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We study the magnetically-induced phonon splitting in cubic ACr2O4 (A=Mg, Zn, Cd) spinels
from first principles, and demonstrate that the sign of the splitting, which is experimentally ob-
served to be opposite in CdCr2O4 compared to ZnCr2O4 and MgCr2O4, is determined solely by
the particular magnetic ordering pattern observed in these compounds. We further show that this
interaction between magnetism and phonon frequencies can be fully described by the previously
proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505
(2006)] that includes only the nearest neighbor exchange. Using this model with materials spe-
cific parameters calculated from first principles, we provide additional insights into the physics of
spin-phonon coupling in this intriguing family of compounds.

I. INTRODUCTION

The interplay of spin and lattice degrees of freedom
can lead to a variety of fundamentally and technologically
interesting phenomena including the spin-Jahn-Teller ef-
fect in frustrated magnets,1,2 magnetocapacitance,3 and
the linear magnetoelectric effect.4,5 One signature of this
interplay is the influence of magnetic order on the vibra-
tional spectrum of a material. In many transition metal
oxides the spin correlations shift the phonon frequen-
cies, and lead to the so called magnetodielectric effect.6,7

Furthermore, if the long-range antiferromagnetic (AFM)
order reduces the crystal symmetry, the onset of anti-
ferromagnetism can result in a substantial splitting of
phonon frequencies that are degenerate in the paramag-
netic (PM) phase, even when the change in the crystal
structure is undetectable.8–12 This phonon anisotropy is
a non-relativistic effect which originates from the changes
in hybridization due to spin ordering. In particular, the
phonon splitting can be phenomenologically explained by
a dependence of the exchange interactions on the atomic
positions.13,14

Chromium spinels ACr2O4 (A=Mg, Zn, Cd) are a par-
ticularly interesting class of frustrated antiferromagnets
that exhibit strong spin-phonon coupling. In the PM
phase, group theory predicts, and experiments confirm,
the presence of four triply degenerate infrared (IR)-active
phonon modes. Below the Néel temperature, however,
one of these phonon modes undergoes a large splitting
into a singlet and a doublet.10,15–17 This feature and its
magnitude was argued to be a consequence of a dominant
role of the nearest-neighbor (nn) direct Cr-Cr exchange
interaction.10 Fennie and Rabe11 developed a general ap-
proach to incorporate material specific information from
first principles into spin-phonon coupling models. They
demonstrated that the spin-phonon coupling model with
only nearest-neighbor exchange interaction and parame-
ters derived from first principles provide a full description
of experimentally observed magnetically-induced phonon
splitting in ZnCr2O4.11 This model has later been suc-

cessfully applied to many other systems as well.18–21

Magnetically-induced phonon splitting have been also
observed in other Cr-based spinels including MgCr2O4

and CdCr2O4. Interestingly, the sign of the phonon
slipping observed for MgCr2O4 and ZnCr2O4 (ωsinglet >
ωdoublet)

10,17 is opposite to that observed in CdCr2O4

(ωdoublet > ωsinglet).
15,16 In all three of these compounds,

the sign of the nn exchange interaction is the same, how-
ever its magnitude compared to further neighbour ex-
changes is dramatically different. In the Mg and Zn
compounds the nn exchange interactions are two orders
of magnitude larger than all other exchange interactions,
while in CdCr2O4 the nn interaction is the same order
as the second neighbor interaction. Based on this fact
Kant et al.17 concluded that the spin-phonon coupling
model with only nn exchange interaction cannot explain
the magnetically induced phonon anisotropy in ACr2O4

spinels, and instead proposed that the phonon splitting
is generally controlled by a nondominant, next nearest
neighbor exchange interaction.

In this paper we use first principles calculations to
study the magnetically induced phonon anisotropy of
the zone-center polar modes in ACr2O4 (A=Mg, Zn,
Cd) spinels. We show that the different magnetic or-
derings characteristic for these spinels lead to different
signs of the phonon splitting. In particular, we explain
the opposite sign observed for ZnCr2O4 and MgCr2O4

compared with CdCr2O4 which have distinct magnetic
ground states. We find that the spin-phonon coupling
model of Ref. [11] with only the nn exchange interactions
can very accurately describe ab initio values of phonon
frequencies for all the spinel compounds we considered.

II. METHODS

The first principles calculations were performed using
the density functional theory (DFT) within the rotation-
ally invariant DFT+U method22 and the PBEsol approx-
imation to the exchange-correlation functional.23 Simi-
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larly as in Ref. 11 we used U = 3 eV and J = 0.9 eV,
the parameters that accurately reproduce photoemission
spectra and band gaps in sulfur Cr spinels.24

The Kohn-Sham equations were solved using the pro-
jector augmented wave method25 as implemented in the
VASP code26,27 (version 5.2). The valence basis included
3s and 3p states on Mg, 3d and 4s on Zn, 4d and 5s states
on Cd, 5d and 6s on Hg, 3d and 4s on Cr, and 2s and
2p on O. The cutoff energies for the plane wave and aug-
mentation charge were 500 eV and 605 eV, respectively.
For the primitive unit cell of the cubic structure (two
formula units) we used 6×6×6 Γ-centered k-point mesh.
For larger cells the k-point mesh was scaled accordingly
(e.g., in order to accommodate the AFM-II order the
primitive unit cell was enlarged by a factor of two along
first two lattice directions and the 3×3×6 k-point mesh
was used). We checked that the calculated phonon fre-
quencies are converged with respect to the k-point grid,
see Supplementary Materials.28 For density of states cal-
culations 12×12×12 k-point mesh (primitive unit cell of
the cubic structure) was used. The selfconsistent calcu-
lations were stopped when energy was converged down
to 10−6 eV. The spin-orbit coupling was neglected in the
calculations.

Structural relaxations were performed in the ferromag-
netic (FM) state that preserves the cubic symmetry. The
lattice parameter was manually varied and the energy
was fitted to the parabola. For each value of the lat-
tice parameter the ionic positions were relaxed until the
Hellmann-Feynman forces were converged to less than
0.005 eV/Å. Phonon frequencies and eigendisplacements
were calculated using the frozen phonons method using
symmetry adapted modes obtained from the ISOTROPY
package.29

III. CRYSTAL AND MAGNETIC STRUCTURE

At high temperatures ACr2O4 spinels have a cubic
(Fd3̄m) structure where A2+ ions are in tetrahedral oxy-
gen environment and form the diamond lattice, while
Cr3+ ions are surrounded by octahedral oxygen cages
and form a pyrochlore lattice, see Fig. 1a. The calcu-
lated structural parameters are shown in Supplementary
Materials.28

The octahedral crystal field splits the Cr 3d orbitals
into a lower-lying t2g triplet and a higher-energy eg dou-
blet. Cr3+ has three outer electrons that fill the majority
t2g states which results in a net Cr spin S=3/2. These
features are illustrated in Fig. 2 where the spin resolved
Cr 3d density of states (DOS) for ZnCr2O4 is shown.

We found the exchange interaction parameters between
Cr spins by fitting ab initio energies of different collinear
magnetic configurations to the Heisenberg Hamiltonian

H =
∑
ij

JijSi · Sj (1)
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FIG. 1. (a) Cubic crystal structure of ACr2O4 spinels con-
sisting of Cr-centered octahedra and A-centered tetrahedra.
(b) Magnetic exchange couplings up to the third Cr neigh-
bors; note that there are two nonequivalent types of third
neighbors which have distinct exchange parameters: J3 and
J ′3. Brown, blue and red spheres denote Cr, A and O atoms,
respectively.

FIG. 2. Spin resolved Cr 3d DOS for ZnCr2O4 in the ferro-
magnetic state. Majority and minority DOS are plotted on
positive and negative y axis, respectively.

where the summation is over Cr ions, Si is the unit
vector indicating the direction of the spin at Cr site i,
and Jij are the exchange parameters between Cr sites i
and j. Positive (negative) exchange parameter indicate
AFM (FM) coupling. We considered Jij up to the third
neighbors (Fig. 1b) as further neighbors are known to
have negligible exchange couplings.30 Exchange parame-
ters for nn and next nn are denoted by J1 and J2, respec-
tively. Since there are two nonequivalent types of third
neighbors, we have two distinct third neighbors exchange
parameters: J3 and J ′3. The calculated exchange param-
eters are presented in Table I. Note that we also included
the calculations for the HgCr2O4 compound.

The nn exchange parameter, J1, is a dominant inter-
action for all compounds. This coupling arises from the
competition between AFM direct exchange and FM 90◦

superexchange.31 For A2+ ions with small ionic radii, like
Mg2+ or Zn2+, the direct exchange mechanism domi-
nates resulting in a strong AFM J1. However, for larger
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A J1 J2 J3 J ′3 Jλ⊥/ωPM
λ Jλ‖/ωPM

λ

1 2 3 4 1 2 3 4

Mg 3.8 -0.1 0.1 0.2 4.5 2.4 0.4 0.3 -0.1 -0.1 -0.7 -0.7

Zn 3.8 -0.1 0.1 0.2 2.0 5.0 0.8 0.2 -0.0 -0.1 -0.8 -0.7

Cd 0.3 -0.1 0.1 0.2 1.3 3.3 0.7 0.7 -0.0 -0.0 -0.5 -0.2

Hg -0.6 -0.0 0.2 0.1 0.8 3.2 0.9 0.6 -0.0 -0.0 -0.5 -0.1

TABLE I. The exchange parameters (in meV) and Jλ⊥,‖/ωPM
λ

parameters (in cm−1) calculated for different ACr2O4 spinels.
Positive (negative) exchange parameter indicate AFM (FM)
coupling.

A2+ ions the lattice parameter and the nn Cr-Cr dis-
tance increases28 which diminishes the direct exchange
contribution. In particular, for CdCr2O4 the AFM J1
is reduced by an order of magnitude while for HgCr2O4

the superexchange contribution overcomes the direct ex-
change resulting in a (small) FM J1.

Exchange couplings beyond nn originate from higher-
order superexchange processes32 and, in general, are
smaller than J1. However, while for MgCr2O4 and
ZnCr2O4 these interactions are negligible compared to
the nn exchange, for CdCr2O4 and HgCr2O4 compounds
the J3 and J ′3 exchanges become relevant.

The AFM nn exchange interaction is frustrated on the
pyrochlore lattice since spins forming a tetrahedron can-
not be all antiparallel to each other. The energy due to J1
is minimized when for all tetrahedra the total spin is zero,
i.e. in each tetrahedron two spins are parallel while the
other two point in the opposite direction. There are, how-
ever, many such two-up-two-down configurations which
can be different in different tetrahedra leading to infinite
degeneracy. Consequently, the magnetic ground state
is determined by further exchange couplings,33 magne-
toelastic effects,1,2 or relativistic interactions34 leading
to complicated, often noncollinear (as in the case of
ZnCr2O4 and CdCr2O4), orderings.

There are two primary collinear magnetic orders that
are relevant for ACr2O4 spinels. These are shown in Fig.
3 and we denote them as AFM-I and AFM-II. The AFM-
I ordering is similar to the true magnetic ground state in
ZnCr2O4

2 and MgCr2O4
35 while the AFM-II approxi-

mates the spin order in CdCr2O4.33 Both spin orderings
satisfy the two-up-two-down rule in each tetrahedron but
they differ in relative orientations of spins in neighboring
tetrahedra. In particular, for AFM-I the nearest neigh-
bors in the xy plane are parallel while for AFM-II they
are antiparallel. As we will see below, this difference has
a profound effect on the magnetically induced phonon
anisotropy. In the case of HgCr2O4 the magnetic ground
state36 cannot be approximated by neither AFM-I nor
AFM-II orderings. Nevertheless, we found it beneficial to
calculate the phonons for HgCr2O4 in AFM-I or AMF-
II states since this allows us to assess the effect of the
sign of the nn exchange parameter on the magnetically
induced phonon anisotropy.

(a)

x

y
z

(b)

FIG. 3. Two collinear magnetic orderings relevant for ACr2O4

spinels. (a) AFM-I order that is similar to the true magnetic
ground state in ZnCr2O4 and MgCr2O4. (b) AFM-II order
that approximates the spin order in CdCr2O4. Brown and
red spheres denote Cr and O atoms, respectively.

IV. PHONON FREQUENCIES

We now focus on the influence of magnetic order on
the zone-center polar phonons. In addition to the AFM-
I and AFM-II orderings which are relevant for this class
of compounds (see above), we also considered the FM
order since which has the same cubic symmetry as the
PM state.

In the FM state there are four triply degenerate polar
phonon modes, each transforming according to the T1u
irreducible representation of the Oh cubic point group. In
order to compute the corresponding phonon frequencies
we considered symmetry-adapted T1u modes, fn,α. Here
n = 1, 2, 3, 4, 5 is the mode number (in addition to four
polar modes we need to include the acoustic mode that
also has a T1u symmetry) and α = x, y, z labels the row
of T1u such that fn,α transforms as a vector along the
α axis. The symmetry-adapted modes, f1,α, f2,α, and
f4,α, involve atomic displacements along α of the entire
A, Cr, and O sublattice, respectively. On the other hand,
atomic displacements associated with f3,α and f5,α take
place in the plane perpendicular to the α axis and in-
volve chromium and oxygen atoms, respectively (see the
supplementary materials for more details).

Condensing the symmetry-adapted modes for a given
α and evaluating the Hellman-Feynman forces for the FM
state, we constructed the 5×5 dynamical matrix block.
Matrix diagonalization leads then to four nonzero phonon
frequencies corresponding to the four polar phonon
modes, see Fig. 4 (middle). As expected, the frequencies
are independent of α leading to three-fold degeneracy of
each mode.

For the AFM-I and AFM-II orderings the symmetry
is lowered to tetragonal D4h and D4 point groups, re-
spectively, with the tetragonal direction chosen to be
along the z axis. In both cases the T1u representation
becomes reducible resulting in a splitting of the triple
degenerate polar phonon modes according to T1u →
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CdCr2O4 
151, 369, 473, 598 

151, 369, 481, 601 

141, 343, 471, 593 

147, 357, 476, 597 

141, 343, 471, 594 

ZnCr2O4 
189, 379, 499, 599 

189, 381, 511, 611 

173, 340, 499, 603 

183, 361, 506, 607 

173, 340, 499, 604 

MgCr2O4 
261, 424, 477, 612 

261, 425, 488, 623 

224, 405, 479, 615 

245, 415, 484, 619 

224, 406, 479, 615 

HgCr2O4 108, 357, 476, 575 

108, 358, 482, 577 

102, 332, 471, 570 

105, 346, 477, 574 

101, 332, 472, 571 

AFM-I FM AFM-II 

FIG. 4. Calculated T1u phonon frequencies (in cm−1) of dif-
ferent ACr2O4 spinels for different magnetic orderings. In the
FM state (middle) there are four optical T1u modes and each
one is three-fold degenerate. In the AFM-I (left) and AFM-II
(right) states each triplet splits into a singlet and a doublet.
For the AFM-I (AFM-II) ordering the singlet (doublet) has
higher frequency for all compounds and for all phonon modes.

A2u⊕Eu for AFM-I and T1u → A2⊕E for AFM-II. The
one-dimensional A2u and A2 irreducible representations
transform as a vector along the z axis, while the two-
dimensional Eu and E irreducible representations trans-
form as a vector in the xy plane.

In order to evaluate this splitting we calculated the po-
lar phonons for the AFM-I and AFM-II orderings by di-
agonalizing the three 5×5 blocks of the dynamical matrix
using the T1u symmetry-adapted modes, fn,α.37 Since
we are interested in the splitting generated by the spin
pattern alone, similarly as in Ref. 8 we neglected the
magnetically induced tetragonal distortion of the crystal
and performed calculations for the cubic structure found
using FM configuration.

The results are shown in Fig. 4. The phonon fre-
quencies obtained from the α = x and α = y dynamical
matrix blocks are equal and form Eu or E doublets. On
the other hand, the phonon frequencies obtained from
the α = z block are different and correspond to A2u

and A2 singlets. The phonon splitting is the largest for
the second lowest frequency mode (except for MgCr2O4

where it is the lowest frequency mode that has the high-
est splitting). In particular, for ZnCr2O4 in AFM-I state
it becomes as large as 41 cm−1. Interestingly, the mag-
nitude of the splitting for the AFM-I order is, in general,
about twice as large than it is for the AFM-II state.

The most important feature, however, is that for all
considered compounds and for all the modes the singlet
has a higher energy for the AFM-I state while for the
AFM-II configuration it is the doublet that has a higher
energy. This is in agreement with the experimentally ob-
served sign reversal of the phonon splitting for ZnCr2O4

and MgCr2O4 compared with CdCr2O4
10,15–17 since the

former ones have a ground state similar to AFM-I2 while
the magnetic ordering of the latter can be approximated
by AFM-II.33

V. SPIN-PHONON COUPLING MODEL

In order to better understand the results of our first
principles calculations we employ the spin-phonon cou-
pling model in which the T1u block of the force-constant
matrix for an arbitrary magnetic state is given by11

C̃nα,n′α′ = CPM
nn′ + 4

∑
j

∂2Jij
∂fnα∂fn′α′

〈Si · Sj〉 (2)

Here, 〈Si · Sj〉 is the spin correlation function that is
1 for the FM ordering and either 1 or -1 for the AFM
ordering. CPM

nn′ is the force-constants matrix in the PM
phase. Note that the latter has a Oh cubic symmetry
and thus it doesn’t depend on the T1u row indices α and
α′.

The above expression can be further simplified by us-
ing the symmetry of the magnetic state. In particu-
lar, the AFM-I and AFM-II (as well as FM) orderings
don’t induce couplings between different rows of T1u so
the force-constant matrix is diagonal in the row indices:
C̃nα,n′α′ = C̃nα,n′αδα,α′ ≡ C̃nn′(α). Consequently, we
only need ∂2Jij/∂fnα∂fn′α. Considering only the nn
exchange interaction, there are only two types of such
derivatives:11 J ′′nn′⊥ ≡ ∂2Jij/∂fnα∂fn′α ∀ r̂ij · α̂ = 0 and
J ′′nn′‖ ≡ ∂2Jij/∂fnα∂fn′α ∀ r̂ij · α̂ 6= 0, where r̂ij is the

vector linking nn sites i and j and α̂ is the unit vector
along the α axis. Therefore, we can write

C̃nn′(α) = CPM
nn′ + 4J ′′nn′⊥

∑
r̂⊥

〈Si · Sj〉

+4J ′′nn′‖

∑
r̂‖

〈Si · Sj〉 (3)

where the first summation is over the two nn in the
plane perpendicular to α, and the second summation is
over the other four nn. For the three magnetic orderings
considered, we obtain

C̃FM
nn′ (α = x, y, z) = CPM

nn′ + 8J ′′nn′⊥ + 16J ′′nn′‖ (4)

C̃AFM-I
nn′ (α = x, y) = CPM

nn′ − 8J ′′nn′⊥ (5)

C̃AFM-I
nn′ (α = z) = CPM

nn′ + 8J ′′nn′⊥ − 16J ′′nn′‖ (6)

C̃AFM-II
nn′ (α = x, y) = CPM

nn′ − 8J ′′nn′‖ (7)
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C̃AFM-II
nn′ (α = z) = CPM

nn′ − 8J ′′nn′⊥ (8)

The above equations explicitly demonstrate that in the
FM state we have a three-fold degeneracy with respect to
α and that in the AFM-I and AFM-II states these triplets
split into a doublet (α = x, y) and a singlet (α = z).

The parameters CPM
nn′ , J ′′nn′⊥, and J ′′nn′‖ were fitted to

the ab initio force-constant matrices evaluated for FM,
AFM-I, and AFM-II orderings. Essentially perfect fitting
was obtained with the misfit lower than 0.03 meV/Å and
corresponding phonon frequencies within 1 cm−1 of first
principles values (see Supplementary Materials28). This
indicates that the spin-phonon coupling model with only
nn exchange coupling provides an excellent description
of the effect of magnetic order on phonon frequencies in
ACr2O4 spinels.

Explicit forms of CPM, J ′′⊥, and J ′′‖ force-constant ma-

trices for different ACr2O4 spinels are shown in Supple-
mentary Materials.28 We find that for all compounds
J ′′33⊥ is positive and significantly larger than any other
element of J ′′⊥ and J ′′‖ matrices. As discussed in Ref.

11, the anomalously large value of J ′′33⊥ originates from
the exponential form of the direct exchange contribu-
tion (Jd) to J1. Indeed, Jd = Ae−aDCr-Cr where A
and a are positive constants and DCr-Cr is the nn Cr-
Cr bond length. The only partner function that signifi-
cantly affects DCr-Cr is f3α (with α̂ perpendicular to the
bond)10 resulting in large J ′′33⊥. This explanation is con-
sistent with the fact that the J ′′33⊥ element is similar for
MgCr2O4 and ZnCr2O4 compounds but it decreases with
the size of A ion due to diminished role of the direct ex-
change mechanism. Note also that the positive sign of
J ′′33⊥ is the direct consequence of the exponential depen-
dence of Jd on the atomic displacements which requires
the second derivative to have the same sign as Jd.

The second largest element among J ′′⊥ and J ′′‖ matri-

ces is J ′′35⊥ (or J ′′53⊥). Since f5α corresponds to the dis-
placement of O sublattice which modifies Cr-O-Cr an-
gle, this shows that the superexchange mechanism also
contributes to the spin-phonon coupling. However, the
superexchange contribution to the spin-phonon coupling
is always significantly smaller than the direct exchange
contribution. This remains true even for HgCr2O4 com-
pound where the superexchange interaction is stronger
than the direct exchange coupling. We believe that this
relative ineffectiveness of the superexchange in generat-
ing a spin-phonon coupling is a generic feature and is
due to the fact that this mechanism doesn’t depend so
strongly on atomic displacement as the direct exchange
mechanism. This feature plays also an important role in
the success of our spin-phonon coupling model where we
considered only nn exchange interaction. Indeed, while
for for MgCr2O4 and ZnCr2O4 J1 is at least an order
of magnitude larger than other exchange parameters, in
the case of CdCr2O4 and HgCr2O4 compounds the J3
and J ′3 couplings are not negligible and our approxima-
tion works only because these couplings originates from

superexchange processes and have a weak dependence on
atomic displacements.

Having established and understood the validity of our
spin-phonon coupling we can now use it to provide an ad-
ditional insight into magnetically induced phonon split-
ting. Since J ′′nn′⊥ and J ′′nn′‖ are much smaller than the

elements of the paramagnetic force-constant matrix, the
phonon frequencies can be written as

ω̃λ(α) ≈ ωPM
λ +

2

ωPM
λ

J ′′λ⊥∑
r̂⊥

〈Si · Sj〉+ J ′′λ‖
∑
r̂‖

〈Si · Sj〉

 (9)

Here, ωPM
λ is the paramagnetic phonon frequency and

for each phonon mode we introduced: J ′′λ⊥,‖ = u†λJ
′′
⊥,‖uλ

where uλ are the paramagnetic dynamical matrix eigen-
vectors and J ′′⊥,‖ is the dynamical matrix correspond-

ing to J ′′nn′⊥,‖ force-constant matrix. The magnetically-

induced phonon splittings for the two principle AFM or-
ders are then given by

∆ωAFM-I
λ ≡ ω̃AFM-I

λ (α = z) − ω̃AFM-I
λ (α = x, y)

≈ 8J ′′λ⊥/ωPM
λ − 8J ′′λ‖/ω

PM
λ (10)

∆ωAFM-II
λ ≡ ω̃AFM-II

λ (α = z)− ω̃AFM-II
λ (α = x, y)

≈ −4J ′′λ⊥/ωPM
λ + 4J ′′λ‖/ω

PM
λ (11)

The ratio J ′′λ⊥,‖/ω
PM
λ characterize the strength of the

magnetic contribution to the phonon frequencies. Table
I shows these parameters for different ACr2O4 spinels.
We can immediately observe that the only appreciable
ratio are J ′′λ⊥/ωPM

λ for the two lowest-frequency modes
(λ =1,2) and both are always positive. It follows from
Eqs. (10) and (11) that the phonon splitting is the largest
for the two lowest-frequency modes and it is positive
(negative) for the AFM-I (AFM-II) orderings. This fea-
ture is a direct consequence of J ′′33⊥ being positive and
dominant among other elements of J ′′⊥ and J ′′‖ since the

λ =1,2 modes have the largest content of the f3α part-
ner function (see Supplementary Materials28). Therefore,
according to the discussion above, different signs of the
phonon splittings that we found from first principles for
the lowest phonon modes are ultimately related to the
dominant role of the direct exchange mechanism in gen-
erating the spin-phonon coupling.

Interestingly, J ′′λ⊥/ωPM
λ for λ =3,4 are also always pos-

itive while J ′′λ‖/ω
PM
λ for all modes are consistently neg-

ative. This results in the sign of the phonon splitting
to be positive (negative) for the AFM-I (AFM-II) states
for the two-highest phonon modes as well. These fea-
tures, however, is difficult to explain microscopically due
to small values of the splittings. In fact, the spliting of
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the two-highest phonon modes is too small to be seen in
experiments.

According to Eqs. (10) and (11) we can write

∆ωAFM-II
λ ≈ −1

2
∆ωAFM-I

λ (12)

Therefore, the phonon splittings for AFM-I and AFM-
II orders are always opposite and the latter is approxi-
mately half of the former. This is a general result which
follows directly from the applicability of the nn spin-
phonon coupling model and it is independent on the signs
and sizes of the exchange second derivatives. Note that
the above relation is well satisfied by first principles data
(Fig. 4) which again demonstrates applicability of the
model. Note, however, that this relation doesn’t tell us
for which ordering the phonon splitting is positive. In
order to answer this question more microscopic analysis
(as above) is needed.

VI. CONCLUSIONS

In summary, we investigated the effect of magnetic
ordering on phonon frequencies of ACr2O4 spinels us-

ing first principles electronic structure calculations. We
found that our ab initio results are very well described by
the spin-phonon coupling model with only nn exchange
coupling.11 Both the model and first principles calcu-
lations show that a specific type of spin ordering has
a crucial effect on magnetically induced phonon split-
ting. In particular, we found that the different magnetic
states observed in different spinels lead to the opposite
signs of the phonon splittings observed in ZnCr2O4 and
MgCr2O4 compounds compared to CdCr2O4. This fea-
ture is a result of an important role played by the direct
exchange mechanism in generating the spin-phonon cou-
pling in these materials.
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25 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
26 G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
27 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
28 Supplementary Materials.
29 H. T. Stokes, D. M. Hatch, and B. J. Campbell,

ISOTROPY, http://stokes.byu.edu/isotropy.html (2007).
30 A. N. Yaresko, Phys. Rev. B 77, 115106 (2008).
31 J. B. Goodenough, Journal of Physics and Chemistry of

Solids 30, 261 (1969).
32 K. Dwight and N. Menyuk, Phys. Rev. 163, 435 (1967).



7

33 G.-W. Chern, R. Moessner, and O. Tchernyshyov, Phys.
Rev. B 78, 144418 (2008).

34 G.-W. Chern, C. J. Fennie, and O. Tchernyshyov, Phys.
Rev. B 74, 060405 (2006).

35 H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and
X. G. Gong, Phys. Rev. B 84, 224429 (2011).

36 M. Matsuda, H. Ueda, A. Kikkawa, Y. Tanaka, K. Kat-
sumata, Y. Narumi, T. Inami, Y. Ueda, and S.-H. Lee,
Nature physics 3, 397 (2007).

37 Under D4h or D4 certain rows of the silent T2u irreducible
representation of Oh become ir-active and, can in prin-
ciple mix with the irreducible representations originating
from T1u. This mixing is however small (as we explicitly
checked) and therefore was neglected.


