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Phase separation, i.e., the coexistence of two different phases, is observed in many systems away
from the coexistence curve of a first-order transition, leading to a stable heterogeneous phase or
region. Examples include various quantum ferromagnets, heavy-fermion systems, rare-earth nicke-
lates, and others. These observations seem to violate basic notions of equilibrium thermodynamics,
which state that phase separation can occur only on the coexistence curve. We show theoretically
that quenched disorder allows for phase separation away from the coexistence curve even in equilib-
rium due to the existence of stable minority-phase droplets within the majority phase. Our scenario
also answers a related question: How can a first-order transition remain sharp in the presence of
quenched disorder without violating the rigorous lower bound ν ≥ 2/d for the correlation-length
exponent? We discuss this scenario in the context of experimental results for a large variety of
systems.

PACS numbers: 05.30.Rt; 64.75.-g

I. INTRODUCTION

Phase separation, i.e., the coexistence of two differ-
ent phases in thermodynamic equilibrium, is a hallmark
of first-order transitions. It follows from basic ther-
modynamics that this phenomenon can occur only on
the coexistence curve, where the two phases have the
same free energy.1 However, in many solid-state sys-
tems phase separation is observed by a variety of tech-
niques – muon spin rotation (µSR), nuclear magnetic res-
onance (NMR), nuclear quadrupole resonance (NQR),
neutron depolarization imaging, and neutron Larmor
diffraction – even away from a coexistence curve. Ex-
amples include quantum ferromagnets and helimagnets
such as MnSi,2,3 Sr1−xCaxRuO3,2,4 and UGe2,5,6 heavy-
fermion systems such as CeCu2.2Si2,7 high-Tc supercon-
ductors such as Europium-doped La1.85Sr0.15CuO4,8 and
systems displaying Mott transitions such as the rare-
earth nickelates.9,10 In some of these systems the first-
order transition is from an ordered phase to a disor-
dered phase (e.g., the ferromagnet-to-paramagnet tran-
sition in Sr1−xCaxRuO3,4 or the transition from an an-
tiferromagnetic insulator to a paramagnetic metal in the
nickelates9), in others, it is between two phases with the
same order parameter (e.g., the FM1-FM2 transition be-
tween two ferromagnetic phases in UGe2.6) Some phase
diagrams contain a tricritical point, in others the transi-
tion is first order for all accessible parameter values, and
in still others a line of first-order transitions ends in a crit-
ical point; schematic observed phase diagrams are shown
in Fig. 1. Phase separation is observed on either side of
the transition, but the experimental evidence is clearer
in the ordered phase, and in some cases no phase separa-
tion has been observed so far in the disordered phase. In
some of these systems there is independent evidence for
the transition being first order, e.g., in the helical mag-
net MnSi,11 in others the observed phase separation is

used as prima facie evidence for the first-order nature of
a nearby phase transition.

These experiments and their interpretations raise a
fundamental question: How can stable phase separation
occur away from the coexistence curve, where the two
phases necessarily have different free energies? Surpris-
ingly, this question does not seem to have been addressed
so far, although it is crucial for an understanding and in-

FIG. 1: Schematic phase diagrams in the temperature (T) -
control parameter (x) plane. (a) A tricritical point (TCP)
separates a line of second-order transitions (solid line) from
a line of first-order transitions (dashed line). Phase sepa-
ration (PS) is observed in both the cross-hatched (red) and
hatched (pink) regions, although some experiments show PS
clearly only in the ordered phase. Examples are the helical
magnet MnSi2,12 and the ferromagnet UGe2

5, with hydro-
static pressure as the control parameter. Inside the ordered
phase another first-order transition and associated PS may
be present, with the line of first-order transitions ending in
a critical point (CP). An example is UGe2

6. (b) The transi-
tion is first order for all values of the control parameter. An
example is the rare-earth nickelate Nd1−xLaxNiO3, with the
dopant concentration as the control parameter9,13. PS in the
tiled (green) region in the disordered phase is expected, but
has so far not been observed.
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terpretation of the experiments mentioned above. We
can think of only two possible explanations: Either these
systems are not in true thermodynamic equilibrium,14 or
they contain quenched disorder that couples to the order
parameter and leads to the existence of static droplets
of the minority phase within the majority phase. The
first option would require a non-equilibrium state with a
very long relaxation time (at least years), since phase
separation has been observed in samples for which a
first-order transition had been reported much earlier.2,11

While this is not inconceivable, it seems implausible that
such a state would not also lead to other observable con-
sequences, e.g., glass-like features. We therefore focus
on the second possibility. We will show that a disorder-
induced droplet scenario, namely, the existence of static
minority-phase droplets within the majority phase, leads
to a consistent theoretical picture that is in agreement
with the experimental observations for a large class of
systems.15 In particular, it can explain the deviation of
the ordered-volume fraction from unity away from the
coexistence curve, and the observed asymmetry between
the ordered and disordered phases. It assumes the exis-
tence of quenched disorder that couples to the order pa-
rameter, but is not necessarily reflected in transport ex-
periments, as some of the systems in question are rather
good metals. We will come back to this assumption in
the discussion.

The organization of this paper, and its main achieve-
ments, are as follows. In Sec. II we use established re-
sults about first- and second-order transitions in the pres-
ence of quenched disorder to show that disorder-induced
droplets can exist near first-order transitions, but not
near second-order ones. In Sec. III we establish crite-
ria for the stability of minority-phase droplets. We show
that they are stable in a sizable region of the phase dia-
gram with reasonable parameter values, and we estimate
the ordered-volume fraction in the ordered phase as a
function of the distance from the coexistence curve. In
Sec. IV we discuss our results and their relation to ex-
periments that have already observed the phenomena for
which this paper provides a physical explanation.

II. PHASE TRANSITIONS IN THE PRESENCE
OF QUENCHED DISORDER

We start with some general considerations regarding
second- and first-order transitions in the presence of
quenched disorder that couples to the order parameter.
Let us first recall the Harris criterion for the critical be-
havior at a second-order transition to be unaffected by
quenched disorder. Let t be the dimensionless distance
from the critical point, and ν the correlation-length expo-
nent. Then the correlation length ξ scales as ξ ∼ t−1/ν , or
t ∼ ξ−1/ν .1,16 Quenched disorder leads to an uncertainty
in t. By the law of large numbers, this uncertainty will
fall off as the inverse square root of the system volume.
Over a correlation volume, it thus obeys (∆t)dis ∼ ξ−d/2,

where d is the spatial dimensionality. In order for the
transition to not be affected by the disorder, the uncer-
tainty ∆t must be smaller than t itself. This leads to the
condition17

ν ≥ 2/d . (2.1)

In Harris’s original argument17 this condition referred
to the renormalization-group fixed point that describes
the critical point in a clean system. If it is violated,
i.e., if ν < 2/d in the clean system, then disorder either
modifies the critical behavior or destroys the transition.
No statement could be made at the time about ν at the
new fixed point, if any, that describes the transition in
the presence of disorder. Later, Chayes et al.18 proved
rigorously that Eq. (2.1) must hold at any fixed point that
describes the physical critical behavior in the presence of
quenched disorder.

Now consider a second-order transition in a finite sys-
tem of linear size L (which can be a subsystem of a larger
system) that is large compared to the microscopic length
scale a, L � a. In the vicinity of the transition, the
order-parameter susceptibility χ (among other observ-
ables) obeys a homogeneity law19

χ(t, L) = bγ/ν Fχ(t b1/ν , L b−1) = t−γ Fχ(1, L tν) . (2.2)

Here b is an arbitrary scale factor, and γ is the suscepti-
bility exponent. The phase transition thus gets rounded
on a scale (∆t)rounding ∼ L−1/ν , while disorder fluctua-

tions lead to an uncertainty (see above) (∆t)dis ∼ L−d/2.
We now ask whether it is possible to form a droplet of size
L that contains a distinguishable phase different from the
majority phase. This requires (∆t)rounding < (∆t)dis, or

ν < 2/d . (2.3)

This means that the existence of droplets is incompatible
with the lower bound on ν given by Eq. (2.1). We con-
clude that disorder-induced droplets cannot exist in the
vicinity of a second-order transition.

Near a first-order transition, the situation is qualita-
tively different. As was shown by Fisher and Berker
(Ref. 20, see also Ref. 21), finite-size scaling consider-
ations yield

ν = 1/d (2.4a)

for the correlation-length exponent at any thermal first-
order transition. This has been generalized to quan-
tum phase transitions.22,23 It was shown that at T = 0
Eq. (2.4a) gets generalized to

ν = 1/(d+ zOP) , (2.4b)

where zOP > 0 is the dynamical critical exponent that
governs the temperature scaling of the order parameter.23

The rounding scale thus crosses over from (∆t)rounding ∼
L−d � L−d/2 in the classical case to (∆t)rounding ∼
L−(d+zOP) � L−d/2 at T = 0, and rounding does not
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preclude the existence of droplets at any temperature.
This striking difference between first- and second-order
transitions gives a first indication of the physics behind
the observed phase diagrams.

To avoid misunderstandings we emphasize that the
droplets we consider are not rare regions. The length
scale we consider is set by the correlation length, so we
are considering typical fluctuations rather then rare ones.
We also stress that we are not discussing nucleation phe-
nomena; the droplets we consider are static in nature.

Let us now consider the energies relevant for the sta-
bility of droplets near a first-order phase transition. Con-
sider a (sub)system of linear size L and volume Ld. Con-
sider two states with free-energy densities f1 and f2, re-
spectively. Suppose a disorder fluctuation causes the low-
est free-energy state in half of the system to be state 1,
and in the other half, state 2. The system can take advan-
tage of this fluctuation by going into a phase-separated
state, but this will incur an energy cost in the form of a
interface energy. For an order parameter with Ising sym-
metry, or for any n-vector model where the coupling of
the order parameter to the underlying lattice breaks the
O(n) symmetry, however weakly, the interface energy is
proportional to the surface area Ld−1. With σ the sur-
face tension, the free energy of the phase-separated state
is

Fps = f1 L
d/2 + f2 L

d/2 + σ Ld−1 , (2.5a)

whereas the homogeneous state has a free energy

Fhom = f1 L
d . (2.5b)

Now the free energy in a system with quenched disor-
der is a random variable, and hence its root-mean square
deviation is 〈(∆F )2〉1/2 ∝ Ld/2. If we take this to be
representative of the free-energy difference (f1 − f2)Ld,
then we have (f1 − f2)Ld = 2∆Ld/2, with ∆ a mea-
sure of the quenched disorder.24 The free-energy differ-
ence ∆F = Fps − Fhom between the two phases then
becomes

∆F = −∆Ld/2 + σ Ld−1 . (2.6)

If d < 2, we have ∆F < 0 for any sufficiently large L.
There thus is no energy barrier precluding the existence
of arbitrarily many droplets, and the first-order transi-
tion will be smeared. However, if d > 2, then the phase-
separated state has a lower free energy than the homo-
geneous one only if L is smaller than a critical value Lc
given by

Lc = (∆/σ)2/(d−2) (2.7)

For d > 2, the largest possible linear droplet size is thus
given by Lc.

The arguments related to Eqs. (2.5) - (2.7) are very
similar to those given by Imry and Wortis,25 which in
turn relied on a study of the random-field problem by
Imry and Ma.26 These authors, and many others that

used their ideas, focused on instabilities of phases with
long-range order, and on the existence or otherwise of
a sharp phase transition. While we will comment on
the latter aspect below, our main focus is on a differ-
ent aspect of the same arguments, namely, the idea that
droplets of the “wrong” phase be energetically stabilized
inside the “right” phase by disorder fluctuations as long
as their size does not exceed a critical value. In this
sense the two phases will coexist away from the coexis-
tence curve. The arguments say nothing about the region
of the phase diagram where droplets can be expected,
and a priori it is not clear whether the allowable droplet
size makes them realizable. In what follows we will ex-
plore this scenario in more detail. Specifically, we will
explore how Lc depends on the distance from the coexis-
tence curve, what other length scales are relevant for the
problem, and what the resulting volume fraction of the
majority phase is expected to be. For definiteness, we
will consider d = 3, and we will consider droplets with
no order inside the ordered phase. We will discuss the
issue of ordered droplets within the disordered phase in
Sec. IV.

III. CONDITIONS FOR THE EXISTENCE OF
DROPLETS

A. Length scales, and probabilities

There are various length scales in addition to the mi-
croscopic length a that enter the problem, viz.: (1) The
largest linear size a region or “droplet” favoring the mi-
nority phase can have and still occur with a probability
that is not exponentially small. This we will denote by
L∗; it is the largest size of typical regions, as opposed
to rare regions. (2) The largest size a droplet can have
and still be energetically favorable, taking into account
both the energy gain due to the disorder fluctuation and
the surface energy cost. This we will denote by Lc, as
in Eq. (2.7). (3) The minimum size a droplet must have
in order to support an identifiable distinct phase. This
we will denote by L0. (4) The thickness of the droplet
wall, which is important for determining the surface ten-
sion σ. This we will denote by Ldw. (5) In systems with
a weakly broken continuous symmetry there are Gold-
stone modes. Let their frequency-momentum relation in
the long-wavelength limit be Ω(k) = s kω, with s a stiff-
ness parameter. The breaking of the symmetry gives the
Goldstone modes a gap Ωg, which corresponds to a length

scale Lg = (s/Ωg)
1/ω.27 In an Ising-like system, Lg ≈ a.

In order to discuss and estimate these characteristic
length scales, consider a field theory with a random-mass
term, i.e., an action whose Gaussian part reads28

A(2) =

∫
V

dxφ(x)
[
r + δr(x)− c∇2

]
φ(x) . (3.1)

Here φ(x) is the order-parameter field. For simplicity,
we consider a scalar order parameter, we will consider
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the n-vector case below. V is the system volume, and
r and c are parameters of the Landau-Ginzburg-Wilson
functional A(2). δr(x) is a random variable governed by
a distribution with zero mean and second moment

〈δr(x) δr(y)〉 = ρ δ(x− y) , (3.2)

which defines ρ. For simplicity, we assume δr to be delta-
correlated; we will come back to this assumption below.
If we take the order parameter to be dimensionless, then
r will be an energy density. Let J be the energy scale
relevant for the order described (at a thermal phase tran-
sition, J will be on the order of the transition tempera-
ture Tc). Then we expect, up to dimensionless factors,
c ≈ J/a, r ∝ J/a3, and

ρ ≈ δ J2/a3 , (3.3)

where δ is a dimensionless measure of the disorder. Weak
disorder corresponds to δ � 1, and very strong disorder
corresponds to δ ≈ 1. Here, and throughout our dis-
cussion, we ignore dimensionless factors that qualitative
arguments give no control over.29

1. The length scale L∗

In order to estimate the length scale L∗, we consider
δr coarse-grained over a volume L3 by defining

δrL :=
1

L3

∫
L3

δr(x) . (3.4)

δrL is an average of independent random variables, so by
the central limit theorem it is Gaussian distributed,

P(δrL) =
1√
2πs

e−(δrL)2/2s2 (3.5a)

with second moment

s2 =
ρ

L6

∫
L3

dx dy δ(x− y) = ρ/L3 . (3.5b)

Suppose the system undergoes a first-order transition at
r = r1. Let the system be in the ordered phase at r < r1,
and let t = (r1 − r)a3/J be the dimensionless distance
from the coexistence curve. Then the probability of find-
ing a region of size L around any given point that favors
the disordered phase, i.e., where locally δrL > t, is

PδrL>t =

∫ ∞
t

drL P(δrL) =
1

2
erfc

(
(L/L∗)3/2

)
.

(3.6a)
Here erfc(x) = 1 − erf(x) is the complementary error
function, and

L∗ ≈ a δ1/3/t2/3 . (3.6b)

where we have omitted a factor of O(1). L∗ is the largest
linear size a region or “droplet” favoring the disordered
phase can have and still be found with a probability that
is not exponentially small.

2. The length scale Lc

Now consider the disorder-induced contribution to the
free energy. With ϕ a characteristic value of the di-
mensionless order parameter it is expected to be Fdis ≈
δrL ϕ

2L3, with δrL a characteristic value of δrL. For the
latter we take

δrL =

∫ ∞
t

d(δrL) δrL P(δrL) ≈ ρL−3/2 e− 1
2 (L/L

∗)3 ,

(3.7)
which is the average of δrL under the probability distri-
bution P times the probability of finding a droplet of this
size. We thus have

Fdis ≈ ∆(L)L3/2 (3.8a)

where

∆(L) = ∆0 e
− 1

2 (L/L
∗)3 (3.8b)

with

∆0 = δ1/2 J ϕ2/a3/2 . (3.8c)

This is a generalization of the first term in Eq. (2.6).
In addition to Fdis, we need to consider the surface

energy cost. Suppose the order, upon approaching a
droplet, is gradually destroyed over a length Ldw, and
the droplet wall is locally in the y-z plane. Then the sur-
face energy from the gradient-squared term in Eq. (3.1) is
Fdw ≈ LyLzcϕ

2/Ldw. The LGW coefficient c is roughly
c ≈ J/a, and hence the surface tension σ = Fdw/LyLz is

σ ≈ Jϕ2/aLdw . (3.9)

The free-energy difference from Eq. (2.6) now becomes

∆F = −Fdis + Fdw = −∆(L)L3/2 + σ L2 , (3.10)

and the largest possible droplet size Lc is the solution of
the transcendental equation

Lc = L0
c e
−(Lc/L

∗)3 , (3.11a)

which generalizes Eq. (2.7). Here

L0
c = (∆0/σ)2 ≈ δL2

dw/a . (3.11b)

Apart from logarithmic corrections in the case L0
c � L∗,

the solution of Eq. (3.11a) is

Lc ≈ Min(L0
c , L
∗) . (3.11c)

3. The length scale L0

The length scale L0 is determined by the condition
that the energy gain Fdis from the disorder fluctuation
be larger than the characteristic energy J :30

∆(L0)L
3/2
0 = J . (3.12a)
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Using Eqs. (3.8) we have a transcendental equation for
L0,

L0 = L0
0 e

(L0/L
∗)3/3 , (3.12b)

where

L0
0 = a/δ1/3 ϕ4/3 . (3.12c)

This has a solution only if L0
0 � L∗, in which case

L0 ≈ L0
0 . (3.12d)

4. The length scale Ldw

Of the length scales discussed so far, L∗ depends ex-
plicitly on the distance t from the coexistence curve, L0

depends on t only via ϕ, and L0
c depends on t via Ldw. In

order to estimate the latter, we must distinguish between
scalar and vector order parameters. Let us first discuss
the latter case.

A detailed determination of the droplet-wall thick-
ness Ldw is a very hard problem, but we can gain suf-
ficient insight from the case of a domain wall between or-
dered domains, say, ferromagnetic domains for the sake
of definiteness.31,32 In the case of a truly isotropic order
parameter the domain-wall width is equal to the system
size. The reason is that an order-parameter modulation
with an infinite wavelength does not cost any energy;
i.e., it is a consequence of the existence of gapless Gold-
stone modes. In any real solid the underlying lattice
couples to the order parameter and produces a small gap
Ωg � J , which corresponds to a length scale Lg � a, see
Sec. III A. The domain-wall width in an infinite system
is then given by

Ldw ≈ Lg/ϕ . (3.13)

In the case of a ferromagnet, Lg ≈ a/gso,31,32 with gso �
1 the dimensionless spin-orbit coupling.

In our case we are interested in a wall between the
ordered bulk and a disordered droplet, rather than one
between two ordered domains. This makes the prob-
lem more complicated, since the suppression of the long-
ranged order can occur via a loss of angular correlation,
or via a modulation of the modulus of the order param-
eter, or both, but we expect Eq. (3.13) to still give the
correct order of magnitude.33

We stress that the above considerations apply to an
infinite system, or one whose linear size L is large com-
pared to Lg. For L < Lg one has Ldw ≈ L/ϕ, the sur-
face tension σ, Eq. (3.9), is proportional to 1/L, and
the corresponding contribution to the free energy scales
as Fdw ∼ Ld−2 rather than Ld−1.25 For our phase-
separation problem this implies an intrinsic and pro-
found asymmetry between the ordered and disordered
phases, as in the latter the size of the ordered “system”
is the droplet size. This implies that it is harder to form

droplets in the disordered phase. We will come back to
this point in Sec. IV.

Now consider making the anisotropy stronger and
stronger. Ωg will increase, and Lg will decrease, with
the limiting case being Ωg ≈ J , Lg ≈ a, for a strongly
broken rotational symmetry. This limiting case describes
an Ising system, as can be checked by solving the saddle-
point equation for an Ising-type action, see Appendix A.
We conclude that Eq. (3.13) is generally valid. Deep in-
side the ordered phase, where ϕ ≈ 1, we have Ldw ≈ a for
Ising systems and Ldw ≈ a/g � 1, with g the symmetry-
breaking parameter, for systems with a weakly broken
rotational symmetry. (In the case of a ferromagnet,
g = gso.) Near the coexistence curve, Ldw gets enhanced
by a factor of 1/ϕ1, with ϕ1 the discontinuity of the order
parameter at the first-order transition.

5. Conditions for the existence of droplets

We now are in a position to discuss the region in the
phase diagram where droplets can exist. The basic re-
quirement is that the largest droplets that are energeti-
cally allowed are large enough to host a distinguishable
minority phase, i.e., we must have Lc > L0. Since Lc
is the smaller of L0

c and L∗, see Eq. (3.11c), we need to
distinguish two cases:

(i) If L∗ > L0
c , which is equivalent to t < t∗, with

t∗ = (a/Lg)
3ϕ3/δ , (3.14)

we have Lc = L0
c , which leads to

δ > ϕ
1/2
1 (a/Lg)

3/2 ≡ δc . (3.15a)

Here we have replaced ϕ by ϕ1, the value of the order
parameter on the coexistence curve, since our considera-
tions are valid close to a first-order transition.

(ii) If L0
c > L∗, which is equivalent to t > t∗, we have

Lc = L∗, which leads to

t < δ ϕ2
1 ≡ tc (3.15b)

and we have again replaced ϕ by ϕ1. In this second case
droplet thus can exist in a window of t-values, t∗ < t <
tc, and in order for this window to exists the inequality
(3.15a) must again hold.

The Eqs. (3.15) are the two conditions for the exis-
tence of droplets containing the disordered phase within
the ordered phase.34 Equation (3.15a) sets a threshold
for the disorder strength required for droplets to exist.
It is smaller for more isotropic systems (larger Lg), and
for more weakly first-order transitions (smaller ϕ1). For
a given disorder strength, Eq. (3.15b) determines the re-
gion in the phase diagram where droplets can exist. The
size of this region goes to zero for ϕ1 → 0, consistent
with our conclusion in Sec. II that no droplets can exist
in the vicinity of a continuous transition. Now consider
a phase diagram that includes a tricritical point, such
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as in Fig. 1(a), and consider a point on the coexistence
curve. Let us assume that Eq. (3.15a) is satisfied. This
will require a very small amount of disorder for systems
where Lg � a, but is more difficult to fulfill in Ising-type
systems; for an estimate within a very simple model, see
Appendix B. Close to the tricritical point ϕ1 is small, and
droplets can exist only in a very small t-region according
to Eq. (3.15b). As we move to lower temperatures, ϕ1

increases, and reaches its maximum at T = 0. Equation
(3.15b) thus predicts that droplets can exist in a wedge-
shaped region that emanates from the tricritical point.
Analogous considerations hold for phase diagrams where
the tricritical point is not accessible (Fig. 1(b)), or where
the coexistence line ends in a critical point, Fig. 1(a). All
of this is qualitatively consistent with the observations,
see the schematic phase diagrams shown in Fig. 1.

B. The ordered-volume fraction

We now return to the probability considerations of
Sec. III A 1 in order to obtain an expression for the
ordered-volume fraction. We start by considering the fol-
lowing conditional probability: Given a disorder fluctua-
tion that favors the paramagnetic phase, the probability
density of that region having a volume V is, according to
Eq. (3.6a),

PδrL>t = erfc(
√
V/V ∗)/

∫ ∞
0

dV erfc(
√
V/V ∗) , (3.16)

with V ∗ = (L∗)3. Of these regions, only those with vol-
umes between V0 = (L0)3 and Vc = (Lc)

3 have a lower
free energy than the ordered phase once the surface en-
ergy is taken into account. The probability that a given
disorder fluctuation forms a minority-phase droplet is
thus

Pd =

∫ Vc

V0

dV PδrL>t(V )

= pd(
√
Vc/V ∗)− pd(

√
V0/V ∗) , (3.17a)

where we have defined

pd(x) := erf(x) + 2x2 erfc(x)− 2xe−x
2

/
√
π . (3.17b)

In the region L∗ < L0
c , where each disorder fluctuation

can support only one droplet, this leads to an ordered-
volume fraction FOV ≈ 1 − 1

2 Pd. The factor of 1/2 ac-
counts for the conditional-probability nature of our start-
ing point, Eq. (3.16): On the coexistence curve half of all
disorder fluctuations will favor the disordered phase, and
the other half will favor the ordered phase. In the region
L∗ < L0

c , which corresponds to t > t∗, we have, from
Eq. (3.11c), Lc ≈ L∗, and hence

FOV ≈ 1− 1

2

[
pd(1)− pd(

√
V0/V ∗)

]
, (L∗ < L0

c) .

(3.18a)

FIG. 2: (a) For Lc = L∗ < L0
c each disorder fluctuation of

size L∗ can support one droplet (orange (grey) circle) of size
Lc = L∗. The minimum droplet size is L0 (black circle), and
droplets are expected to take up a volume fraction 1−V0/V

∗.
(b) For L∗ � L0

c = Lc a disorder fluctuation can support
on the order of Nd ≈ CdV

∗/Vc droplets, with Cd a number
that does not exceed the close-packing fraction for droplets.
Droplets are expected to take up a volume fraction Cd[1 −
V 0
c /V0].

For L∗ > L0
c the relation between FOV and Pd changes.

This is obvious for L∗ � L0
c , when a single disorder fluc-

tuation can contain many droplets. We roughly expect
FOV ≈ 1− 1

2 PdNd, where Nd is the number of droplets
per volume V ∗. Ignoring droplet-droplet interactions and
a factor of O(1), we have Nd ≈ Cd V

∗/Vc, where Cd is a
number that is bounded above by the close-packing vol-
ume fraction of the droplets within the volume V ∗. The
precise value of Cd depends on many details; we expect
it to be on the order of 1/2. Since Lc = L0

c in this region,
this leads to an ordered-volume fraction

FOV ≈ 1− Cd
2

[
pd(
√
V 0
c /V

∗)− pd(
√
V0/V ∗)

] V ∗
V 0
c

,

(L0
c < L∗) . (3.18b)

We note again that these simple arguments ignore any
interaction between the droplets as well as correlations
between the disorder fluctuations and are expected to
give only a very rough estimate of the ordered-volume
fraction. With this in mind, let us consider the behav-
ior of FOV as a function of t as the coexistence curve is
approached:

(1) t > tc. In this region Lc = L∗ < L0. Equation (3.15b)
is violated, droplets cannot exist, and FOV = 1.

(2) tc > t > t∗. In this region L0 < Lc = L∗. Droplets
can exist, and Pd increases from 0 at t = tc, where
V ∗ = V0, to pd(1) − pd((δc/δ)2) for t = t∗, with δc from
Eq. (3.15a). pd(1) ≈ 0.74, and pd((δc/δ)

2) � 1 unless
the disorder strength is close to the threshold value δc.
More specifically, pd(x → 0) = 2x2, so for V0 � V ∗ we
have Pd = pd(1)− 2V0/V

∗ = pd(1)− 2(δc/δ)
2, consistent

with what one would expect from a simple geometric ar-
gument, viz., Pd ≈ 1 − V0/V ∗, see Fig. 2(a). For t = t∗

we thus expect FOV to be on the order of 2/3.
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(3) t∗ > t. In this region L∗ continues to increase and
eventually multiple droplets will form within each dis-
order fluctuation. In the limit L∗ � L0

c , asymptoti-
cally close to the coexistence curve, Eq. (3.18b) yields
FOV ≈ 1 − Cd[1 − V0/V 0

c ] = 1 − Cd[1 − (δc/δ)
4]. This

is again consistent with a the expectation from a simple
geometric consideration, see Fig. 2(b).

In summary, for t & t∗ our mechanism results in behav-
ior that is qualitatively consistent with the experimental
observations: Droplets can exist within certain distance
tc from the coexistence curve, and the ordered-volume
fraction decreases from unity as the first-order transition
is approached from within the ordered phase. We will dis-
cuss the corresponding behavior in the disordered phase
in Sec. IV.

IV. DISCUSSION

We conclude by discussing our results and their un-
derlying assumptions in more detail, and also add some
remarks about aspects of the problem that we have not
covered so far.

Before going into details, let us first reiterate how wide-
spread the observations are. Phase separation is observed
near phase transitions that are known or suspected to be
first order in a wide variety of materials with an equally
wide variety of types of order; examples were given in
the introduction. In addition to transitions from an or-
dered phase to a disordered one it also is observed near
first-order transitions from one ordered phase to another;
an example is UGe2, where it is observed both near the
FM1-PM transition5 and near the FM1-FM2 transition
within the FM phase.6 Furthermore, the observations are
the same for systems with a strongly uniaxial or Ising-
like order parameter, such as UGe2, and systems with
an order parameter that is approximately rotationally
invariant or Heisenberg-like, such as MnSi.

As we pointed out in Sec. I, these observations of the
coexistence of two phases away from the coexistence curve
are very surprising and require an explanation. As we
have shown, disorder fluctuations provide a plausible sce-
nario. We reiterate that the conditions for this scenario
to work require less disorder for systems with an approx-
imate rotational symmetry than for Ising-like ones, see
the discussion after Eqs. (3.15), and Appendix B. At
the same time, there is some experimental evidence for
inhomogeneities that do not necessarily show in trans-
port experiments and therefore can be present even in
nominally rather clean systems.12

A. The role of disorder

We emphasize that our scenario requires a substantial
amount of disorder that couples to the order parameter.
This is not to say that the disorder is necessarily visible

in the transport properties of metallic systems. If it were,
then a rough estimate for our disorder parameter δ would
be 1/kF`, with kF the Fermi wave number and ` the elas-
tic mean-free path. In clean samples of, e.g., MnSi, kF`
can exceed 1, 000.35 However, Yu et al. have reported evi-
dence for substantial pressure inhomogeneities in MnSi.12

The latter do indeed couple to the order parameter, as
is evidenced by the strong dependence of the transition
temperature on applied hydrostatic pressure. Pfleiderer
et al. have emphasized the sensitivity of systems near
quantum phase transitions in general to disorder.3 This
can be illustrated as follows.

Consider a thermal transition with a transition tem-
perature Tc that depends on a defect concentration
n(x) = n+ δn(x):

Tc(x) ≈ Tc(n) + δn dTc/dn . (4.1)

Let the defect concentration fluctuations be randomly
distributed with a second moment 〈δn(x) δn(y)〉 ≈
n δ(x − y). The definition of the dimensionless dis-
order δ in Eqs. (3.2, 3.3) then leads to the estimate
δ ≈ (n/a3T 2

c )(dTc/dn)2. Now model the n-dependence of
Tc by Tc ≈ T 0

c [1 − (n/nc)
2], which is roughly the shape

of the phase diagram in, for instance, many quantum
ferromagnets that display a quantum phase transition
triggered by chemical composition.35. This leads to an
estimate

δ ≈ 1

a3nc
(n/nc)

3 . (4.2)

For n a sizable fraction of nc this is of O(1). The observed
strong dependence of Tc on a dopant concentration in
many systems thus translates into a rather large value of
δ. At least in some materials is therefore would be mis-
leading to conclude, from the fact that they are good met-
als, that disorder is irrelevant. We also note that weak-
localization effects are not commonly observed in quan-
tum ferromagnets with a ferromagnet-to-paramagnet
quantum phase transition driven by composition.35 This
is another example of disorder that couples to the order
parameter, but is not easily observed in the transport
properties.

We also mention that there was no a priori guarantee
that the energetic considerations in Sec. II would lead to
an observable size of the inhomogeneity region for reason-
able values of the disorder, as we saw in Sec. III is indeed
the case. The fact that we found the wedge-shaped re-
gion where minority-phase droplets are stable to be of
an observable size is nontrivial and consistent with our
interpretation of the existing experiments.

B. The ordered-volume fraction in the ordered and
disordered phases

In Sec III B we have discussed the ordered-volume frac-
tion FOV as the first-order transition is approached from
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the ordered phase. We found that FOV drops below
unity due to the existence of droplet in a certain re-
gion bounded by a dimensionless distance tc from the
coexistence curve. tc depends on the strength of the dis-
order and the strength of the first-order transition, see
Eq. (3.15b). FOV then decreases monotonically with de-
creasing t. In the asymptotic region t < t∗, with t∗ given
by Eq. (3.14), some of our simple assumptions become
questionable. For instance, the assumption of noninter-
acting droplet will certainly break down with increasing
droplet density. It is likely that at some point a perco-
lation transition will lead to droplets merging, and the
precise behavior on or very close to the coexistence curve
is a very hard problem. For instance, it is not obvious
whether FOV is continuous or discontinuous across the
coexistence curve, and more detailed considerations are
necessary to determine this.

Another issue is the behavior on the disordered side
of the phase transition; we have considered the existence
of minority-phase droplets in an ordered majority phase
only. At first sight one might think that the behavior
should be roughly symmetric with respect to the phase
boundary; however, this is likely not the case. For in-
stance, our estimate of the droplet-wall width Ldw in
Sec. III A 4 assumes that most of the surface free-energy
cost of forming the droplet is paid within the bulk ordered
phase. This is plausible at least at a saddle-point level, as
the saddle-point differential equation for a droplet field
configuration is very similar to, say, a square-well prob-
lem in quantum mechanics. If the same is true in the dis-
ordered phase, then this introduces an intrinsic asymme-
try into the problem: In the disordered bulk there are no
Goldstone modes, the problem is always Ising-like, and
Ldw is likely substantially smaller than in the ordered
phase. This will make droplet energetically less favor-
ably in the disordered phase than in the ordered one. If
there are solutions for which this is not the case, then one
needs to add the requirement Lc > Ldw to the conditions
for droplet existence, as we have noted above.34 In either
case, the conditions for droplet existence are more strin-
gent in the disordered phase. While speculative, these
considerations are consistent with the experimental ob-
servations, which generally see much weaker indications
of phase separation in the disordered phase than in the
ordered one. Another contributing factor may be exper-
imental limitations: If droplets are intrinsically smaller
in the disordered phase, then the spatial resolution limit
of any experimental technique will lead to an underesti-
mation of the ordered-volume fraction.

C. First-order transitions in the presence of
disorder

The fate of a first-order transition in the presence of
disorder is a problem with a long history, going back to
Imry and Ma, and Imry and Wortis.25,26 The relevant ar-
guments have been made rigorous in Refs. 36,37 for clas-

sical systems, and in Refs. 38,39 for the quantum case.40

The conclusion of these studies is that no sharp first-
order phase transition is possible in dimensions d ≤ 2
for systems with a discrete symmetry, and in d ≤ 4 for
systems with a continuous symmetry. Consistent with
this, Fernández et al found a sharp first-order transition
in a 3-d disordered Potts model.41 In the present con-
text these rigorous results provide, strictly speaking, no
constraints: We have considered only systems with a dis-
crete symmetry (as is always the case for any system on a
lattice), so in d = 3 a sharp first-order phase transition is
possible. One might wonder, however, if in the case of a
weakly broken continuous symmetry any sharp transition
must be weakly first order. To see whether our droplet
scenario is consistent with this hypothesis would require
a determination of the ordered-volume fraction on the
coexistence curve, where our arguments are not reliable.
We can imagine four scenarios: (1) The non-overlapping
droplet picture remains valid up to the transition, and
FOV (and hence the magnetization) has a discontinuity
on the coexistence curve. This would mean that there
still is a sharp first-order transition. (2) The droplets
merge at some critical droplet density, and the resulting
percolation transition is first order,42 leading again to a
discontinuous FOV. (3) FOV changes continuously from
unity in the ordered phase to exponentially small values
in the disordered phase. This would mean no sharp tran-
sition, i.e., the original sharp first-order transition has
been smeared due to the existence of droplets. (4) A
second-order percolation transition occurs in the droplet
system. This would mean there still is a sharp transition,
but it is continuous rather than first order.

More detailed work is needed in order to determine
which of these possibilities is realized. We note that our
scenario is entirely consistent with possibilities (1) - (3).
If (4) is realized, then some of our arguments will have to
be reconsidered, at least close to the transition, in order
to ensure consistency.

We finally comment on the relation between scal-
ing descriptions of first-order phase transitions20,21 and
the rigorous bound for the correlation-length exponent,
Eq. (2.1). The scaling description leads a relevant op-
erator with scale dimension λ = 1/ν = d. Naively,
this violates Eq. (2.1) and thus seems to preclude a
sharp first-order transition in any dimension for any
nonzero amount of disorder. This apparent contradic-
tion is resolved by the realization that there are two
distinct correlation-length exponents: One is related to
the rounding of the transition in system of finite size
L and is equal to νrounding = 1/d at any regular first-
order transition.20,43 The other is related to the effects
of the disorder, which shifts the transition point relative
to the clean one. For uncorrelated disorder, this expo-
nent is equal to νshift = 2/d. The theorem proven by
Chayes et al.18, Eq. (2.1) applies to the latter, so there is
no contraction. The presence of two positive exponents
is not at odds with the usual notion of only one rele-
vant operator at a fixed point describing a phase tran-
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sition, since the tuning parameter for a first-order tran-
sition is r(L)Ld, with r(L) = r∞ + r1/L

d/2 the scale-
dependent mass parameter. The tuning parameter is
thus r∞L

d + r1L
d/2 = r∞L

d[1 + (r1/r∞)/Ld/2], and the
operator with scale dimension d/2 describes corrections
to scaling in a well-defined sense.
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Appendix A: The length scale Ldw in an Ising model

Consider an action

A = A(2) +

∫
V

dx
[
v φ3(x) + uφ4(x)

]
(A1)

with A(2) from Eq. (3.1), which allows for a first-order
transition by virtue of the cubic term with coupling con-
stant v. In natural units, u = (J/a3)û, v = (J/a3)v̂, with
û and v̂ dimensionless. In a mean-field approximation,
this model has a first-order transition at r = r1 = 2v2/9u
where the order parameter changes discontinuously from
φ = φ1 = 2v/3u to zero. Now consider a situation
where the mass parameter r(x, y, z) changes discontin-
uously from r < r1 for x > 0 to r > r1 for x < 0, which
models a plane droplet wall, and look for a variational
solution of the saddle-point equation

c φ′′(x) = r φ(x)− v φ2(x) + uφ3(x) (A2)

that obeys the boundary conditions φ(x = 0) = 0 and
φ(x → ∞) = const. Deep inside the ordered phase, for

r negative and large, the v-term is negligible and the
solution will vary on the microscopic length scale a. For
r = 0 the characteristic length scale, which determines
the droplet wall thickness, is a û1/2/v̂, and for r → r1 it is

3a û1/2/
√

2 v̂. The former result is obtained by suitable
scaling of the ODE; the latter, by linearizing it about
φ1. We conclude that upon approaching the coexistence
curve, Ldw increases from a Ldw ≈ a deep inside the
ordered phase to a value on the order of Ldw ≈ a û1/2/v̂
in the vicinity of the coexistence curve. If û = O(1), we
can write this as

Ldw ≈ a/ϕ , (A3)

which recovers Eq. (3.13) specialized to the Ising case
( Lg ≈ a). For typical parameter values one expects Ldw

to saturate at a few times the microscopic length.
Appendix B: Conditions for the existence of

droplets within a φ4-theory

Here we discuss the disorder threshold requirement ex-
pressed by Eq. (3.15a) in the framework of the Ising
model action given by Eq. (A1). In the region t .
r̂1 ≡ 2v̂2/9û, which corresponds to r & 0, we have

φ ≈ ϕ1 =
√

2r̂1/û. With Ldw ≈ a û1/2/v̂ from Appendix
A, Eq. (3.15a) yields

δc ≈ û3/4 ϕ1/2
1 . (B1)

Deep inside the ordered phase, r̂ ≈ −1, we have φ =√
−r̂/û ≈ 1/û1/2, and at a moderately strongly first-

order transition ϕ1 is, say, one-tenth of that value. The
remaining question is the value of û. Within Hertz’s
model for itinerant quantum ferromagnets,44 û = 1/12,
which leads to δc ≈ 0.1. A dimensionless disorder
strength on this order seems realistic in the light of the
discussion in Sec. IV A. For systems with an approximate
continuous symmetry, where Ldw is larger, the disorder
threshold will be correspondingly lower.
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