
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonequilibrium breakdown of a correlated insulator
through pattern formation

Pedro Ribeiro, Andrey E. Antipov, and Alexey N. Rubtsov
Phys. Rev. B 93, 144305 — Published 25 April 2016

DOI: 10.1103/PhysRevB.93.144305

http://dx.doi.org/10.1103/PhysRevB.93.144305


Non equilibrium breakdown of a correlated insulator through pattern formation

Pedro Ribeiro,1, 2 Andrey E. Antipov,3 and Alexey N. Rubtsov1, 4
1Russian Quantum Center, Novaya street 100 A, Skolkovo, Moscow area, 143025 Russia

2CeFEMA, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
3Department of Physics University of Michigan, Randall Laboratory, 450 Church Street, Ann Arbor, MI 48109-1040

4Department of Physics, Lomonosov Moscow State University, Leninskie gory 1, 119991 Moscow, Russia

We study the breakdown of an interaction-induced insulator under an imposed bias voltage. A rich
voltage-temperature phase diagram is found that contains phases with a spatially patterned charge
gap. Non equilibrium conditions are shown to be able to change the antiferromagnetic nature of
the equilibrium correlations. Above a threshold voltage, smaller than the charge gap, formation of
patterns occurs together with the emergence of mid-gap states yielding a finite conductance. We
discuss experimental implications of this proposed scenario for the breakdown of the insulating state.

PACS numbers: 72.10.-d, 71.27.+a, 72.20.-i, 71.30.+h

I. INTRODUCTION

Pattern formation, known also as self-organization,
refers to the occurrence of spatial-structured steady-
states in non-linear systems under out of equilibrium
external conditions1. A textbook illustration is the
Rayleigh–Bénard convection, but examples are found
ubiquitously in physical, chemical as well as in biolog-
ical systems2,3.

In semiconductors, pattern formation is a hallmark of
voltage-driven non-equilibrium phase transition from in-
sulating to metallic states4. Moving patterns that arise
near phase boundaries contribute to a finite conductiv-
ity. These phenomena can essentially be explained ne-
glecting electron-electron interactions. A seminal ex-
periment, revealing pattern formation in strongly cor-
related materials5, reported current-induced patterns in
a quasi-one dimensional organic charge-transfer complex
on the verge of Mott breakdown. The reported non-linear
I-V characteristic shows an intermediate-voltage low-
resistance state characterized by a striped charge pattern,
before the switching to a metallic regime. Recently, ex-
perimental results for spinor Bose-Einstein condensates6
and, theoretical studies of polariton condensates7,8 also
reported patterned phases.

Non-equilibrium dynamics of strongly correlated quan-
tum systems has been receiving an increasing amount of
attention due to a rich interplay between electronic ki-
netics, interaction and non-equilibrium conditions. Ma-
jor experimental progress was driven forward by a tight
control of the dynamics in cold atomic setups9–11 and
pump-probe experiments12,13. On the theory side, sub-
stantial progress has been done in understanding ther-
malization and dissipation14–17, as well as universal as-
pects of non-equilibrium phase transitions18–26. Fur-
ther developments also arose concerning novel compu-
tational methods27–31 and techniques32–34. In partic-
ular, the study of out-of-equilibrium properties of the
Hubbard model has been an active research area32,35–42.

Interesting dynamical transitions between small and
large interaction quenches were shown to occur at
half-filling33,34,43–45. Transport properties at finite
temperature46 and in the presence of Markovian47,48 and
non Markovian49,50 dissipation have also been recently
investigated.

A key problem is the understanding of the transi-
tion from an interaction-induced insulator to a current-
carrying state upon increasing the bias voltage applied
by external leads. The generated electro-chemical gradi-
ents induce two effects of rather different nature: (i) a
thermodynamic-imbalance depending on the electronic
distribution functions in the leads, and (ii) the cou-
pling of the charged particles to the electric field created
by the voltage drop. The breakdown of a Mott insu-
lator induced by effect (ii) recently received important
contributions. Using the Peierls substitution argument,
(ii) can be studied on a system with periodic bound-
ary conditions pierced by a linear-in-time magnetic flux.
The procedure eliminates the need for an explicit treat-
ment of the reservoirs and renders the problem amenable
to Lanczos51, DMRG52, DMFT40,53–56, non-equilibrium
Green’s functions57, and analytic58,59 methods. These
studies revealed a qualitative scenario that can be in-
terpreted as the many-body analog of the Landau-Zener
(LZ) mechanism observed in band insulators51: the LZ
energy scale sets a threshold Vth ∼ ∆2L/W above which
a field-induced metallic phase sets in, with ∆ the charge
gap, L the system’s linear size and W the bandwidth.
Zener’s formula yields Vth/L � ∆, overestimating ex-
perimentally measured values of threshold fields60–62.

The combined effect of (i) and (ii), that requires
an explicit treatment of the reservoirs, has been re-
cently addressed using non-equilibrium Green’s func-
tions approaches63,64 and within the framework of
time-dependent density-matrix renormalization-group
(tDMRG) methods65. Both sets of results are compat-
ible with a current-voltage characteristics of the form
J ' V e−Vth/V . A thorough study64, assuming antifer-
romagnetic correlations and carried out at T = 0 in the
presence of long-range Coulomb interactions, pointed out
that the dominant effect depends on the ratio between
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the correlation length in the insulating phase ξ and the
size of the insulating region L. For ξ/L� 1, (i) leads to
Vth ∼ ∆; for ξ/L� 1 (ii) dominates and the LZ scenario
is recovered.

In previous studies, the assumption that antiferro-
magnetic correlations prevail has precluded the predic-
tion of any pattern formation. Relaxing this assump-
tion, we are able to address the existence of patterned
states in strongly correlated electronic systems under
non-equilibrium conditions. Here, the half-filled Hub-
bard model is considered, where the equilibrium low-
temperature state is an insulator due to electron-electron
interactions. We address out-of-equilibrium properties of
an Hubbard chain coupled to metallic leads held at dif-
ferent chemical potentials. We focus on thermodynamic-
imbalance effects, dubbed (i) in the previous discussion.
The presence of the leads induces the non-equilibrium
conditions and provides an intrinsically non-Markovian50
dissipative environment ensuring that a steady-state so-
lution exits for asymptotically large times at the mean-
field level. We compute the instabilities of the system
to spatially modulated patterns, identify a rich set of
candidate phases - among which examples of pattern for-
mation - and analyze their properties in the nonlinear
regime. Non-equilibrium conditions are shown to change
the underlying correlations of the equilibrium state. We
put forward a scenario for the breakdown of an inter-
action induced insulating phase through the emergence
of conducting mid-gap states that coincides with the ap-
pearance of patterns for Vth . ∆. Our results are of
direct relevance to interpret properties of quasi-one di-
mensional organic compounds5 where pattern formation
has been reported.

II. MODEL AND METHODS

We consider the interacting system S, depicted in Fig.
1-(a), consisting of a chain coupled to metallic reservoirs.
The Hamiltonian can be decomposed as H = HS+H∂S+
HS̄, where

HS = −t
∑
〈r,r′〉,s

c†rscr′s +
U

2

∑
r

(nr − 1)
2 (1)

is the Hamiltonian of the system, consisting of a fermionic
Hubbard chain, with s labeling spin degrees of freedom
and nr =

∑
s c
†
rscrs. The hopping matrix element be-

tween nearest neighbor sites is taken to be the energy
unit, i.e. t = 1. HS̄ =

∑
α,s,l d

†
lαsεl,αdlαs is the Hamilto-

nian of the reservoirs, with l = L,R labeling the reservoir
and α the reservoir’s single-particle modes. The density
of states of the leads is taken to be the one of a wide
band metal, i.e. constant within all the relevant energy
scales. The system-reservoir coupling is described by the
hopping term H∂S =

∑
α,s,l v d

†
lαscrl,s + h.c., where rL,R

are the sites at the extremities of the chain and v is the
hopping amplitude. Under these assumptions the reser-

Figure 1. (a) Schematic view of the physical setup. (b) Den-
sity plot of the first unstable mode Ψ0 (r) plotted as a func-
tion of the bias V for Γ = 0.25, T = 0.25, L = 50 and for
U = Uc (T, V ). The phase labels I,...,V point to qualitatively
different behavior of Ψ0 (r). (c) Typical spatial dependence
of Ψ0 (r) in each phase (orange line), plotted for L = 80. The
blue line depicts the envelope function. (c) Density plot of the
Fourier transform Ψ0 (q) of Ψ0 (r) as a function of q computed
for L = 50.

voirs are characterized solely by their hybridization con-
stant Γ = πv2ρ, with ρ the reservoir’s density of states,
and by their thermodynamic potentials: temperature Tl
and chemical potential µl. We take T = TR = TL and
µL = −µR = V/2 with V the applied bias voltage. For
simplicity, Γ is assumed to be the same for both reser-
voirs.

In the following we employ a non-equilibrium mean-
field approach to study the effects of the applied voltage.

In equilibrium, the mean-field treatment overestimates
the role of correlations which may lead to the predic-
tion of ordered states in 1d systems, whereas phases
that break a continuous symmetry are forbidden by the
Mermin-Wagner theorem. For the one dimensional half-
filled Hubbard model, mean-field predicts a antiferro-
magnetic state whereas the ground-state is disordered
with slowly (algebraic) decaying antiferromagnetic corre-
lations. Charge properties, featuring an insulating state
with a finite charge gap, are quantitatively reproduced
for small and intermediate U. The ordered state therefore
captures the most prominent correlations of the param-
agnetic ground-state and recovers the charge properties
for small U . Out-of-equilibrium the mean-field treatment
is also expected to overestimate the role of correlations
and its results have still to be taken at a qualitative level.
Nonetheless, it should provide a clear physical picture of
the underlying physics.

The procedure to obtain the mean-field equations and
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the magnetic susceptibility is standard and is given in A
and B for completeness. Here we outline the main steps.
Working on the Keldysh contour we use the identity66,67

U

2
(nr − 1)

2
= −U

3
Sr.Sr +

U

4
(nr − 1)

2
+
U

4
, (2)

with Sr = 1
2c
†
r,sσss′cr,s′ . Eq.(2) is valid for

fermionic and Grassmanian fields and does not intro-
duce any renormalization of the chemical potential.
A 3-component Hubbard-Stratonovich field φ and a
scalar field % are introduced to decouple the interac-
tion term in the spin-density wave channel U

3 Sr.Sr →
Sr.φr + 1

2
3

2Uφr.φr and in the charge-density chan-
nel U

4 (nr − 1)
2 → (nr − 1) .%r + 1

2
1

2U %r.%r. Note
that %r corresponds to local deviations with respect
to half-filling. Assuming a wide-band limit, the in-
tegration of the non-interacting reservoirs yields a lo-
cal self-energy contribution to the c electrons (see A 2):
Σ
R/A
r=rl,r′=rl

(t, t′) ' ∓iΓδ (t− t′), ΣKr=rl,r′=rl
(t, t′) '

−2iΓ
´
dε
2π tanh

[
βl
2 (ε− µl)

]
e−iε(t−t

′). Finally, integrat-
ing out the c degrees of freedom, we arrive to an action
uniquely dependent on the fields φ and %. We use the
Keldysh rotation of the time-dependent order parame-
ter to its quantum and classical components (φc,r,φq,r)
and by varying the action with respect to these fields
we obtain a set of saddle point equations with φq,r(t) =
%q,r(t) = 0. We focus on the steady state regime and
parametrize the classical component of steady state so-
lutions by

φc,r (t) =
√

2φr, (3)

%c,r (t) = i2
√

2µr, (4)

anticipating that % has an imaginary stationary solution.
In these variables the mean-field self-consistent condi-
tions are given by

φr = −iU
3
tr
[
GKrr (t, t)

σ

2

]
, (5)

µr = −iU
2
tr
[
GKrr (t, t)

1

2

]
, (6)

where GKrr (t, t) is the Keldysh component of the local
c-electron Green’s function. At the mean-field level, the
excitation spectrum is given by the non-hermitian mean-
field operator

K = −t
∑
〈r,r′〉,s

c†rscr′s − iΓ
∑
l,s

c†rlscrls

+
∑
rss′

(
−1

2
σss′ .φ,r − µr

)
c†rscrs′ . (7)

The retarded Green’s function is obtained in terms
of the left- (〈α̃|) and right- (|α〉) eigenvectors of K
with complex eigenvalues λα (Imλα < 0): GR (ω) =∑
α |α〉 (ω − λα)

−1 〈α̃|. The Keldysh component, derived
in detailed in B 2, is obtained in a similar way.

Within the mean-field approximation there is a unique
steady-state for a given spin-density wave profile φr.
This result follows from the uniqueness of the steady-
state for non-interacting systems in the absence of bound
states68, here ensured by the presence of the wide band
leads50. For interacting open systems with a few degrees
of freedom a unique steady state has also been generically
found69–71. Together these two facts strongly suggest the
existence of a unique steady-state in the present case, at
least for finite chains.

Fluctuations around the mean-field further provide a
stability analysis for the saddle-point solutions. In or-
der to investigate the possible steady-states that can
be realized under non-equilibrium conditions we com-
pute the spin susceptibility χ in the disordered state
(φr = 0) and analyze the first unstable modes aris-
ing upon increasing U . The retarded spin susceptibil-
ity χRii′;rr′ (t, t

′) = −iΘ (t− t′)
〈{
Sir(t), Si

′

r′(t
′)
}〉

(with
i, i′ = x, y, z) is given by the RPA-type expression that,
in the steady state, reads

[
χRii′ (ω)

]−1

rr′
=

1

2
δii′

[
− 3

U
δrr′ − ΞRrr′ (ω)

]
, (8)

where ΞRrr′ (t, t
′) = −i 1

2 tr[G
A
r′r (t′, t)GKrr′ (t, t

′) +

GKr′r (t′, t)GRrr′ (t, t
′)] is the bare bubble diagram com-

puted at φr, %r = 0 and G
R/A

rr′ (t, t′) are the spatially
resolved retarded/advanced components of the Green’s
function of the c-electrons.

Upon increasing U , the eigenvalues of χR (ω) as a func-
tion of ω, may develop poles in the upper-half of the com-
plex plane. When this occurs, small perturbations in the
direction of the corresponding eigenmode of χR (ω) grow
exponentially in time until anharmonic mode-coupling
terms start to be relevant. This process signals an in-
stability of the system. In the linear regime, for U suf-
ficiently close to Uc, the new stable phase, arising for
U > Uc, is expected to develop the spatial structure of
the lowest eigen-mode of χR (ω). In the following we
assume that unstable modes first occur for steady-state
solutions i.e. at ω = 0. The unstable mode corresponds
to the most negative eigenvalue λΞ

0 of ΞR (ω = 0) and its
spatial configuration is given by the corresponding eigen-
vector Ψ0 (r).

In an equilibrium setup, where the system is as-
sumed to be in a Gibbs state with density matrix
ρ = e−β(H−µN)/Z, periodic boundary conditions lead
to Ψ0 (r) = 1√

L
eiQr, with Q = π signaling an instabil-

ity towards the antiferromagneticaly ordered phase. This
picture is essentially unchanged in the presence of open
boundary conditions with the order parameter amplitude
typically getting distorted near the boundaries of the sys-
tem. Note that for V = 0, the presence of the leads with
a finite hybridization Γ does not change this scenario and
in the limit Γ→ 0+ the equilibrium Gibbs state is recov-
ered in the steady-state.
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Figure 2. (a) Phase diagram as a function of V and T for
U = Uc (T, V ), corresponding to the appearance of the first
unstable mode, computed for Γ = 0.25. The dashed line
corresponds to the plots (b) and (c) of Fig.1. (b) Values of
Uc for which the first instability arises as a function of V and
T , for Γ = 0.25 and L = 50.

III. RESULTS

In order to ensure half-filing we set the µL = −µR =
V/2. With this prescription all the obtained self-
consistent solutions of µr where found to vanish, there-
fore in the following we set µr = 0 and focus only on
φr. Figs. 1-(b,c) depict the typical spatial structure
of steady state Ψ0 (r) obtained upon varying the bias
voltage V . Five different phases (labeled by I,...,V) can
be observed, corresponding to qualitatively different fea-
tures of Ψ0 (r). Fig. 1-(d) depicts a contour plot of the
Fourier transform Ψ0 (q) of Ψ0 (r) showing that the dif-
ferent phases correspond to different wave vectors Q for
which |Ψ0 (Q)| is maximal. Phase I occurs for low volt-
ages V < VAF and T > 0 and occupies a region where the
antiferromagnetic phase corresponds to the first instabil-
ity. The order parameter is maximal in the center of the
system. The emergence of patterns is visible in phase II
(VAF < V < Vloc ), where the spin-susceptibility insta-
bility corresponds to an ordered state with wave vectors
q = ±Q, with Q varying continuously from its antiferro-
magnetic value π, for V = VAF, to a new value Q ≤ 0,
for V = Vloc. Phase III (Vloc < V < VF) corresponds to a
modulated phase, with Q 6= 0, π, exponentially localized
near the leads. Phase IV (VF < V < V0) is a ferromag-
netic phase with an envelope function that is maximal at
the center of the system. Finally, phase V corresponds
to an essentially disordered phase (φ = 0) with the order
parameter amplitude being localized in the first few sites
near the leads.

Fig. 2-(a) shows the phase diagram in the V −T plane
for Γ = 0.25 near U = Uc(T, V ) for which the first in-
stability arises. Other values of Γ within the range 0.05
to 0.5 yield qualitatively similar results. At T = 0 the
anti-ferromagnetism of phase I is unstable under any fi-
nite bias voltage giving place to the modulated phase II.
Moreover, at zero temperature no ferromagnetic phase
is present yielding a direct transition form II to the dis-
ordered phase V. The localized modulated phase III is

Figure 3. Properties for U > Uc obtained for Γ = 0.25,
T = 0.03, U = 6.3 corresponding to an equilibrium (V = 0)
charge gap of ∆ = 2 |φ| ' 1.57. (a) Density plot of Φ (r)
plotted as a function of V for L = 100. The lines and
markers label the specific values of Figs. (c-e). (b) Maxi-
mum value of the order parameter φMax = maxr |φr| (green)
and particle current through the chain J (blue) as a func-
tion of V for L = 80 (circles) and L = 100 (triangles). (c.1)
Integrated density of states N (ω) =

∑
α Θ (ω − Reλα) for

V = 0.38 and L = 100, the thickness of the black line is given
by Imλα. The red-dashed lines correspond to ω = ±ΦMax

and the blue-dashed lines to ω = ±V/2. The inset depicts
the spatial dependence of φ (r). (c.2-3) Differential conduc-
tance dJtip/dVtip obtained by an STM tip, computed for
Ttip = 0.02, placed at position r, for r = 37 (c.2) r = 50 (c.3),
corresponding to a minimum and a maximum of the order
parameter amplitude. (d.1-3) Same as (c.1-3) for V = 0.48,
r = 40 and r = 50. (e.1-3) Same as (c.1-3) for V = 0.58,
r = 44 and r = 50.

present only for intermediate temperatures. For suffi-
ciently high temperatures, within the range of tempera-
tures and voltages studied, only phase I, II and IV are
observed. The critical value of U , given by Uc = −3/λΞ

0

after Eq.(8), is plotted in Fig.(2)-(b) for a system with
L = 50. For low temperature, this quantity is sub-
jected to strong finite size corrections for small U . Care
must be taken extrapolating to the thermodynamic limit,
nonetheless we verify that for T → 0 and L→∞ one has
Uc → 0, (see D).

In order to verify the existence of well defined patters
at U � Uc and describe their spatial structure, the lin-
ear response RPA-type description is insufficient, as non-
linear terms in Eq.(5) start to play an important role and
have to be taken into account. In this regime, the mean-
field solution for the order parameter φ is obtained solv-
ing the self-consistent relation in Eq.(5). The procedure
is done iteratively allowing only for collinear magnetized
states, i.e. 〈Sr〉 ∝ êz. Fig.3-(a) shows the spatial struc-
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ture of φr obtained in this way. The considered value of
U = 6.3 corresponds to an equilibrium (V = 0) charge
gap of ∆ = 2 |φ| ' 1.57. Out of equilibrium, phases III-V
are absent and the range of values of V for which phase
II arises is reduced with respect to the diagram of Fig.
2-(a). Nevertheless, a modulated solution can be found
deep into the non-linear regime. Fig.3-(b) depicts the
maximum value of the order parameter amplitude φMax
showing that phase II transits directly to the disordered
phase φ = 0 upon increasing V .

Fig. 3-(b) shows also the values of the particle current
through the system. A relatively low current in phase
I is followed by a quick rise of current during phase II
and a linear I-V characteristics in the disordered phase.
Figs. 3-(c-e.1) show the integrated steady state density
of states in phase II. One observes that upon increasing
V a new band of conducting states arises, corresponding
to single particle-energies −V/2 < Reλα < V/2. The
appearance of such states is responsible for the current
increase in phase II. This phase ceases to exist when V
becomes of the order of the inter-band gap, roughly given
by φMax, corresponding a complete filling of the gap by
conducting states. The I-V characteristics can thus be
used as a diagnostic to discriminate between different
phases.

The spacial dependent amplitude of the antiferromag-
netic order parameter corresponds to a spin and site-
modulated potential seen by the electrons. In the pat-
terned phase, the regions near the nodes of the order
parameter form well-like regions that low energy elec-
tors can occupy. Midd gap states can thus be seen as
Bloch waves of low energy electrons whose wave function
is maximal in the regions where the order parameter am-
plitude vanishes.

To further characterize these states we monitor the dif-
ferential conductivity that is measured by an STM tip
placed over site r. Assuming a wide-band metallic tip
with constant DOS, weakly coupled to the chain at posi-
tion r, one obtains the standard linear-response expres-
sion

dJtip
dVtip

∝ −
ˆ
dω

βtip/2

cosh [βtip (ω − Vtip)] + 1
ρr (ω)

where ρr (ω) = tr
[
GRr,r (ω)−GAr,r (ω)

]
/ (−2πi) is the

local DOS of the chain at site r, βtip and Vtip are respec-
tively the tip’s inverse temperature and chemical poten-
tial. Figs. 3 (c-e.2-3) show dJtip/dVtip for sites corre-
sponding to minima and maxima of the order parameter
for 3 values of V within phase II. The band of conducting
states can clearly be seen arising within the gap. The lo-
cal DOS for |Vtip| < φMax increases or decreases, depend-
ing on whether a position corresponding to a minimum
or a maximum of the order parameter amplitude is mon-
itored.

IV. DISCUSSION

To summarize, we have described a scenario for the
breakdown of an interaction-induced insulator though
pattern formation in a correlated electronic system un-
der strong non-equilibrium conditions imposed by a finite
bias voltage. The development of a conducting phase
occurs at voltages smaller than the value of the charge
gap and is characterized by the emergence of the mid-
gap states. The thermodynamic imbalance imposed by a
finite applied voltage generates a rich set of novel behav-
iors, among which examples of non-equilibrium spatially-
induced patterned phases. Such phases, well studied
in classical systems, and recently predicted in systems
with Markovian dissipation7,8, are here reported for the
fermionic Hubbard model with a non-Markovian environ-
ment and are shown to exist down to zero temperature.
The suggested mechanism can be tested experimentally
monitoring current transport across the system and by
STM measurements, spatially resolving the modulated
charge gap.

Note that, strictly in 1d, the phase transitions ob-
tained at the mean-field level should instead correspond
to crossovers. In the same way, the calculated magnetic
order likely corresponds to a disordered phase with slow
power-law decaying spin-spin correlation functions with
a voltage-dependent momentum. Nonetheless, charge
properties should be qualitative captured.

The presence of a dissipative environment, other than
the leads, acting extensively throughout the system may
help to stabilize the magnetic order, seen at the mean-
field level. In this case our results can be used to qual-
itatively predict magnetic properties in addition to the
charge ones. The emergent order can otherwise be stabi-
lized in quasi-one dimensional systems of weakly coupled
chains. These considerations capture characteristic fea-
tures of the breakdown of the organic charge insulator,
reported in Ref.5. There, upon increasing voltage, the
authors observed the presence of an intermediate resis-
tance regime between an insulating and a metallic phase
with an I-V characteristic similar to the one of Fig.2-(b).
Charge-couple device (CCD) imaging of the intermediate
phase revealed spatially separated regions of alternating
concentrations of low energy charge caries, not present
neither in the insulating, nor in the metallic phase. Im-
portant differences, such as a diffusive electronic trans-
port and the long-range Coulomb interactions within the
insulating phase, hinder a quantitative prediction of ex-
perimental observations.

The present results suggest that, as in the case of
classical systems, patterned phases can be ubiquitous in
the presence of interactions and spatially non-uniform
out of equilibrium conditions. In particular for elec-
tronic systems with d > 1 pattern formation can be pre-
dicted by our method and may help to shed light on spa-
tial structures observed near the dielectric breakdown of
certain Mott compounds61,62. In films and bulk com-
pounds, these effects should depend on the orientation
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of the non-equilibrium drive with respect to the Fermi
surface, opening possibilities for novel patterned phases.
Non-equilibrium phase transitions to patterned phases,
in particular at zero temperature where quantum effects
are most relevant, present an interesting paradigm where
new universal behavior could be found.
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Appendix A: Keldysh Action

1. Generating Functional

The generating function in the Keldysh contour γ is
defined as

Z =

ˆ
DC ei[C

†g−1C]−i
´
γ
dz U2

∑
r [nr(z)−1]2 , (A1)

where C =
(
c dL dR

)T and

g−1 =

 g−1
Σ −VL −VR
−V †L g−1

L 0

−V †R 0 g−1
R

 , (A2)

is the inverse of the bare Green’s function with

g−1
S;r,r′ (z, z

′) = δ (z − z′)
(
δr,r′i∂z + t̃r,r′

)
, (A3)

g−1
l;α,α′ = δα,α′δ (z − z′) (i∂z − εl,α) , (A4)

Vl;r,α = vlδr,rl . (A5)

After using the identity in Eq.(2) and inserting a vectorial
3-component Hubbard-Stratonovich φ and a scalar field
% to decouple the interactions, one obtains, by integrating
out the electronic degrees of freedom: Z =

´
Dφ eiS[φ],

where

S [φ] =
1

2

∑
r

ˆ
γ

dz π−1
i φir (z) .φir (z)− i

2

ˆ
γ

dz
∑
r

%r

+
1

2

∑
r

ˆ
γ

dz π−1
0 %2

r (z)− i tr ln
[
−iG−1

]
, (A6)

with π−1
x,y,z = − 3

2U and π−1
0 = − 1

2U , and G given by
Dyson’s equation:

G−1 = g−1
S − ΣL − ΣR − Σφ, (A7)

where

Σl;r,r′ (z, z
′) = |vl|2

∑
α

gl;α,α (z, z′) δr,rlδr′,rl , (A8)

Σφ;r,r′ = −1

2
[σ.φr (z) + i%r (z)] δr,r′δ (z − z′) .

(A9)

2. Properties of the reservoirs

As mentioned in the main text the reservoirs are as-
sumed to be metallic leads with a constant density of
states within all relevant energy scales. The reservoirs
are also considered to be infinite and are held in a ther-
mal state characterized by a chemical potential µl and a
temperature Tl. Under this assumptions we can write

Σ
R/A
l (t, t′) ' ∓iΓlδ (t− t′) |rl〉 〈rl| , (A10)

ΣKl (t, t′) ' −2iΓlFl (t− t′) |rl〉 〈rl| , (A11)

with Γl = π |vl|2 ρl (0), with ρl (0) the density of states
of the reservoir l computed at ω = 0, and

Fl (t− t′) =

ˆ
dε

2π
tanh

[
βl
2

(ε− µl)
]
e−iεt. (A12)

Appendix B: Saddle-Point equations

1. Variation of the action

Using the notation φ̃ = {i%r (z) ,φ}, we define classical
and quantum fields as(

φ̃ic,r (t′)

φ̃iq,r (t′)

)
=

1√
2

(
1 1
1 −1

)
.

( −→̃
φir (t′)←−̃
φir (t′)

)
(B1)

where
−→̃
φir (t) ,

←−̃
φir (t) = φ̃ir (z) (for z ∈ γ→, γ←) are respec-

tively the Hubbard-Stratonovich fields in the forwards
and backwards parts of the contour. In this way we have
that ∑

r,i

ˆ
γ

dz π−1
i φ̃ir (z) φ̃ir (z) =

= π−1
i

∑
r,i

ˆ
dt

( −→̃
φir (t)←−̃
φir (t)

)T (
1 0
0 −1

)( −→̃
φir (t′)←−̃
φir (t′)

)

= π−1
i

∑
ri

ˆ
dt

(
φ̃ic,r (t)

φ̃iq,r (t)

)T (
0 1
1 0

)(
φ̃ic,r (t′)

φ̃iq,r (t′)

)
(B2)

We proceed to find the saddle-point equations
δφia,r(t)S [φ] = 0, resulting in

φ̃ic,r (t) =
i

2
πitr

[
1√
2

(
GTrr

(
t, t+

)
+GT̄rr

(
t+, t

))
σi
]
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(B3)

φ̃iq,r (t) =
i

2
πitr

[
1√
2

(
GTrr

(
t, t+

)
−GT̄rr

(
t+, t

))
σi
]
(B4)

with GT and GT̄ being the propagators on the forward
and backward parts of the contour. Evaluated at the
causal solution: φ̃iq,r (t) = 0 we obtain

φ̃ic,r (t) =
i

2
πitr

[
1√
2
GKrr (t, t)σi

]
(B5)

2. Steady-state

From Dyson’s equation, i.e.
[
G−1

]R/A
GR/A = 1,[

GR
]−1

GK = ΣKGA and GK
[
GA
]−1

= GRΣK (see,
for example,72), and with the steady-state values of the
fields given by the parametrization in Eq.(3), we obtain

GR (ω) = (ω −K)
−1
, (B6)

where

K = H − iΓ, (B7)

with

H =
∑
rr′σ

|r, s〉
[
−t̃r,r′ −

1

2
δrr′σss′ .φr − µr

]
〈r′, s′| ,(B8)

Γ = ΓL + ΓR, (B9)
Γl = Γl |rl〉 〈rl| , (B10)

is a single-particle operator. With this notation, the
many-body operator K defined in the main text is given
by

K =
∑

rr′ss′

c†rs 〈rs|K |r′s′〉 cr′s′ .

Assuming that K is diagonalizable with right and left
eigenvectors

K |α〉 = λα |α〉 (B11)
〈α̃|K = λα 〈α̃| (B12)

such that Imλα < 0, we can express it as

K =
∑
α

|α〉λα 〈α̃| (B13)

with the identities∑
α

|α〉 〈α̃| =
∑
α

|α̃〉 〈α| = 1 (B14)

〈α |α̃′〉 = δαα′ (B15)

With this notation we can parametrize the Keldysh com-
ponent of the Green’s function as

GK (ω) = GR (ω)F (ω)− F (ω)GA (ω) (B16)
with

F (ω) =
∑
αα′

|α〉
−2i

∑
l tanh

[
βl
2 (ω − µl)

]
〈α̃|Γl |α̃′〉

λα − λ̄α′
〈α′|

Appendix C: Stability conditions at φ = 0

The second order approximation of the action around φ ' 0 is given by

S [φ] ' 1

2

[
φπ−1φ

]
− i

{
tr ln

[
−i
(
G−1

0

)]
− 1

2
tr
[
(G0Σ)

2
]}

(C1)

= −itr ln
[
−i
(
G−1

0

)]
+

1

2

∑
rr′

ˆ
dω

2π

(
φic,r (t)

φiq,r (t)

)T (
0

[
χ−1

]A
i,jrr′

(t, t′)[
χ−1

]R
i,jrr′

(t, t′)
[
χ−1

]K
i,jrr′

(t, t′)

)(
φic,r (t′)

φiq,r (t′)

)

with G−1
0 = G−1

∣∣
φ=0

. The magnetic susceptibility is defined as χijrr′ (z, z
′) = −i

〈
TγS

i
r (z)Sj

r′ (z′)
〉
. Explicitly we

have [
χ−1

]ij
rr′

(t, t′) = δij

(
0 − 3

2U δrr′δ (t− t′)− 1
2ΞAij;rr′ (t, t

′)

− 3
2U δrr′δ (t− t′)− 1

2ΞRij;rr′ (t, t
′) − 1

2ΞKij;rr′ (t, t
′)

)
where Ξ denotes the bubble-like diagrams

Ξ
R/A
rr′ (t, t′) = −i1

2
tr
[
G
A/R
0;r′r (t′, t)GK0;rr′ (t, t

′) +GK0;r′r (t′, t)G
R/A
0;rr′ (t, t

′)
]

ΞKrr′ (t, t
′) = −i1

2
tr
[
GA0;r′r (t′, t)GR0;rr′ (t, t

′) +GR0;r′r (t′, t)GA0;rr′ (t, t
′) +GK0;r′r (t′, t)GK0;rr′ (t, t

′)
]
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Assuming a steady state condition we obtain, for the retarded component

ΞRrr′ (ω) = Ξ
(1)
rr′ (ω) + Ξ̄

(2)
rr′ (−ω) + Ξ

(2)
rr′ (ω) + Ξ̄

(1)
rr′ (−ω)

Ξ
(1)
rr′ (ω) = −

∑
αβ

∑
l

〈r′
∣∣∣β̃〉 〈β |r〉 〈r |α〉Alαr′ Il (λ̄β + ω, λα

)
Ξ

(2)
rr′ (ω) = −

∑
αβ

∑
l

〈r′ |α〉 〈r |β〉
〈
β̃ |r′〉Alαr Il (λβ − ω, λα)

with

Il (z, z
′) =

1

π

ψ(0)
[

1
2 − isgn (Imz′) βl(z

′−µl)
2π

]
− ψ(0)

[
1
2 − isgn (Imz) βl(z−µl)2π

]
z − y ,

Alαr =
∑
α′

〈α̃|Γl |α̃′〉 〈α′ |r〉
λα − λ̄α′

and ψ(0) (z) = ∂z ln Γ (z) the logarithmic derivative of the Gamma function.

Appendix D: Supplemental numerical results

1. Discussion of finite size effects

Mean-field arguments are expected to be more accurate
in the weak coupling limit, for small values of U . In
the main text we illustrate our findings with numerical
results obtained for U = 6.2. Even if U = 6.2 corresponds
to a rather small ratio U/W ' 1.55 (with W the band-
width), it already belongs to the crossover region between
weak and strong coupling. In this section we justify our
choice of U values due to the appearance of strong finite-
size effects for small U .

Fig.4 shows the mean field phase diagram for different
values of the hybridisation Γ and for different system sizes
L computed for V = 0. Compared with the infinite size
limit, there are strong finite size corrections arising for
small U for which the paramagnetic phase extends up to
zero temperature.

As the numerical results are obtained by solving the
self-consistent equations for the order parameter in real
space, the computation times scale with the system size.
To ensure that the reported finite size effects do not affect
the results, in the range of considered systems sizes (L '
50, 80, 100), U = 6.2 was chosen as a compromise.

2. Non-linear regime - U = 8.55

The main text shows results for the intermediate cou-
pling regime, corresponding to values of U of the order
of the bandwidth. From the phase diagram of Fig.(2),
obtained by analyzing the susceptibility, the small-to-

intermediate U requirement implies the pair (Vc, T ), with
Vc defined as Uc(T, Vc) = U , belongs to either to region
I or II. In case it belongs to region I the scenario of the
phase transition is similar to the equilibrium one and no
pattern formation arises. The non-trivial case arises for

� � �
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���

U

T

AF
PM

� = 0.1; L = 50

� = 0.1; L = 100

� = 0.25; L = 50

� = 0.25; L = 100

� � � �
�

�

5

10

15

20I

II
III

IV

V

T

V

Uc(a) (b)

V
0

5

10

15

20

20 <

Figure 4. Behaviour of finite size effects for V = 0. The
mean-field transition temperature, separating the paramag-
netic (PM) from the antiferromagnetic (AF) phases, is com-
puted for two different values of the hybridisation Γ and for
different system sizes L (coloured symbols). The infinite size
result is depicted by the grey line.

(Vc, T ) ∈ II, studied in the main text. In this case, to
show that our results are robust to the particular choice
of U we provide additional numerical results to the ones
of the main text here obtained for U = 8.55 and depicted
in Fig.5. Note that Fig.5 shows the same characteristic
features the U = 6.3 case, see discussion in the main text.
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