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The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized
in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer
torque. These structures have been observed experimentally at room temperature, showcasing their
robustness against noise. Here, we quantify the effects of thermal noise by deriving the stochastic
equations of motion for a droplet based on soliton perturbation theory. First, it is found that
deterministic droplets are linearly unstable at large bias currents, subject to a drift instability.
When the droplet is linearly stable, our framework allows us to analytically compute the droplet’s
generation linewidth and center variance. Additionally, we study the influence of non-local and
Oersted fields with micromagnetic simulations, providing insight into their effect on the generation
linewidth. These results motivate detailed experiments on the current and temperature-dependent
linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in
the prospect of droplet-based applications.

I. INTRODUCTION

Localized magnetic textures have recently attracted
significant research interest due to their potential ap-
plication in logic, storage, and communication technolo-
gies. From the perspective of logic and storage, static
Skyrmions1 are very interesting textures due to their
topological protection against perturbations, small sizes,
and controllable motion2,3. On the other hand, commu-
nication applications could benefit from dynamical tex-
tures, notably topological, dynamical Skyrmions4 and
non-topological, magnetic dissipative droplets5–9.

Magnetic dissipative droplets (“droplets” hereafter)
have been widely observed in experiments both at cryo-
genic10 and room temperatures11–14. Droplets exist in
magnetic thin films composed of materials with perpen-
dicular magnetic anisotropy (PMA)15, i.e., in which the
easy axis lies normal to the plane, so that it balances
the exchange energy in favor of a localized structure5,16,
Fig. 1(a). Furthermore, magnetic damping must also be
balanced in order to sustain the droplet in time due to
its lack of topology. To date, this has been achieved by
using spin transfer torque (STT)17,18 in devices known
as nanocontact spin torque oscillators, NC-STOs19. NC-
STOs are composed of a pseudo spin valve where two
magnetic layers are decoupled by a non-magnetic spacer,
as shown in the schematic of Fig. 1(b). The topmost
magnetic layer, m, is where the droplet nucleates and
it is usually referred to as the free layer. The bottom
magnetic layer, mp serves as a spin-polarizer and it is
known as the polarizer or fixed layer. In order to achieve
sufficient current density to oppose magnetic damping, a
nanocontact (NC) of radius R∗ is placed on top of the
free layer, confining the current to flow in an approxi-
mately cylindrical path20 and therefore defining a region
of effectively zero damping in the free layer. An external,
perpendicular applied field H0 is generally used in NC-

STOs both to tilt the polarizer (useful for increasing STT
and magnetoresistance), to provide an external source for
the Larmor frequency, and to stabilize the droplet8.

Since the first experimental observation of droplets11,
recent results have investigated theoretical predic-
tions5,6,8,21,22, shown the existence of hysteresis both
at room and cryogenic temperatures10,13, identified
a well-defined nucleation boundary14, and even im-
aged the droplet via X-ray magnetic circular dichro-
ism (XMCD)12. The same studies have demonstrated
the existence of characteristics consistent with random
droplet dynamics, notably low-frequency spectral fea-
tures. These have been associated with the droplet ex-
iting the NC region and succumbing to damping, a drift
instability, originating from the spatial energy landscape
created by the current-induced Oersted field5,20,23,24 and
externally applied fields8,11,22 or fluctuations in the mate-
rial anisotropy spatial distribution13. However, the rela-
tionships between drift instabilities and physical sources
of randomness have not been established. To provide an
analytical understanding of drift instabilities, we study
the effect of thermal noise on droplet dynamics.

In this paper, we develop the stochastic evolution of
droplet dynamics based on soliton perturbation theory22

and obtain statistical observables such as the droplet cen-
ter variance and the generation linewidth25. These re-
sults are analytically obtained by linearizing the equa-
tions of motion. From the linearization, we uncover a
deterministic regime of drift instability, missed by previ-
ous analytical works8,22, where high bias currents induce
growth of the droplet velocity on a long timescale. Ran-
domness can also cause an otherwise deterministically
stable droplet to be expelled from the NC region when
thermal fluctuations are taken into account. We deter-
mine that such events are extremely rare relative to the
precessional timescale (10-100 picoseconds) but become
quite relevant for the typical time scales of experiments
(seconds or more). Observation, let alone quantification,
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FIG. 1. (color online) (a) Typical dissipative droplet obtained
from micromagnetic simulations at a finite temperature. The
ẑ component of the magnetization is quantified by the color
scale. (b) Schematic of a NC-STO based on a pseudo spin
valve trilayer. The free, m, and polarizer, mp, magnetic layers
are decoupled by a non-magnetic spacer. A NC of radius
R∗ is placed on top of the free layer to achieve high current
densities. An external field H0 is applied perpendicularly to
the plane.

of both the deterministic drift instability and the stochas-
tic rare events is practically unfeasible utilizing standard
deterministic5 or stochastic13 micromagnetic simulations
alone. For a stable droplet, the generation linewidth is
found to be dominated by the phase noise induced by a
Wiener process or random walk, linearly proportional to
temperature and inversely proportional to the NC radius.
The droplet’s center can be described by an Ornstein-
Uhlenbeck (O-U) process with STT acting as an attrac-
tive mechanism that draws the droplet to the center of
the NC. The determination of both stochastic processes
requires subtle higher order effects from soliton pertur-
bation theory8,22. Full-scale micromagnetic simulations
qualitatively agree with the analytical results, even when
the current-induced Oersted field is taken into account.

The paper is organized as follows. Section II describes
the formalism used to obtain the stochastic equations for
droplet dynamics. Section III explores the deterministic
linearization where we obtain the fundamental droplet
dynamical state and linear stability conditions. Stochas-
tic terms are incorporated into the analysis in section
IV, leading to analytical solutions for the droplet center
variance and generation linewidth at low temperatures.
Numerical simulations of the nonlinear stochastic system
are presented in section V, demonstrating excellent agree-
ment with the linearized analytical results. Full-scale
micromagnetic simulations are used to explore regimes
of small NC radii, non-local dipole fields, and Oersted
field, beyond the scope of the asymptotic theory, never-
theless demonstrating qualitative agreement. Finally, we
provide a discussion and concluding remarks in section
VI.

II. DROPLET PERTURBATION THEORY

The analytical study of droplet dynamics can be ap-
proached using perturbation theory with the magnetic
damping and STT coefficients assumed small. This as-
sumption alone yields droplet nucleation conditions and
the resultant droplet’s frequency tunability via current
and field5,14. A semi-analytical generalization can be
used to describe coarse droplet motion and control21.
The additional assumption of a sufficiently large NC di-
ameter implies a slowly precessing, circular domain wall
description for the droplet8, which enables a detailed an-
alytical description of droplet dynamics in the presence
of physical perturbation8,22. This latter regime is the one
considered here.

The equation of motion for the free layer magnetiza-
tion m is the Landau-Lifshitz equation for a thin, two-
dimensional magnetic film

∂m

∂t
= −m× heff + p, m : R2 × R→ S2, (1)

expressed here in nondimensional form. The effective
field,

heff = h0z +∇2m +mzz, (2)

includes contributions from a perpendicular external field
h0, the exchange field ∇2m, and a perpendicular mag-
netic anisotropy (PMA) field sufficient to overcome the
thin-film limit of the demagnetizing field. Hence the mzz
term in the effective field has a positive coefficient, here
scaled to unity. This form of the LL equation, with
|m| = 1, uses the time scale τ = (|γ|µ0η)−1, where γ is
the gyromagnetic ratio, µ0 is the vacuum permeability,
η = Ms(Q− 1) is the field scaling, Ms is the free layer’s
saturation magnetization, Q = Hk/Ms is the nondimen-
sionalized form of the PMA field Hk, and the length scale
L = λex/

√
Q− 1 where λex is the exchange length. The

NC radius R∗ is nondimensionalized to ρ∗ = R∗/L. We
consider a small perturbation |p| � 1 satisfying p·m = 0
in order to preserve constant magnetization magnitude.
The perturbation term considered here includes damp-
ing, STT as imposed by a NC-STO, and a thermal ran-
dom field26

p = −αm× (m× heff)︸ ︷︷ ︸
damping

+σH(x)m×m×mp︸ ︷︷ ︸
NC-STO

−m× h︸ ︷︷ ︸
thermal

,

(3)
where 0 < α� 1 is the damping parameter,

H(x) =

{
1 |x| ≤ ρ∗
0 else

is a shifted Heaviside function describing the current path
below the NC, mp is the normalized polarizer orienta-
tion, and σ = I/I0 is the nondimensionalized form of the
current I, scaled by

I0 =
4µ0M

2
s (Q− 1)eπR2

∗δ

~ε
. (4)
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Here, e is the charge of the electron, δ is the thickness
of the free layer, ε is the spin torque efficiency, and ~ is
Planck’s constant. Example scalings for recent experi-
ments are listed in Table I for reference.

The thermal field h(x, t) induces random fluctuations
in the magnetization of a small material volume V and
is assumed to be delta-correlated in space and time i.e.,
white noise26. The variance of the nondimensional field
is Var[h(x, t)] = β2 with

β2 =
T

T0
, T0 =

µ0M
2
s V

2αkB
, (5)

where kB is the Boltzmann constant, V = λ2
exδ is

the characteristic micromagnetic volume, and T0 is the
nondimensional scaling of the absolute temperature T .
Table I includes typical temperature scalings for recent
experiments and our micromagnetic simulations. The
perturbative theory utilized here is valid in the low
temperature regime where β � 1. The variance in
Eq. (5) can be dimensionalized by multiplying (5) by
τM2

s (Q− 1)2.
The droplet is characterized by its center position ξ,

velocity v, collective phase φ, and precessional frequency
ω. In the regime 0 ≤ v � ω � 1, where v = |v| is the
droplet speed, the droplet takes on the approximate form
of a slowly precessing circular domain wall with a spatial
phase proportional to the droplet’s speed22

cos Θ = tanh

(
ρ− 1

ω

)
, (6a)

Φ = h0t−
v · ρ̂
ω2

+ φ, φ = ωt+ φ0. (6b)

Equation (6) describes the magnetization orientation of
the droplet in spherical coordinates (Θ,Φ) with polar an-
gle from vertical 0 ≤ Θ < π and azimuthal angle Φ. In
Eq. (6), we employ droplet-centered polar coordinates in
the plane, so that the radial unit vector ρ̂ points from the
droplet center ξ to a point in space x = (ρ cosϕ, ρ sinϕ)
and the angular unit vector ϕ̂ is orthogonal ϕ̂ · ρ̂ = 0 and
satisfies the right hand rule ρ̂× ϕ̂ = z. The structure of

Parameters Refs. 10 and 12 Ref. 11

τ (time, ns) 0.13 0.083

L (length, nm) 13.2 9.25

η (field, kA/m) 198.9 318.1

I0(current, mA) 152.75 139.7

T0(temperature, kK) 156.0 337.2

σ/α (scaled current to damping) 1.96 6.44

h0 (scaled applied field) 0.5 2.5

ρ∗ (scaled nanocontact radius) 5.96 5.95

TABLE I. Time, length, field, current, and temperature scal-
ings and typical nondimensionalized experimental parameters
for recent experiments.

the v = 0 approximate droplet in Eq. (6) has been known
for some time in the absence of STT (see, e.g., Ref. 16)
and the singular ω → 0 behavior for v 6= 0 was identified
in Ref. 27.

Following the procedure described in Ref. 22, the slow
evolution of the perturbed droplet’s parameters for large
NC radii ρ∗ � 1, weak damping/STT σ = O(α) � 1,
and low temperature β � 1 is governed by the set of
coupled, stochastic differential equations

dφ = ω dt− σ

4π

∫
|x|≤ρ∗

(v · ρ̂) sech2

(
ρ− 1

ω

)
dxdt+ dWφ, (7a)

dξ = vdt+
σω

2π

∫
|x|≤ρ∗

sech2

(
ρ− 1

ω

)
ρ̂ dxdt+ dWξ, (7b)

dω = αω2(ω + h0)dt− σω3

4π

∫
|x|≤ρ∗

sech2

(
ρ− 1

ω

)
dxdt+ dWω, (7c)

dv = αωv(ω + 2h0)dt− σω2

2π

∫
|x|≤ρ∗

(
3

2
v − (v · ϕ̂)

ρω
ϕ̂

)
sech2

(
ρ− 1

ω

)
dxdt+ dWv, (7d)

which are to be interpreted in the Stratonovich sense28.
The dynamical system describing modulations of a
droplet’s parameters subject to a general class of per-
turbations was derived in Ref. 22. The particular form
of the stochastic terms in (7) result from the thermal field
perturbation −m × h in eq. (3). The damping (propor-
tional to α) and spin torque (proportional to σ) terms in
(7) were also specifically derived in Ref. 22.

There is a symmetry in these equations between the
droplet’s collective precessional dynamics and motion.
The phase φ and position ξ dynamics have a leading or-
der linear coupling to the frequency ω and velocity v
equations, respectively. The second, additional terms in
the phase and position equations proportional to cur-
rent σ correspond to higher order corrections from soli-
ton perturbation theory, which prove to be essential for
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describing perturbed droplet dynamics8,22, in particular,
the finite temperature effects explored here.

The terms Wi, with i = φ, ξ, ω, and v, are scaled
Weiner processes, with nontrivial covariance structure.
Each noise term is a spatial integral of the thermal field
perturbation against an appropriate kernel (see Ref. 22,
Eqs. 4.1–4.4). If we arrange them into a vector W =(
Wφ Wξx Wξy Wω Wvx Wvy

)T
, then the covariance be-

tween the processes is given by

E[WWT ] =
β2t

2π


σ2
φ vT /2

v/2 ωI
0

0
ω5/2 ω4vT

ω4v σ2
v

 , (8)

where we have, for the sake of compactness, denoted

σ2
φ =

v2

4ω
+
ω

2
, (9a)

σ2
v =

[
ω5 + ω3

4

(
9v2
x + v2

y

)
2ω3vxvy

2ω3vxvy ω5 + ω3

4

(
v2
x + 9v2

y

) ] (9b)

and I is the 2× 2 identity matrix and 0 is the 3× 3 zero
matrix.

III. DETERMINISTIC LINEARIZATION AND
STABILITY

We will first examine the dynamics of Eqs. (7) at zero
temperature β2 = 0. These deterministic dynamics have
been studied in detail8,22. When the current σ exceeds
the minimal sustaining current σmin, the system under-
goes a saddle-node bifurcation resulting in a stable fixed
point denoted (ξ∗, ω∗,v∗) that encapsulates the balance
between damping and STT to sustain the droplet. The
stable fixed point is stationary at the center of the NC,
ξ∗ = v∗ = 0, with precessional frequency ω∗ determined
as a root of the transcendental equation

σ

α
=

2(h0 + ω∗)

1 + ω∗

[
log
(

1
2 sech

(
ρ∗ − 1

ω∗

))
+ ρ∗ tanh

(
ρ∗ − 1

ω∗

)] .
(10)

We observe that the phase φ in Eqs. (7) decouples
from the system, so its dynamics can be determined from
the remaining three parameters. If we linearize Eqs. (7)
around this fixed point, we arrive at the system

φ̇ = ω, (11a)

ξ̇ = v + λξξ, (11b)

ω̇ = λω(ω − ω∗), (11c)

v̇ = λvv, (11d)

where

λξ = −1

2
σρ∗ω∗sech2

(
ρ∗ −

1

ω∗

)
, (12a)

λω = −h0αω∗ + λξ +
1

2
σω∗

(
tanh

(
ρ∗ −

1

ω∗

)
+ 1

)
,

(12b)

λv = −2αω2
∗ + λω − λξ. (12c)

It is necessary to carefully choose parameters so that
this fixed point is stable, i.e., so that all eigenvalues in
Eq. (12) are negative. The condition σ > αh0 is sufficient
for λξ, λω < 0, but in order to ensure that λv < 0, we
require additionally that

αω∗(2ω∗ + h0) >
1

2
σω∗

(
tanh

(
ρ∗ −

1

ω∗

)
+ 1

)
. (13)

Note that the inequality requirement for stability in (13)
was not identified previously22, and is essential to un-
derstanding the dynamics of the droplet. It is possible
to visualize the region of linear stability in the (h0,σ/α)
plane as in Fig. 2. The left (red) area corresponds to the
condition σ < σmin, where the droplet cannot exist. This
approximately linear relation for the existence boundary
has been corroborated by experiment10. The inequality
requirement Eq. (13) adds an unstable, right region (blue
area) where the velocity of the droplet increases until it
drifts away from the NC area and damping destroys it.
The remaining white area represents the parameter space
where the droplet exists and is stable. We observe that
such a region shifts to lower applied fields and increased
current for smaller NC radii (dashed lines).

It is helpful to express these eigenvalues in a more
tractable form, so that we can observe how they approx-
imately scale with experimental parameters. For this,
we define a parameter-dependent constant that we will
denote by ζ

ζ =
2αh0

σ
− 1. (14)

Previous work22 assumed that the current was near the
critical value σ ≈ 2αh0, so that ζ = O(ρ−1

∗ ). This work
relaxes that assumption and allows for any current that
is sufficiently above the minimum sustaining current so
that Eq. (10) can be approximately inverted to obtain
the frequency tunability

ω∗ = ρ−1
∗ + arctanh (ζ)ρ−2

∗ +O(ρ−3
∗ ). (15)

Then the leading-order approximations of each eigen-
value are

λξ = −σ
2

(1− ζ2) +O(ρ−1
∗ ), (16a)

λω = −σ
2

(1− ζ2) +O(ρ−1
∗ ), (16b)

λv = O(σρ−2
∗ ). (16c)
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The approximate expression for λv is prohibitively com-
plex, so we omit it here in favor of the exact expression
in eq. (12).

Inequality (13) is a fundamental result identifying a
deterministic mechanism that can drive droplet drift in-
stability. Any nonzero v (recall that v 6= 0 corresponds
to a spatial phase gradient across the droplet in Eq. (6b))
will slowly increase when Eq. (13) does not hold. Large
applied current destabilizes the droplet.

Previous work8 that analyzed the dynamics of this sys-
tem with v ≡ 0, found that the dissipative droplet is
linearly stable for physically relevant parameters. The
sole effect of damping on a stationary droplet’s frequency
dω/dt = αω3 has been known for some time29. While
this result demonstrates that the droplet is unstable in
the presence of damping alone, it does not describe the
instability investigated here with STT included. Simi-
larly, Ref. 21 observed instability in the case v 6= 0 with-
out taking into account STT. Our contribution here is
to extend the dynamics to incorporate STT, thereby un-
covering current dependent regimes of deterministic in-
stability. In Ref. 22, the dynamics are analyzed, but the
linear instability condition (13) was not recognized. The
recognition of this linear instability, occurring at physi-
cally relevant parameters, is essential to the understand-
ing of droplet dynamics. When v 6= 0, the dynamics are
much more sensitive to the choice of parameters, as is
seen both above in the linear case, and below in the full
nonlinear case. A key observation is that while λξ, λω are
small O(σ), λv is much smaller O(σρ−2

∗ ). These eigen-
values dictate the relaxation rate of the system towards
the fixed point.

When compared to the v = 0 dynamics, the relaxation
rate of the droplet center ξ decreases by a factor propor-
tional to ρ−2

∗ � 1 when the v dynamics are included.
Furthermore, we see that λv can change sign, while λξ
and λω are negative for σ > αh0. This suggests that there
is a shallow basin of attraction for the fixed point, allow-
ing for the possibility of linear drift instabilities mediated
by thermal noise. Indeed, all experiments10–12 have been
performed outside the region of linear stability, suggest-
ing droplet drift instability and the concomitant obser-
vation of low-frequency spectral features. We note that
the theory presented here is nominally applicable to the
case ρ∗ � 1, whereas the experiments in Refs. 10–12 with
ρ∗ ∈ (5, 8) are at the borderline of applicability.

IV. STOCHASTIC LINEARIZATION

One method of approximating the dynamics of the
stochastic system Eqs. (7) is to employ the previously
calculated linearization of the deterministic system and
approximate the noise, now denoted W∗, by evaluating
the covariance matrix, Eq. (8), at the fixed point. This
low temperature theory yields the linear stochastic sys-

tem

dφ = ωdt+ dW∗φ, (17a)

dξ = vdt+ λξξdt+ dW∗
ξ, (17b)

dω = λω(ω − ω∗)dt+ dW∗ω, (17c)

dv = λvvdt+ dW∗
v. (17d)

When evaluated at the fixed point, the covariance matrix
becomes diagonal

E[W∗W∗T ] = β2t ·Diag

(
ω∗
4π
,
ω∗
2π
,
ω∗
2π
,
ω5
∗

4π
,
ω5
∗

2π
,
ω5
∗

2π

)
,

≡ t ·Diag
(
β2
φ, β

2
ξ , β

2
ξ , β

2
ω, β

2
v , β

2
v

)
, (18)

where we denote the variance of each parameter by β2
i for

i = φ, ξ, ω, and v. The linear system Eqs. (17) can be
solved explicitly. For (ξ, ω,v), we obtain a set of coupled
O-U processes that describe the stochastic properties of
the linear system.

Of particular interest is the behavior of the decoupled
oscillator phase, φ(t), as it allows us to relate our analyt-
ical description with the generation linewidth, ∆f , which
can be measured from the electrical characterization of
NC-STOs19. Solving the system in Eqs. (17), we find
that the frequency is an O-U process with mean ω∗ and
variance

Var[ω(t)] = − β2
ω

2λω
(1− exp 2λωt)

→ − β2
ω

2λω
, as t→∞. (19)

� < �min �v > 0

�/↵

h0

FIG. 2. (color online) Droplet existence and linearly stable
parameter space for a droplet nucleated in a NC of normal-
ized radius ρ∗ = 15. The droplet cannot exist in the left
region (filled red) where σ < σmin, whereas the droplet is lin-
early unstable in the right region (filled blue) where λv > 0.
Therefore, the droplet is stable in the remaining white re-
gion. The numerical simulations in Sec. V and Figs. 3, 4, 5(a)
with h0 = 1.5, α = 0.03, and σ = 2α (black circle) exhibit
linear stability. The dashed lines are boundaries for droplet
existence and linear stability with reduced NC radius ρ∗ = 5.
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We can then write down the solution for the phase φ(t)
as the sum of an integrated O-U process and a Wiener
process (random walk)

φ(t) =

∫ t

0

ω(s)ds+W∗φ, (20)

from which we find that the variance of φ quickly ap-
proaches linear growth

Var[φ(t)]→
(
β2
ω

λ2
ω

+ β2
φ

)
t as t→∞, (21)

so that the spectral lineshape is Lorentzian and the gen-
eration linewidth is given by

∆f =

(
β2
ω

λ2
ω

+ β2
φ

)
= β2

(
ω5
∗

4πλ2
ω

+
ω∗
2π

)
. (22)

By virtue of Eq. (5), the generation linewidth is lin-
early proportional to temperature. Because ω∗ � 1, the
generation linewidth is dominated by the Wiener pro-
cess, phase noise contribution [second term in Eq. (22)]
resulting from the higher order contribution to the phase
dynamics of Eq. (7a). This expression for generation
linewidth is also consistent with the notion of a reduced
impact of thermal fluctuations on a larger magnetic mode
volume. Indeed, recalling Eq. (15), it is clear that larger
NC radii minimize the generation linewidth.

We are also interested in the dynamics of the center
ξ as it describes the droplet’s random motion with re-
spect to the NC region. The velocity and position form
a coupled pair of O-U processes, which we can solve us-
ing standard methods. We then find the variance of the
droplet center

s2
ξ(t) = −

β2
ξ

2λξ

(
1− e2λξt

)
− β2

v

2 (λξ − λv) 2

×

(
1− e2λξt

λξ
+

4
(
1− e(λξ+λv)t

)
λξ + λv

+
1− e2λvt

λv

)

→ −1

2

β2
v

λ2
ξλv
−
β2
ξ

λξ
as t→∞. (23)

We might expect that the position noise term in Eq. (23)
would dominate, analogous to the phase noise in Eq. (22).
However, the balance of the two terms in Eq. (23) is
highly sensitive to experimental parameters. In fact, for
the parameters used in this study, the velocity noise term
is the dominant contribution.

Equations (22) and (23) are central results of this pa-
per. The former relates our stochastic theory to an ex-
perimental observable, namely, the Lorentzian generation
linewidth. The latter quantifies the amount of droplet
drift with respect to the NC center and thus provides a
means to quantify the drift instability from random fluc-
tuations in the magnetic system.
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FIG. 3. Numerically computed nonlinear sample path from
Eqs. (7) for (a) the droplet phase φ and (b) the x-component
of the center position ξx. The phase is measured in radians,
and position and time are nondimensional as per Table I.

V. NUMERICAL SIMULATIONS

To examine the behavior of the full nonlinear system,
Eqs. (7), we numerically simulate an ensemble of sample
paths. Details of our numerical implementation can be
found in the Appendix. We choose the parameters ρ∗ =
15, h0 = 1.5, α = 0.03, and σ = 2α in order to ensure
that we are within the asymptotic validity of our analysis
and the region of linear stability, depicted by the black
dot in Fig. 2. Typical sample paths of the droplet’s phase
and center position generated by this method are shown
in Fig. 3.

We first examine the statistics of the droplet center.
Figure 4 shows the standard deviation of the droplet cen-
ter for an ensemble of numerical simulations of the linear
(blue) and nonlinear (red) systems. The analytical pre-
diction of Eq. (23) (black) agrees well with the linear
simulation. For the chosen set of parameters, nonlinear-
ity is not observed to significantly enhance the droplet
drift and, in fact, the standard deviation of the droplet
center from the NC center is never more than 1% of the
NC radius. For slightly modified parameters, we ob-
serve qualitatively different behavior when nonlinearity
is introduced. For example, reducing the NC radius to
ρ∗ = 10, we approach the stability boundary of Fig. 2, al-
though linear stability in Eq. (13) is still satisfied. How-
ever, the numerical simulation of the nonlinear system
leads to approximately 15% of the simulated paths leav-
ing the NC before t = 4 · 104. This indicates that the
basin of attraction of the system is relatively small. We
can also infer from the simulations at larger NC radii that
the size of the basin of attraction decreases with NC ra-
dius. This suggests that the small NC devices used in
experiments at room temperature sustain droplets that
exhibit deterministic or thermally induced drift instabil-
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FIG. 4. (color online) Standard deviation sξ of the droplet
center from linear theory (solid black line), linear simulation
(solid blue), and nonlinear simulation (solid red).

ities during measurements. In fact, typical spectral mea-
surements11,13 acquire data in time spans on the order
of seconds, which translate to ≈ 1 · 1010 in our normal-
ized units. The characterization of the multi-dimensional
boundary in phase space of the basin of attraction and
ejection statistics are, however, outside the scope of this
paper. Note that in the ensemble used to generate Fig. 4,
no sample paths ejected from the NC.

In the regime where the droplet does not drift away
from the NC over the timescale simulated, it is possible
to compare the linear generation linewidth to numeri-
cal simulations of Eqs. (7). From a sample path of the
stochastic phase φ(t), we calculate the linewidth via the
power spectral density of φ, as discussed in Ref. 25. It
is worth noting that the linewidth calculated via this
method is strictly valid for white noise30 and can vary
between sample paths due to the fluctuations between
each path. For the linewidths reported here, we take the
mean value of the calculated linewidths from 500 differ-
ent sample paths. Figure 5(a) shows the linewidth’s de-
pendence on temperature for the nonlinear system (red
asterisks) and Eq. (22) (solid black line). Finite sam-
pling and the asymmetric, heavy-tailed distribution of
linewidths across sample paths causes the mean to con-
verge slowly to the linear theory at low temperature. Al-
though the median gives results more clearly convergent
to the linear theory, the mean corresponds to experimen-
tally observed linewidths, which are averaged over long
timescales. Nonlinear simulations yield a mean linewidth
of 1.77 · 10−5 at temperature β2 = 2.8 · 10−3, which, for
comparative purposes, corresponds to 214 kHz at temper-
ature T = 314 K under the temporal and temperature
scalings of Ref. 11 with damping enhanced to α = 0.03.
Note, however, that the material parameters (ρ∗, σ, and
h0) for the nonlinear simulations do not correspond to
those from Ref. 11.

The linear theory is a very good predictor of the non-

linear system’s behavior at low temperatures and we nu-
merically observe that the discrepancy between the lin-
ear and nonlinear linewidths decreases quadratically in
T as T → 0, as one would expect from this perturbative
approach. However, as room temperature is approached,
the nonlinear linewidth exceeds the linear linewidth by an
order of magnitude. This originates from the increased
impact of thermal fluctuations when the linearization is
not strictly applicable. We stress that current experi-
ments have not directly detected ejection events, and in
the event of ejection, the bias current can re-nucleate a
droplet and the resulting linewidth in aggregate will be
considerably broader due to the ensuing transient dy-
namics. Our simulations end upon ejection, and do not
allow for re-nucleation.

The above simulations are strictly valid for the regime
ρ∗ � 1 with negligible long-range dipole and Oersted
fields. Experiments to date, however, have been per-

FIG. 5. (color online) (a) Droplet linewidth as a function
of temperature from linear theory (solid black line), nonlin-
ear simulation (red asterisks), and micromagnetic simulations
(blue triangles) when ρ∗ = 15, h0 = 1.5, α = 0.03, σ = 2α.
(b) Droplet linewidth as a function of temperature from mi-
cromagnetic simulations where only the NC radius is reduced
to ρ∗ = 5 from (a) (blue triangles) and the effect of a current-
induced Oersted field (blue squares). Linewidth is expressed
in rad/τ as per Table I. Inset shows droplet profile with
Oersted field included. Error bars are O(10−9) and are not
shown.
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formed when ρ∗ ∈ (5, 8). Moreover, it is important to
characterize the impact of dipolar and Oersted fields on
the droplet’s collective motion and precession. To fur-
ther explore droplet behavior, we perform full-scale mi-
cromagnetic simulations with non-local dipole fields us-
ing the GPU-based package Mumax331. We first compare
micromagnetic results by choosing the same set of dimen-
sionless parameters specified above and scalings consis-
tent with Co/Ni multilayers11 (See Table I). The fixed
layer is assumed to be perpendicularly polarized. The
NC is placed at the geometrical center of an active area
of size 89.9 × 89.9 × 0.39 discretized in cells with size
0.35 × 0.35 × 0.39, below the exchange length. An en-
semble of sample paths is not feasible to compute micro-
magnetically due to time constraints, so we determine
the linewidth from a single path spanning t = 1.8 × 104

and sampled at 0.015 intervals. First, we do not ob-
serve droplet motion, which is consistent with the results
shown in Fig. 4 where the droplet center variance is ex-
pected to be below our cell resolution. The results for the
temperature dependent linewidth are shown in Fig. 5(a)
as blue triangles. We note that the micromagnetic simu-
lations overestimate the linewidth obtained from nonlin-
ear simulations but are on the same order of magnitude
at room temperatures. At low temperatures, the micro-
magnetic simulations do not approach the linear theory
as one would expect. This is a consequence of the limited
simulation time and the spatial resolution of our micro-
magnetic scheme that precludes an accurate estimation
of the phase noise statistics and thus its convergence to
the linear linewidth.

Despite this limitation, micromagnetic simulations can
be used to explore the dynamics of droplets sustained
in devices with smaller NC radii, where micromagnetics
have shown to be more accurate11,13 and where, con-
versely, the theory is not strictly applicable. We per-
form micromagnetic simulations with the same nondi-
mensional parameters specified above but reduce the NC
radius to ρ∗ = 5, in the range of experiments performed
to date, and increase the current to σ = 0.1. The result-
ing linewidths are shown in Fig. 5(b) by blue triangles. A
qualitative agreement with theory is observed, namely, a
linear dependence of the linewidth on temperature and a
linewidth increase for smaller NC radii. Additionally, mi-
cromagnetic simulations allow us to include the current-
generated Oersted field20,23,24. This further enhances the
linewidth by a factor ∼ 5 (blue squares) originating from
the distortion of the droplet boundary, as observed from
a snapshot of the ẑ magnetization component shown in
the inset of Fig. 5(b). These results suggests that the
unavoidable non-local and Oersted fields in a real de-
vice will enhance the generation linewidth compared to
theory, but the temperature-dependent features remain
mostly unchanged.

VI. DISCUSSION AND CONCLUSION

We have developed a stochastic perturbation theory
for magnetic dissipative droplets describing the random
motion of the droplet’s position, velocity, frequency, and
phase. Higher-order perturbative effects in the phase and
position are shown to be essential for understanding the
dynamics of the droplet. Inclusion of velocity dynamics
causes a qualitative shift in the behavior of the droplet
position, and gives rise to a previously uncovered deter-
ministic drift instability. Such an instability occurs at
high driving currents, leading to an exponential increase
in the droplet velocity. This effect also implies a small
basin of attraction for the stable fixed point, providing a
simple explanation for the origin of drift instabilities from
randomness in the system, such as thermal fluctuations.

We find that in parameter regimes where the deter-
ministic droplet is linearly stable, the stochastically in-
duced drift instabilities are rare events compared with
the typical precessional timescales. A notable implica-
tion is that the observation of drift instabilities due to
thermal fluctuations using micromagnetic simulations is
prohibitive. In contrast, our finite dimensional reduction
of the governing partial differential equation makes such
effects computationally feasible. The study of rare events
is beyond the scope of this paper, but motivates an ap-
plication of large deviation theory, as previously studied,
for example, in the context of fiber optic soliton commu-
nication systems32. Likewise, micromagnetic simulations
tailored to study rare events33 might be used to resolve
the time and computational limitations. Even in the de-
terministic case, the predicted linear instability may be
difficult to recover from micromagnetic simulations due
its slow rate of exponential growth. From an experimen-
tal point of view, typical measurement timescales suggest
that drift instability and droplet renucleation can occur
many times. For example, the long timescale required in
the direct imaging of localized excitations, 500 ms, in-
dicates that drift instabilities could occur ∼ 106 times,
leading to the small droplet amplitude and spatial smear-
ing observed in the XMCD images of Ref. 12.

In contrast, previous works have interpreted the
droplet drift mechanism through spatial inhomogeneities
in field22 or anisotropy13. Here, we have identified two
additional drift mechanisms, a deterministic linear in-
stability inherent to the NC-STO system and rare drift
events caused by thermal fluctuations.

Our model also allows us to obtain an analytical
expression for the linearly stable droplet generation
linewidth. At low temperature, we find that the phase
noise is characterized by a Wiener process (random walk)
and the droplet center is an O-U process, analogous to the
stochastic phase and amplitude dynamics, respectively,
of spatially uniform STOs25. For the linearized system,
the resulting generation linewidth is linearly dependent
on temperature, whereas the nonlinear system exhibits
a linewidth enhancement when approaching room tem-
perature, reflecting the coupling between the droplet’s



9

constituent variables. Full-scale micromagnetic simula-
tion, including the fully nonlinear spatial variation of the
system, qualitatively agree with the numerical results.
However, we do not observe convergence toward the lin-
ear theory at low temperatures using a standard micro-
magnetic package31. This suggests the study of droplet
generation linewidth as a test problem for stochastic mi-
cromagnetic codes34.

The analytical and numerical linewidths obtained are
two orders of magnitude below the typical linewidths ob-
served in experiments. This disagreement may be caused
by the small NC radii used experimentally, the exis-
tence of non-local dipolar and current-induced Oersted
fields, and the aforementioned drift instabilities for data-
acquisition timescales. In fact, micromagnetic simula-
tions performed with a radius similar to those experi-
mentally fabricated to date return linewidths in the same
order of magnitude when both non-local and current-
induced Oersted fields are included. The relevance of
such fields in the generation linewidth motivates their
inclusion in the analytical theory. For thin films, the
effect of non-local dipole fields on deterministic droplet
dynamics has been shown to be a frequency downshift

when v = 08. It remains to incorporate these effects into
the stochastic theory when v 6= 0. Because the Oersted
field is not a singular perturbation22, its inclusion in this
collective theory would necessitate the incorporation of
droplet coupling to spin waves. Such coupling is in prin-
ciple possible, see, e.g., Ref. 35.

In conclusion, this work provides the means to seek op-
timized experimental parameters for a given application.
To wit, we find that an environment with a large NC
radius, low field, modest current, and large anisotropy
are less susceptible to drift and thus lead to a much
narrower generation linewidth. Our results motivate a
more detailed experimental study on the current and
temperature-dependent generation linewidth and ejec-
tion statistics of droplets.
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APPENDIX

Appendix A: Numerical Methods

We simulate the nonlinear system Eq. (7) via the
Euler-Maruyama method, with drift correction to ac-
count for the Stratonovich interpretation of the stochas-
tic integrals36. Results of the higher-order Milstein
scheme36 yield negligibly different results. For exam-
ple, the linewidth at room temperature differed by < 1%
between the Euler and Milstein simulations. We use a
timestep of dt = 4, and our total integration time is
t = 4 · 104. We integrate 500 sample paths, and then use
the standard sample variance to produce Figure 4.
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FIG. 6. (color online) Convergence plot indicating that |ξNL−
ξL| = O(β2) = O(T ). Best-fit line has slope of 0.9793.

We must ensure that our nonlinear and linear systems
coincide when T → 0. To that end, we calculate the path-
wise difference between the droplet center ξL calculated
by discretizing the linear system Eq. (17) and the droplet
center ξNL calculated via discretizing the nonlinear sys-
tem Eq. (7). Note that both paths are calculated using
the same stochastic terms, scaled appropriately. The re-
sults are shown in Figure 6. The standard deviation of
the droplet center from the fixed point is O(

√
T ), and

the separation between the nonlinear and linear paths is
O(T ), so we have

‖ξNL(t)− ξL(t)‖ = O(s2
ξ). (A1)

This linear convergence in T is a positive consistency
check on the linearization Eq. (17) and stochastic
timestepping of the nonlinear system Eq. (7).


