρF in all bands. For more details on the calcu-
lation of the coefficients, we refer to Appendix B.

Hence we find that the inclusion of the second hole
pocket indeed lifts the degeneracy of the two double-Q
magnetically ordered states. However, it can only ac-
count for the formation of a spin-vortex crystal since
w > 0 always. Furthermore, if the pocket at M is shifted
to energies far below the Fermi level, we reproduce the re-
sults of the previously discussed three-band model since
the coefficient w vanishes in the limit EM → ∞, which
is the relevant limit for many of the FeSC compounds.

A positive planar coupling w > 0 has also been ob-
tained in previous studies of other extensions of the
clean three-band model such as the perturbative inclu-
sion of additional interactions.19,22 This suggests a dif-
ferent route to w < 0 is needed in order to explain the
formation of the collinear CSDW state within this low-
energy model. Consequently, in the remainder of this pa-
per, we investigate the effect of disorder on the magnetic
ground state. Furthermore, we neglect the hole pocket at
the M point since it is not a generic feature of the FeSC
family and its inclusion is not able to explain why the
nonuniform CSDW is favored over the noncollinear SVC
in the hole-doped compounds.

C. Impurity scattering

Impurity scattering will affect both the magnetic tran-
sition temperature, determined by the vanishing of a, and
the nature of the magnetic ground state, determined by g
and w. Hereafter, we focus on the latter effect – the for-
mer gives rise to a suppression of the magnetic transition

FIG. 3. Quartic diagrams in the absence of disorder. (a)
Sketch of a generic quartic diagram before performing the
spin trace: Each vertex couples the hole band to one of the
electron bands, and the dashed lines indicate that scattering
or additional interactions could alter the diagram. (b) Con-
tribution to the planar coupling constant w if the incipient
hole pocket at M is taken into account.
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temperature with disorder, as shown elsewhere10,36. In
the particle-hole symmetric case (perfect nesting), where
δµ = δm = 0, the nematic coupling constant g vanishes.
Finite ellipticity δm 6= 0, however, causes g to be finite.
The effect of doping can then partially be accounted for
by a finite value of the chemical potential, i. e., δµ 6= 0.

Meanwhile, doping also introduces disorder, which has
a different effect on the electronic structure than the rigid
band shift assumed by changing the chemical potential.37

For instance, it has been shown that impurity scattering
can locally stabilize charge-spin density wave order,29

thus suggesting that the inclusion of disorder for the
itinerant electrons participating in the formation of the
magnetically ordered state is an important ingredient for
the investigation of the CSDW state. Hence we consider
an arbitrary realization of nonmagnetic impurities, thus
adding the term

Hdis =
∑
λ,λ′

∑
k,k′

∑
σ

c†λ,k,σWλλ′(k,k
′)cλ′,k′,σ (11)

to the Hamiltonian. As usual, we are not interested in
quantities that depend on the microscopic disorder real-
ization, but rather in self-averaged physical observables.
Therefore, we are interested in disorder-averaged quanti-
ties where all information about the disorder is encoded
in the correlation function〈

Wλ1λ′1
(k1,k

′
1)Wλ2λ′2

(k2,k
′
2)
〉

dis
(12)

= Γλ1λ′1λ2λ′2
(k1,k

′
1,k2,k

′
2)δ(k1 + k2 − k′1 − k′2 + K)

where 〈. . .〉dis denotes the average over disorder config-
urations which restores translation invariance, and K is
a vector from the reciprocal lattice. Thus the correlator
constitutes a measure of impurity strength and is propor-
tional to the scattering rate Γ characterizing the respec-
tive scattering process. These scattering rates depend on
the impurity concentration as well as on the strength of
the disorder potential itself. In the diagrams contribut-
ing to the coefficients of the Ginzburg-Landau expansion
in the presence of disorder, discussed in the subsequent
chapters, this impurity correlation function is depicted
as a dashed line.

In the remainder, we concentrate on the simplest type
of impurities and thus assume the disorder to be suffi-
ciently smooth on the individual sheets of the Fermi sur-
face such that the momentum dependence of the scatter-
ing rates can be neglected for momenta from the same
pocket of the Fermi surface. Then, scattering within one
band or between two bands is characterized by constant
scattering rates Γintra

e , Γintra
h or Γinter

e−e , Γinter
e−h , respectively.

Here we assume that both electron bands are affected
in the same way by impurities, and thus the respective
scattering rates are equal – consistent with the tetrago-
nal symmetry of the system. Note that in a multiband
model, the effect of impurity scattering can have subtle
consequences38 which we avoid here by requiring that all
scattering processes be characterized by real numbers,
i. e., the impurities do not break time-reversal invariance

locally. Furthermore, we assume the impurity potential
to be sufficiently weak such that single-particle interfer-
ence effects can be neglected. In this case, calculating
the self-energy within the Born approximation is appro-
priate, resulting in

Gλ,k(νn) =
1

iνn − ελ,k + i
2τλ

sgn(νn)
(13)

for the propagator in band λ in the presence of impurities.
Here, we introduced the elastic scattering time

τλ = (2πρFΓtotal)
−1, (14)

which is determined by the total scattering rate includ-
ing all intraband and interband scattering processes that
affect propagation of electrons in band λ.

III. RESULTS

In multiband systems, the interplay of a multitude
of different intraband and interband scattering processes
can affect physical properties. Fortunately, in the iron-
based systems, experiments as well as ab-initio calcu-
lations reveal that not all of them are equally impor-
tant.39–46 This allows us to devise models of impurity
scattering that concentrate on the dominant scattering
processes relevant for the calculation of g, u, and w. Such
a simplification allows us to draw conclusions about the
dominant effects that are to be expected due to impu-
rity scattering, but of course restricts exact quantitative
predictions.

For many aspects, it is sufficient to discriminate
between intraband and interband scattering processes,
and thus it is important to note that interband scat-
tering (which for example causes pair breaking in
the superconducting state) is much weaker than the
dominant intraband scattering process affecting trans-
port properties.39–41 Furthermore, as demonstrated
by transport measurements,42,43 scanning tunneling
microscopy,44 and first-principles density functional the-
ory calculations,45,46 the intraband scattering rate in the
hole band exceeds the intraband scattering rate in the
electron bands. For these reasons, we consider the fol-
lowing hierarchy of scattering rates in the remainder of
the paper:

Γinter
e−e ,Γ

inter
e−h ,Γ

intra
e � Γintra

h . (15)

The main advantage of the minimal three-band model
of Section II A is that it allows for a well-defined per-
turbative expansion near the perfect-nesting limit (δµ =
δm = 0) and the clean limit (Γi = 0), since in this case
g = w = 0, and the degeneracy of the magnetic ground
state is maximal (i.e. the stripe-magnetic, CSDW, and
SVC phases are all degenerate). Therefore, one can assess
qualitatively how different types of perturbations favor
distinct ground states.
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A. Effect of disorder on the nematic coupling g

We first analyze how disorder affects g, since this cou-
pling constant determines whether the system condenses
in a single-Q or double-Q state. While g = 0 at perfect
nesting, the nematic coupling constant takes a finite value
within the three-band model as a consequence of the el-
lipticity of the electron bands; although orbital dressing
effects can make it nonzero even at perfect nesting47. Fo-
cusing on the contribution from the dominant scattering
rate Γintra

h , see Eq. (15), and expanding near perfect nest-
ing, δµ, δm � 2πT , we find

g = − ρFδ
2
m

1536π4T 4

[
ψ4

(
1

2
+
ρFΓintra

h

4T

)

−
δ2
µ

32π2T 2
ψ6

(
1

2
+
ρFΓintra

h

4T

)]
,

(16)

where ψn(z) is the nth derivative of the digamma func-
tion. For more details on how to evaluate the coefficients,

see Appendix B. The contributing diagrams G(1)
i and G(2)

i
are depicted in Fig. 4(a) and (b), and correspond to the
disorder-induced Green’s function renormalization and to
the vertex correction, respectively. Here, we used that
u11 = u22 and u12 = u21 holds for the quartic coefficients
in the expansion (7) also in the presence of disorder, and

that G(2)
2 − G(2)

1 ∝
∫

dθ
2π cos(2θ) = 0.

In the clean limit where Γintra
h = 0, g ∝ δ2

m changes sign
from positive to negative for sufficiently large δµ/(2πT ),
as shown in Fig. 2(a) and in agreement with previous
results19. This describes the transition from a single-
Q to a double-Q magnetic ground state as the carrier

FIG. 4. Leading-order diagrams contributing to the quartic
coefficients that determine the magnetic ground state. Dou-
ble lines indicate that the respective propagators acquire a
finite lifetime due to impurity scattering whereas single lines
are used for propagators in bands that, within our model,
are not affected by impurity scattering. Additional scattering
processes in (b) and (c) are indicated by a dashed line corre-
sponding to the scattering rates Γintra

h and Γinter
e−e , respectively.

(a) and (b) G(1)i and G(2)i (i ∈ {1, 2}) are the contributions to
g (as well as to u) in the presence of intraband scattering in
the hole band which is the dominant scattering mechanism in
FeSC. (c) W is the contribution to w which is finite owing to
interband scattering between the two electron bands, and in
the presence of the dominant intraband scattering in the hole
band.

FIG. 5. Nematic coupling constant g in the presence intra-
band scattering in the hole band, characterized by the scat-
tering rate Γintra

h . We chose δµ/(2πT ) = δm/(2πT ) = 0.2
(blue, dotted line) as an example of small ellipticity and de-
tuning which guarantees w < 0 and g > 0, and δµ/(2πT ) =
δm/(2πT ) = 0.35 (green, dashed line) as an example where
disorder can tune g and w to be either positive or negative.
The red line represents the result at particle-hole symmetry,
δµ/(2πT ) = δm/(2πT ) = 0.

concentration increases. We note that the resulting coef-
ficient is dependent on δ2

µ rather than on δµ, thus yield-
ing the same results for electron and hole doping. How-
ever, a more realistic band structure indeed results in an
electron-hole asymmetry of the coupling constant g, see
Ref. 48, in accordance with experiments where the C4-
magnetic phase has only been observed for hole-doped
compounds so far.

The resulting coupling constant g as a function of the
scattering rate Γintra

h , plotted for different values of de-
tuning δµ and ellipticity δm, is shown in Fig. 5. In the
particle-hole symmetric case, g = 0 as a consequence of
δm = 0, regardless of whether the system is in the clean
or dirty limit. Interestingly, if g is positive (negative) in
the clean limit, the addition of disorder suppresses g and
can even induce a sign-change. Therefore, the transition
from a single-Q to a double-Q state can be controlled
not only by carrier concentration, but also by the disor-
der potential.

Even when the suppression of g by disorder does not
induce a sign-change, it has important consequences for
the phase diagram. In particular, as shown in Ref. 26, the
splitting ∆T = Ts − TN between the nematic/structural
and the magnetic transitions is controlled by the inverse
dimensionless nematic coupling constant u/g and the di-
mensionality d. In particular, for 2 < d < 3, which
mimics an anisotropic 3D system, the two transitions
are simultaneous and first order for (u/g) < (u/g)c1 =
1/ (3− d). For (u/g)c1 < (u/g) < (u/g)c2 , the tran-
sitions are split and one of them remains first-order
whereas the other transition is second-order. In this
regime, an increase in u/g results in an enhanced splitting
∆T , whereas deep in the regime of two split second-order
phase transitions, (u/g) � (u/g)c2 = (6− d) / (6− 2d),
increasing the ratio u/g reduces the splitting ∆T . To
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compute the dimensionless parameter u/g, we compute
u analogously to the case of g,

u = − ρF

8π2T 2

[
ψ2

(1

2
+
ρFΓintra

h

4T

)
(17)

+
ρFΓintra

h

12T
ψ3

(1

2
+
ρFΓintra

h

4T

)]
(18)

+
ρF

768π4T 4
ψ4

(1

2
+
ρFΓ

4T

) [
3δ2
µ + δ2

m

]
(19)

+
ρ2

FΓintra
h

30720π4T 5
ψ5

(1

2
+
ρFΓ

4T

) [
10δ2

µ + 3δ2
m

]
(20)

in accordance with previous work.49 Near particle-hole
symmetry, where δµ/(2πT ) and δm/(2πT ) are sufficiently
small, and the magnetic ground state is the stripe one,
g/u decreases monotonically with increasing scattering
rate as shown in Fig. 6(a). Thus, if the system initially is
near the regime of first-order simultaneous transitions, as
it is the case in undoped BaFe2As2, the addition of dis-
order is expected to cause (or enhance) a splitting in the
magnetic and structural transitions. This agrees with re-
cent experiments in BaFe2As2, which observed enhanced
splitting of the transitions upon electron irradiation.9

This result is also consistent with the theoretical finding
of Ref. 10 that disorder stabilizes the nematic phase. We
note, however, that the dependence of the ratio g/u on
disorder is nonuniversal [see Fig. 6(b) and (c)]. In par-
ticular, further away from particle-hole symmetry, the
dependence of g/u on disorder is no longer monotonic:
g/u first increases with increasing scattering rate, and
above a critical value starts decreasing again.

B. Effect of disorder on the planar coupling w

Having established that g can become either positive or
negative in both clean and dirty systems, we now analyze
w. As discussed above and illustrated in Fig. 3(a), in
the clean three-band model w = 0 always. Following
the analysis of the generic fourth-order diagram in Fig. 3
and Eq. (9), the only scattering processes that gives rise
to a nonzero contribution to w is the one that couples
the electron pocket at Q1 and the electron pocket at
Q2, characterized by the scattering rate Γinter

e−e . For the
sake of clarity, we neglect all other interband scattering
processes since they give subleading contributions to w,
i.e. w = 0 always as long as Γinter

e−e = 0. Then, in the
presence of the dominant scattering process, intraband
scattering in the hole band and, additionally, interband
scattering between the electron bands, we find

w = −
ρ2

FΓinter
e−e

96π2T 3

[
ψ3

(1

2
+
ρF(Γintra

h + Γinter
e−e )

4T

)
−

10δ2
µ + δ2

m

320π2T 2
ψ5

(1

2
+
ρF(Γintra

h + Γinter
e−e )

4T

)]
,

(21)

FIG. 6. Dependence of the dimensionless nematic coupling
constant g/u on disorder. (a) Close to particle-hole symme-
try, g/u decreases monotonically with increasing scattering
rate. (b) and (c) With increasing distance to particle-hole
symmetry, an initial increase of the dimensionless nematic
coupling constant is found for small scattering rates, but for
stronger disorder, the ratio g/u decreases again.

where we assumed the density of states at the Fermi sur-
face to be given by a constant ρF in all three bands, and
we expanded to leading order in δµ/(2πT ) and δm/(2πT )
to obtain the results. The respective diagram denoted by
W is depicted in Fig. 4(c). Note that contributions with
more than one scattering process between electron bands
vanish upon momentum integration and thus the above
result already includes contributions up to infinite order
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FIG. 7. Planar coupling w as a function of intraband scat-
tering rate in the hole band, Γintra

h , where we set Γinter
e−e =

0.1Γintra
h . We chose δµ/(2πT ) = δm/(2πT ) = 0.2 (blue,

dotted line) as an example of small ellipticity and detun-
ing which guarantees w < 0 and g > 0, and δµ/(2πT ) =
δm/(2πT ) = 0.35 (green, dashed line) as an example where
disorder can tune w and g to be either positive or negative.
The red line represents the result at particle-hole symmetry,
δµ/(2πT ) = δm/(2πT ) = 0.

in Γinter
e−e .

We show the coefficient w as a function of the scatter-
ing rate for different values of detuning δµ and elliptic-
ity δm in Fig. 7. In the absence of impurity scattering, we
recover w = 0. At particle-hole symmetry, δµ = δm = 0,
disorder leads to w < 0, thus favoring the formation
of a charge-spin density wave [see Fig. 1(a)] as long as
g < |w|. In contrast, finite detuning and ellipticity yield
a contribution of opposite sign and thus, depending on
the scattering rate and the distance from particle-hole
symmetry, w can be either positive or negative, allowing
for both proposed double-Q states, CSDW and the SVC.
This conclusion holds also in the presence of magnetic
impurities. In this case, however, the global prefactor
and the total scattering rate are altered as compared to
the case of nonmagnetic impurities since for magnetic
impurities, the evaluation of the trace tr[σiσjσkσlσjσm]
allows for additional contributions including other inter-
band scattering processes between the electron pockets
e1 and e2.

IV. SUMMARY AND CONCLUSIONS

Recent experiments revealed the existence of C4-
magnetic phases in hole-doped iron-based superconduc-
tors, further fueling the discussion about the nature of
the magnetic ground state of the parent compounds. We
considered a three-band model of iron-based supercon-
ductors complemented by an incipient fourth pocket at
the M point and investigated how the interplay of im-
purity scattering and disorder effects in a rigid-band ap-
proach affects the magnetic ground state.

The phase diagram is governed by the interplay of
nematic and planar couplings, g and w, respectively.

If g > max(0,−w), stripe-magnetic order with either
M1 = 0 or M2 = 0 is favored, as it has been observed
in many compounds of the iron pnictide and iron chalco-
genide families. If g < max(0,−w), a double-Q state
with |M1| = |M2| minimizes the free energy, and the sign
of w determines whether M1 ⊥M2 (spin-vortex crystal,
for w > 0) or M1 = ±M2 (charge-spin density wave, for
w < 0) is more favorable. So far, only the charge-spin
density wave has been observed experimentally,18,31,32 in
contrast to theoretical models.19,22,33

Although generic three-band low-energy models for the
description of FeSC allow for C4-magnetic ground states,
they leave the spin-vortex crystal (SVC) and the charge-
spin density wave (CSDW) degenerate since w = 0. Our
analysis shows that the existence of an incipient pocket
at (π, π) lifts the degeneracy, however, it would favor the
formation of a spin-vortex crystal (w > 0) and thus can-
not explain the experimental findings. The investigation
of other extensions to the three-band model such as the
consideration of additional interactions has lead to the
same conclusion that the SVC state is favorable.

Our investigation of impurity scattering, in contrast,
provides a natural explanation for the formation of a
charge-spin density wave in doped FeSC. Since the three-
band model under consideration yields w = 0 in the
absence of impurity scattering, we concentrated on the
interband scattering process between the two electron
bands that can render w finite. In addition, we consid-
ered the dominant impurity scattering process in FeSC
which is intraband scattering in the hole band. We find
w < 0 at particle-hole symmetry as well as for small el-
lipticity and detuning, suggesting that disorder can pro-
mote charge-spin density waves. However, sufficiently
large ellipticity and detuning in combination with impu-
rity scattering also allow for w > 0, i. e., a spin-vortex
crystal.

Our findings are summarized in the phase diagrams
depicted in Fig. 2 where we show the magnetic ground
states that are favored in different regimes of detuning
and ellipticity. Disorder favors the double-Q charge-spin
density wave over the single-Q stripe-magnetic SDW at
small ellipticity and detuning, and increasing scattering
rate increases the parameter regime in which CSDW or-
der is expected to occur.

We further investigated the effect of the dominant im-
purity scattering process in FeSC, intraband scattering in
the hole band, on the nematic coupling g, which in the
three-band model assumes a finite value as long as the
electron bands exhibit finite ellipticity. In the absence
of impurity scattering and for δµ = 0, g is positive, and
increasing intraband scattering in the hole band reduces
the nematic coupling constant, concordant with the ex-
perimental finding that electron irradiation enhances the
splitting between structural and magnetic transition in
the stripe-ordered phase.

Previously, controlled disorder has been proposed as a
way to tune the properties of the superconducting state
in the iron-based materials.50 Analogously, our findings
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provide a promising control knob to tune their magnetic
ground state. In particular, addition of impurities via
electron irradiation in hole-doped compounds near the
composition where the single-Q to double-Q magnetic
transition is observed could stabilize a C4-magnetic phase
as the leading instability of the system – currently, the
C4-magnetic phase has been mostly observed inside the
C2-magnetic phase boundary. Similarly, removal of im-
purities via annealing in samples that display the double-
Q magnetic order could change the nature of the C4

phase from charge-spin density wave to spin-vortex crys-
tal.
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Appendix A: Microscopic calculation of the
Ginzburg-Landau coefficients

In this appendix, we present details on the derivation of the Ginzburg-Landau expansion of the free energy in terms
of the magnetic order parameters M1 and M2, starting from the partition function Z =

∫
D[ψ̄, ψ]e−S[ψ̄,ψ]. The action

S[ψ̄, ψ] corresponding to the Hamiltonian H = H0 +Hint as introduced in Eqs. (2) and (5) is given by

S[ψ̄, ψ] =

∫ β

0

dτ
∑
λ,k,σ

ψ̄λ,k,σ∂τψλ,k,σ +H[ψ̄, ψ] , (A1)

where ψ̄ and ψ are fermionic field operators, and λ labels the four bands. We switch to Matsubara frequency and
momentum space, where the action can be written as

S[ψ̄, ψ] = S0[ψ̄, ψ] + Sint[ψ̄, ψ] , (A2)

where S0[ψ̄, ψ] =
∑
λ,k,σ

ψ̄λ,k,σ(−iνn + ελ,k)ψλ,k,σ , (A3)

Sint[ψ̄, ψ] = −V
∑
i,j

∑
k,k′,q

∑
σ1,...,σ4

[
ψ̄hi,k,σ1σσ1σ2ψej ,k+q,σ2 + ψ̄ei,k,σ1σσ1σ2ψhj ,k+q,σ2

]
·
[
ψ̄hi,k,σ3

σσ3σ4
ψej ,k−q,σ4

+ ψ̄ei,k,σ3
σσ3σ4

ψhj ,k−q,σ4

]
, (A4)

where we introduced the notation k ≡ (iνn,k) and
∫
k
. . . = T

∑
n

∑
k . . . for brevity. The interaction term of the

action, e−Sint can be decoupled by introducing a real, three-component vector field Mq via a Hubbard-Stratonovich
transformation,

e−Sint[ψ̄,ψ] =

∫
DM e−Sint[M,ψ̄,ψ] , (A5)

where Sint[M, ψ̄, ψ] =
1

4V

∑
i

∫
q

Mi,q ·Mi,−q −
∑
i

∑
σ1,σ2

∫
k,q

M1,q · σσ1,σ2

[
ψ̄hi,k,σ1

ψei,k−q,σ2
+ ψ̄ei,k,σ1

ψhi,k−q,σ2

]
−
∑
i

∑
σ1,σ2

∫
k,q

M2,q · σσ1,σ2

[
ψ̄hi,k,σ1ψeī,k−q,σ2 + ψ̄eī,k,σ1ψhi,k−q,σ2

]
, (A6)
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where we abbreviated Mi,q = MQi+q introducing the ordering vectors Q1 = (0, π) and Q2 = (π, 0). We introduce
the spinor Ψ̄k =

(
ψ̄h1,k ψ̄e1,k ψ̄e2,k ψ̄h2,k

)
in order to write the action in the compact form

S[M, Ψ̄,Ψ] =
1

4V

∑
i

∫
q

Mi,qMi,−q −
∫
k,k′

Ψ̄kG−1
k,k′Ψk′ (A7)

with the matrix G−1
k,k′ = G−1

0;k,k′ + V , (A8)

where G−1
0;k,k′ = δk,k′


G−1

h1,k
0 0 0

0 G−1
e1,k

0 0

0 0 G−1
e2,k

0

0 0 0 G−1
h2,k

 , (A9)

V =

 0 M1,k−k′ · σ M2,k−k′ · σ 0
M1,k−k′ · σ 0 0 M2,k−k′ · σ
M2,k−k′ · σ 0 0 M1,k−k′ · σ

0 M2,k−k′ · σ M1,k−k′ · σ 0

 . (A10)

We follow the usual route of integrating out the fermionic degrees of freedom in order to develop an effective theory
in terms of the bosonic fields Mi,

Z
Z0

= Z−1
0

∫
DM

∫
D[ψ̄, ψ] e−S[M,ψ̄,ψ] =

∫
DMe−

1
4V

∫
q
(M1,q·M1,−q+M2,q·M2,−q)+tr ln(1+G0V)

' e−
1

4V (|M1|2+|M2|2)+tr ln(1+G0V) ≡ e−SMF[M1,M2] , (A11)

where we employed a saddle-point approximation to the field integral in the second line in order to obtain the mean-
field theory in terms of the fields Mi which we assume to be homogeneous and static here. As a final step, we can
expand the logarithm according to tr ln(1 + G0V) ' − 1

2 (G0V)2 − 1
4 (G0V)4 + . . . since the trace of odd powers of G0V

vanishes. The resulting mean-field expression for the action up to quartic order in the order parameters M1 and M2

then reads

SMF[M1,M2] =
∑
i

ai|Mi|2 +
∑
i,j

uij |Mi|2|Mj |2 + 2w(M1 ·M2)2 , (A12)

and the corresponding coefficients are given by

ai =
1

4V
+ 2

∫
k

(
Gh1,kGei,k +Gh2,kGeī,k

)
, (A13)

uii =

∫
k

(
G2

h1,kG
2
ei,k +G2

h2,kG
2
eī,k

)
, (A14)

u12 = u21 =

∫
k

[
(G2

h1,k +G2
h2,k)Ge1,kGe2,k + (G2

e1,k +G2
e2,k)Gh1,kGh2,k − 2Gh1,kGh2,kGe1,kGe2,k

]
, (A15)

w = 4

∫
k

Gh1,kGh2,kGe1,kGe2,k , (A16)

where we used tr(σiσj) = 2δij and tr(σiσjσkσl) = δijδkl − δikδjl + δilδjk for evaluating the traces in spin space.
Upon neglecting the second hole pocket at the M point, i. e. considering EM → ∞ implying Gh2,k = 0, we recover
the results for the three-band model, as given in Eq. (8) and derived in Ref. 26, for instance.

The two electron bands are connected by rotational symmetry which translates to δm ↔ −δm within the
parametrization (3). This symmetry can be exploited to obtain the identities, a1 = a2 and u11 = u22, which allow
to further simplify the Ginzburg-Landau expansion. This can be seen most easily from expanding the propagators
Gei,k = [iνn − ε + δµ ∓ δm cos(2θ)]−1 for δm � 2πT : The nth-order contribution is ∝ [δm cos(2θ)]n. The electron
propagators Ge1,k and Ge2,k therefore only differ in the odd terms which vanish upon performing the angular part of

the momentum integration,
∫ 2π

0
dθ
2π cos2n+1(2θ) = 0.

Appendix B: Calculation of the diagrams

This appendix provides technical details and intermediate steps of the calculation of the quartic coefficients of the
Ginzburg-Landau expansion.
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1. Clean four-band model

In the clean four-band model, i. e. including an incipient hole pocket at the M point, the coefficient w is already
nonzero if all other pockets are nested, corresponding to δµ = δm = 0,

w = 4

∫
k

Gh1,k(νn)Gh2,k(νn)Ge1,k(νn)Ge2,k(νn)

= 4T

∞∑
n=−∞

∫
dk

(2π)2

1

iνn + εk

1

iνn + εk + EM

1

(iνn − εk)2

= 4T

∞∑
n=−∞

ρF

∫ ∞
−∞

dε
1

iνn + ε

1

iνn + ε+ EM

1

(iνn − ε)2

= 4T

∞∑
n=−∞

sgn(ωn)
iπρFEM − 4πρFωn
2ω2

n(EM + 2iωn)2

=
iρF

2EMπT

[
ψ1

(1

2
+

iEM
4πT

)
− ψ1

(1

2
− iEM

4πT

)]
≈

{
7ρFζ(3)
2π2T 2 ≈ 0.43 ρF

T 2 , EM � T ,
4ρF

E2
M

, EM � T ,
(B1)

where ρF denotes the density of states at the Fermi surface and νn = πT (2n+ 1) is a fermionic Matsubara frequency.

2. Disordered three-band model

The diagrammatic representation of contributions to the quartic coefficients in the disordered three-band model,
i. e. when neglected the incipient hole pocket at the M point, is given in Fig. 4. The coefficients in terms of these
diagrams read

g = G(1)
2 − G(1)

1 + G(2)
2 − G(2)

1 , (B2)

u = G(1)
1 + G(1)

2 + G(2)
1 + G(2)

2 , (B3)

w = 2W . (B4)

The corresponding expressions can be evaluated in the same manner as in the clean four-band model. However,
since we now consider elliptical electron bands and finite detuning, we expand in the small parameters δµ/(2πT )

and δm/(2πT ). Furthermore, we split the momentum integration according to
∫

dk
(2π)2 . . . = ρF

∫∞
−∞ dε

∫ 2π

0
dθ
2π . . ..

Straightforward evaluation of the coefficients yields

g = −T
2

∑
n

∫
dk

(2π)2
G2

hΓ,k(νn) [Ge1,k(νn)−Ge2,k(νn)]
2 − Γintra

h

T

2

∑
n

[∫
dk

(2π)2
G2

hΓ,k(νn)[Ge1,k(νn)−Ge2,k(νn)]

]2

= − ρFδ
2
m

1536π4T 4

[
ψ4

(
1

2
+
ρFΓintra

h

4T

)
−

δ2
µ

32π2T 2
ψ6

(
1

2
+
ρFΓintra

h

4T

)]
(B5)

u =
T

2

∑
n

∫
dk

(2π)2
G2

hΓ,k(νn) [Ge1,k(νn) +Ge2,k(νn)]
2

+ Γintra
h

T

2

∑
n

[∫
dk

(2π)2
G2

hΓ,k(νn)[Ge1,k(νn) +Ge2,k(νn)]

]2

= − ρF

8π2T 2

[
ψ2

(1

2
+
ρFΓintra

h

4T

)
+
ρFΓintra

h

12T
ψ3

(1

2
+
ρFΓintra

h

4T

)]
+

ρF

768π4T 4
ψ4

(1

2
+
ρFΓ

4T

) [
3δ2
µ + δ2

m

]
+

ρ2
FΓintra

h

30720π4T 5
ψ5

(1

2
+
ρFΓ

4T

) [
10δ2

µ + 3δ2
m

]
(B6)

w = 2Γinter
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P. Schweiss, and C. Meingast, “Complex phase diagram
of Ba1−xNaxFe2As2: a multitude of phases striving for the
electronic entropy,” Phys. Rev. B 93, 014514 (2016).

14 E. Hassinger, G. Gredat, F. Valade, S. René de Cotret,
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