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We analyze the short-time behavior of the heat and charge currents through nanoscale conductors
exposed to a temperature gradient. To this end we employ Luttinger’s thermo-mechanical potential
to simulate a sudden change of temperature at one end of the conductor. We find that the direction
of the charge current through an impurity is initially opposite to the direction of the charge current in
the steady-state limit. Furthermore we investigate the transient propagation of energy and particle
density driven by a temperature variation through a conducting nanowire. Interestingly, we find
that the velocity of the wavefronts of, both, the particle and the energy wave have the same constant
value, insensitive to changes in the average electronic density. In the steady-state regime we find
that, at low temperatures, the local temperature and potential, as measured by a floating probe lead,
exhibit characteristic oscillations due to quantum interference, with a periodicity that corresponds
to half the Fermi wavelength of the electrons.

PACS numbers: 73.63.-b,05.60.Gg,72.20.Pa,71.15.Mb

I. INTRODUCTION

The description of the combined charge and energy
transport at the nanoscale has received a great deal of
attention in recent years.1–3 Much of the motivation is
supplied by the search for efficient thermoelectric de-
vices, which would allow, for example, partial conversion
of waste heat into usable energy. Experimentally, several
procedures have been developed to measure local tem-
peratures at the nanometer scale, e.g., scanning thermal
microscopy4–8 and transmission electron microscopy.9 On
the theoretical side various approaches have been used
to formally justify the extrapolation of well-established
concepts of equilibrium statistical mechanics, such as
temperature and entropy, to nonequilibrium nanoscale
systems.10–15

A very interesting theoretical tool for the study of ther-
moelectric transport phenomena is the space- and time-
dependent thermo-mechanical potential ψ(r, t), which
was first introduced by Luttinger16 to formulate the re-
sponse of electrons to temperature gradients as a Hamil-
tonian problem. Like the gravitational field, to which it is
formally related, the thermo-mechanical potential is lin-
early coupled to the energy density, for which Luttinger
chose one of several possible definitions – all equivalent
in the long-wavelength limit.

In recent years, Luttinger’s idea has found several
interesting applications in the calculation of the lin-
ear thermoelectric response of macroscopic systems.17–21

In a recent paper, we have shown that the thermo-
mechanical potential offers a natural path to the inclu-
sion of thermoelectric effects in a general-purpose time-
dependent density-functional theory.22 Furthermore, we
have shown that, when certain dynamical many-body
effects are neglected, the thermo-mechanical poten-
tial formalism reproduces the results of the well-
known Landauer-Büttiker23–25 multi-terminal formalism
for thermal transport26 (see also Refs. 27,28 for a de-

scription of the so-called partition-free approach to quan-
tum transport and its relation to the Landauer-Büttiker
formalism) and allows a natural definition of the local
temperature in terms of a local probe that carries no
currents.15,26,29

The study of Ref. 26 focused on the steady-state re-
sponse to voltage and temperature gradients. In this pa-
per we present the first application of Luttinger’s thermo-
mechanical potential approach to the computation of
transient particle and energy or heat currents through
nanoscale devices.

We consider two model devices. The first one is a
single impurity (quantum dot) sandwiched between two
thermal reservoirs at different temperatures. The second
model is a conducting chain of atoms placed between the
same two reservoirs. In both cases we study the time
evolution of the electronic and energy densities and the
associated currents following a sudden change in the tem-
perature of the left reservoir. This idealized set up, can
actually be approximately realized in experiments, when
the current in one of the heater coils typically used to set
the temperatures of the reservoirs is suddenly increased
or decreased.2 Of course, in experiments the rate at which
the temperature changes in that reservoir is limited by
the inelastic processes involved (phonon and radiative
dissipation). Here, since we are only interested in the
quality behavior, we consider an instantaneous switch-
on of the perturbation.

In the case of a single impurity, we find that the par-
ticle current for short times after the switch-on flows op-
posite to the particle current in the long-time (steady-
state) limit, usually addressed within the Landauer-
Büttiker23–25 or Meir-Wingreen approach.30–32 This re-
markable physical effect will be described in detail in the
following sections.

Coming to the conducting chain model, we find that
the density and energy wavefronts, induced by the sud-
den change in temperature in the left reservoir, propa-
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FIG. 1: (color online) Schematic transport setup where a
nanoscale junction (central region) is connected to reservoirs
via leads. When a temperature difference is applied to the
leads by switching a thermo-mechanical potential a heat and
charge current will flow through the device. The third lead
(yellow) represents an additional “probe” lead, which can
be used to determine the local temperature in the device.
The spectral densities of the left and right reservoirs are also
sketched, as they do, in principle, affect the transport.

gate with constant velocity, independent on the initial
temperature or density. In contrast to this, at low tem-
peratures we find characteristic Friedel oscillations in the
steady-state distribution of the local temperature10,12,33,
a hallmark sign of quantum interference, with a periodic-
ity depending on the Fermi wavelength, and, hence, the
density.

In the present work we have not included the effect
of electron-electron interaction. This can be taken into
account within the framework of our recently proposed
thermal Density-Functional Theory22 with a suitable,
e.g., local, approximation for the exchange-correlation
potentials.

This paper is organized as follows: In Sec. II we in-
troduce the model Hamiltonian employed to study the
transient particle and energy density and their associ-
ated currents. In Sec. III we present a careful analysis
of the transient behavior of a single-site impurity subject
to a temperature gradient. Next, we discuss in Sec. IV
the density and energy wave induced in a nanowire. De-
tails of the numerical implementation are given in App.
B. We conclude in Sec. V by summarizing our findings
and providing an outlook on the implications for thermal
Density-Functional Theory.

II. THERMOELECTRIC TRANSPORT IN
NANOSCALE JUNCTIONS

A typical setup to study thermoelectric transport is
shown in Fig. 1, where a molecular device or a nanowire
is suspended between two metallic leads. If the device
is exposed to a temperature gradient, e.g., by heating
up the left lead, a heat or energy current and a charge
current flow through the junction.

We model the aforementioned nano-junction by a

tight-binding Hamiltonian of the form

Ĥ =
∑
αk

εαkφ̂
†
αkφ̂αk +

∑
mn

φ̂†nHnmφ̂m

+
∑
αk

∑
m

(
φ̂†αkV(αk)mφ̂m + φ̂†mVm(αk)φ̂αk

)
. (1)

where α labels leads connected to the central region.
The electrons in the leads are governed by a disper-

sion εαk. We model the leads by an infinite tight-
binding chain with nearest-neighbor hopping amplitudes
tα, which means that the dispersion reads explicitly

εαk = 2tα cos(k) + εα . (2)

It describes a single band with bandwidth 4tα and the
positioning of the center of the band is determined by
the lead-specific energy εα.

The central region is described by the generic Hamil-
tonian H, a matrix in the basis of the tight-binding sites
which contains the kinetic energy, described by a uniform
nearest-neighbor hopping t, and a local potential Un, i.e.,

Hmn = tδm(n±1) + Unδmn , (3)

The hopping amplitudes between leads and impurity
are denoted by V αk. Taking only a nearest-neighbor
hopping between the last lead site and the closest site
of the central region with amplitude V α we have

V αk = V α sin(k) . (4)

In the limit of infinite leads the sum over k corresponds
to
∑
k ≡ 2

π

∫ π
0

dk . Hamiltonian (1) describes the intrinsic
features of the system under consideration.

Usually, temperature-driven transport is described by
removing the contacts between the central region and
the leads in the initial preparation, and equilibrating the
leads at different temperatures.3,34 Then, at the initial
time t0, the device is suddenly contacted to the leads
which induces a heat and charge transfer trough the cen-
tral region. Here, by contrast, the initial state is deter-
mined for the fully contacted system. This is possible
since we are employing Luttinger’s thermo-mechanical
potential to describe a gradient in the temperature. At
t0 we switch on a thermal and charge bias in the leads.
This means that the Hamiltonian for t > t0, which drives
the system out of equilibrium is given by

Ĥdrv =
∑
αk

ε̄αkφ̂
†
αkφ̂αk +

∑
mn

φ̂†nHnmφ̂m

+
∑
αk

∑
m

(
φ̂†αkV(αk)mφ̂m + φ̂†mVm(αk)φ̂αk

)
, (5)

where the dispersion in the leads has changed to

εαk → ε̄αk = (1 + ψα)(εαk + Uα) . (6)

The potential bias Uα shifts the center of the band and
the thermal bias ψα stretches the shifted bands. We have
shown in a previous work,26 that the application of the
thermal bias ψα corresponds to changing the temperature
in lead α by δTα = ψαT0, i.e., ψα determines the relative
temperature change.
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FIG. 2: (color online) Plot showing the transient density
change, δn(t), of the impurity site and the currents be-
tween left lead and impurity, IL(t), and right lead and
impurity,IR(t), respectively. The corresponding steady-state
value are indicated by the horizontal, dashed lines. The in-
set shows the Fourier transform of the density change of the
long-time tail. The structure of this power spectrum reflects
the distribution of energy levels in the leads.

III. TRANSIENT CURRENTS FOR A
SINGLE-SITE IMPURITY

As a first example we consider a single-site impu-
rity (quantum dot) coupled to two (symmetric) metallic
leads. Specifically, we take the impurity site to be aligned
with the chemical potential and the hopping amplitudes
between the impurity and the leads are chosen as our
unit of energy, i.e., Vα = V = 1.(See also Appendix B for
more details.)

The hopping amplitudes in both leads is tα = 2V ,
which means that the leads have a bandwidth of 8V .
Both leads are shifted down in energy by −1V in or-
der to break particle–hole symmetry, which is required
to observe the Seebeck or Peltier effect, i.e., the inter-
play between charge and energy.2 Accordingly, both the
left and right lead have band edges which are positioned
at −5V (lower band edge) and +3V (upper band edge)
measured from the chemical potential, which is taken to
define zero energy.

We stress that we do not take the wide-band limit.
Accordingly, the embedding self-energy due to the leads
does not only provide a finite lifetime for the impurity
state, but also shifts its energy. For leads modeled by a
tight-binding chain this shift is linear–as long as the im-
purity site lies within the band–and pushes the energy of
the impurity above the chemical potential in the present
scenario.

Initially the coupled system is equilibrated at a tem-
perature kBT0 = 0.25V . Then, at t = 0, the temperature
in the left lead is suddenly raised by applying a thermo-

mechanical potential ψL = 1, which corresponds to a
doubling of the temperature on the left side.

In Fig. 2 we show the transient change of the impu-
rity density and the currents flowing to the left and right
lead, respectively. A temperature-driven particle current
occurs only because the system is not particle–hole sym-
metric. A perfect alignment of the center of both bands
with the chemical potential and the impurity site would
have two effects: 1) The energy of the impurity state
would not be shifted, because the real part of the em-
bedding self-energy vanishes at the center of the band.
2) The transmission would be symmetric, which implies
that no net particle current flows.

The time scale τ in the plot of the transients in Fig. 2
represents the intrinsic time scale for the decay of elec-
trons into the leads. The embedding self-energy due to
lead α is proportional to V 2

α /tα, which, in turn, implies
a that the lifetime of the electrons due to the embed-
ding is τα ∝ ~tα/2V 2

α . Since there are two leads we add
the decay rates to get τ = ~tα/(2V 2) = ~/V . For times
t > τ the density (red line) and the currents from the left
lead (green line) and the right lead (blue line) approach
their respectively steady-state values (dashed lines). As
expected, the current from the right lead is the nega-
tive of the current from the left lead in the steady-state
regime. Furthermore the density change settles to a pos-
itive value which means that in the transient regime the
impurity acquires additional particles. This can be ex-
pected since the impurity will increase its temperature
due to the heating from the left lead. We recall that the
energy of the impurity site is above the chemical poten-
tial, due to the coupling to the metallic leads, and hence
a higher temperature results in an increase in density.

A

B

C

FIG. 3: (color online) Sketch showing the short time particle
transfer processes: (A) The initial occupation of the left lead.
(B) The sudden increase in temperature requires a redistribu-
tion of the electrons from below to above the chemical poten-
tial. (C) The presence of the impurity assist–at short times–
this redistribution by providing electrons above the chemical
potential and the impurity density drops initially.
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FIG. 4: (color online) Same as Fig. 2 but for the change in
impurity energy, δh(t), and left and right heat currents, QL(t)
and QR(t), respectively.

Turning to the short-time transient, i.e., t < τ , we see
that the density of the impurity decreases, which seems
to be counterintuitive. However we suggest a simple pic-
ture (cf. Fig. 3): The thermo-mechanical potential ap-
plied to the left lead forces the electrons to adjust to a
higher temperature. This means that electrons have to
be moved from below the chemical potential to above the
chemical potential. The presence of the impurity site can
facilitate this process, at least temporarily, by providing
electrons above the chemical potential. This means that
for short times electrons are ”sucked” into the left lead,
which decreases the impurity density. However, the im-
purity will have to take a higher temperature, and by
extension density, itself. Now the right lead comes into
play by providing electrons for the impurity.

This explanation is supported by the analysis of the
transient currents. Initially there is a very strong flow
from the impurity to the left lead (t < 0.5τ). A little
later we observe a flow from the right lead to the impurity
0.25τ < t < τ . Finally, the two currents cross and settle
at opposite steady-state values.

In Fig. 4 we show the time evolution of the impurity
energy (red line) and its associated heat currents from
the left lead (green line), and from the right lead (blue
line). Since we heat up the system, it is always expected
that the impurity energy increases, independent of the
positioning of the impurity level. This is simply due to
the fact that the energy is measured with respect to the
chemical potential. Even if the impurity level would be
below the chemical potential, which means that the state
depopulates in the steady state, the change in energy
would be positive, because we depopulate a negative en-
ergy state.

In light of the previous discussion of the particle flow
at short times one may ask how it is possible to have a

heat flow from the left lead to the impurity even though
there are electrons moving above the chemical potential
in the opposite direction. The resolution to this puzzle
is the following: The energy of the impurity site is given
by the impurity density times the local potential plus a
contribution due to the hopping between the impurity
and both leads.43 In the present case the local potential
is perfectly aligned with the chemical potential, i.e., the
contribution from the local potential is zero. Accordingly,
the only contribution to the local energy comes from the
hopping to the leads. This (kinetic) energy does not de-
pend on the “direction” of the hopping and therefore the
local energy increases. Looking at the heat currents we
see that there is initially a strong heat flow from the left
lead to the impurity, followed by a much less pronounced
heat flow from the impurity to the right lead. Finally,
the flows equilibrate to the steady-state values.

The insets in both Figs. 2 and 4 show the Fourier trans-
form of the density and energy change at long times. It
is computed in a time window t = [10τ, 10τ + ∆t], where
∆t is chosen big enough to resolve the “lowest” tran-
sition energy of our system, which in our example cor-
responds to transitions between the impurity level, ε0,
and the chemical potential (~ωmin = ε0 ≈ 0.27V , verti-
cal orange line). The sampling rate is taken to resolve
the largest transition frequency, which is given by the
energy differences of the thermally biased band edges of
the left lead (~ωmax = 16V ). In order to understand the
possible transitions we recall that the band edges are ini-
tially at −5V and +3V for both the left and right lead.
Applying the thermo-mechanical potential scales the left
band by a factor of 2, which shifts the band edges of
the left lead to −10V and +6V , respectively. The solid,
brown vertical lines depict transition frequencies from the
band edges to the chemical potential, i.e., they are at
~ω = 3V, 5V, 6V, 10V . Similarly, the dashed, brown ver-
tical lines highlight transitions between band edges which
correspond to ~ω = 3V, 5V, 8V, 11V, 13V, 16V . Lastly,
the dashed, brown–orange vertical lines indicate transi-
tions between the band edges and the impurity level at
~ω = 3V − ε0, 5V + ε0, 6V − ε0, 10V + ε0. Strong features
of the Fourier spectrum coincide with the aforementioned
transition frequencies. Note that in the wide band limit
all features, except for the transition between the impu-
rity level and the chemical potential at ~ω = ε0, would
be absent. The most distinct peak occurs for, both, the
density and the energy at ~ω = 13V , which refers to
transitions between the lower band edge of the left lead
and the upper band edge of the right lead.

IV. HEAT WAVE PROPAGATION THROUGH
A CONDUCTING WIRE

Our second example describes a nanowire suspended
between two metallic leads. The parameters for this
system are taken to be identical to the single-impurity
model discussed in the previous section. However, the
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FIG. 5: (color online) Plot of the transient density and energy
wave propagating through the nanowire. No external gate
potential is applied. Both wavefronts propagate with the same
velocity from the left to the right lead.

central region is composed of 100 sites connected by near-
est neighbor hopping with amplitudes t = V . This means
that the central region starts to form a band with band-
width 4V and a dispersion given by the discretized ver-
sion of Eq. (2). The center of the band representing the
nanowire is aligned with the chemical potential.

In Fig. 5 we show snapshots of the spatially-resolved
density and energy in the wire. The snapshots are taken
at intervals of δt = 5τ up to the time t < 50τ , just
before the wavefronts reach the right end of the wire.
First of all, we note that both the density and the en-
ergy wavefronts traverse the wire with the same constant
velocity. This “Wiedemann-Franz”–like behavior can be
understood from the fact that the energy is carried by the
propagating electrons. Their spatial behavior, however,
is different in the wake of the wavefront. As expected, the
velocity of the wavefront is proportional to the hopping
amplitude, i.e., v ∝ t.

A slightly more refined guess for the velocity is the
Fermi velocity, vF ∝ ∂kεk = 2t sin(kF). This implies a
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FIG. 6: (color online) Same as Fig. 5 but with an external gate
potential. This reduces the initial density–and thereby the
Fermi wave vector–of the nanowire. The transient wavefronts
of the density and energy, however, propagate with the same
velocity as with no external gate potential.

density dependence of the velocity via the Fermi wave
vector kF. In order to investigate whether there is a den-
sity dependence of the velocity we repeat the calculation
with the dispersion of the nanowire shifted upwards by
a constant gate potential Un = 1V . In Fig. 6 we show
snapshots of the density and energy changes for the gated
nanowire. While the spatial form of the waves changes
compared to the nanowire without any gate potential,
the wavefront still moves with the same velocity. We do
not find a density dependence.

Of course, the simplistic estimate of the velocity by
the vF has two caveats: 1) We inject a highly inhomoge-
neous wave packet in the nanowire, which implies that we
have a superposition of many momentum states. Accord-
ingly, it seems rather optimistic to assume that the wave
packet is highly peaked around the Fermi wave vector. 2)
The initial temperature is comparable to the bandwidth
of the nanowire, i.e., kBT0 . 4t. Hence, the thermal
spread of occupations is of the order of the Fermi energy,



6

0.3

0.4

0.5

0.6

0.7

0.8

0.9
L

o
ca

l
te

m
p

er
at

u
re

δTi/T0 for T0 = 0.025V

δTi/T0 for T0 = 0.25V

0.3

0.4

0.5

0.6

0.7

0.8

L
o
ca

l
te

m
p

er
at

u
re

δTi/T0 for T0 = 0.025V

δTi/T0 for T0 = 0.25V

FIG. 7: (color online) Steady-state local temperature dis-
tributions in the nanowire determined by a “probe” lead as
shown in Fig. 1. Both panels compare the local temperatures
for different initial temperatures. The red lines correspond to
an initial temperature of kBT0 = 0.25V and the blue lines to
kBT0 = 0.025V . The local temperature for the lower initial
temperature exhibit typical 2kF Friedel oscillations.

εF = −2V cos(kF) + 2V . We have computed the tran-
sients of the density and energy with an initial tempera-
ture reduced by a factor of 10, i.e., kBT0 = 0.025. How-
ever, we find that– with and without the gate potential–
the velocity of the wavefront corresponds to the velocity
at the higher initial temperature. This leads to the con-
clusion that the spatial inhomogeneity of the wavefront
requires a superposition of momentum states. We point
out that it has recently been shown that the coordina-
tion of the tight-binding model affects the velocity of the
wavefront.35 It would be interesting to investigate if this
geometric effect allows for different propagation velocities
for density and energy waves.

Lastly, we look at the steady-state of the nanowire.
We can determine the local temperature and potential
by introducing a third lead (cf. Fig. 1), which is weakly
coupled to a specific site in the wire. Furthermore we

take the wide-band limit for this additional lead. A lo-
cal potential and temperature can be defined by impos-
ing zero particle and energy current conditions for this
“probe” lead.29 It has been pointed out by us (cf. Ref. 26)
that the zero current conditions are equivalent to asking:
Which temperature and chemical potential reproduce the
local density and energy under equilibrium conditions?
It was also shown recently36 that the local temperature
obtained this way is comparable to that experimentally
measurable in which one varies the temperature of the
third lead till some observable of the system is minimally
perturbed.10

In Fig. 7 we compare the local temperature computed
for different initial temperatures. The upper panel de-
picts the local temperature for the wire without the gate.
We can see that at low initial temperature (kBT0 =
0.025V , blue line) the local temperature oscillates from
site to site, whereas for high initial temperature (kBT0 =
0.25V , red line) the spatial temperature profile is essen-
tially flat. The lower panel shows temperature profiles for
the gated nanowire. Qualitatively we see the same behav-
ior as for the wire with no gate potential. However, the
oscillations for low initial temperature now have a period
of three lattice sites. The applied gate reduces the Fermi
wave vector from kF = π/2a0 → kF = π/3a0 (a0 being
the distance between neighboring sites). Accordingly, the
oscillations in the local temperature correspond in both
cases to “Friedel”–like oscillations at q = 2kF. Friedel
oscillations are a well-known feature of the degenerate
electrons gas and represent a quantum interference effect.
The average temperature variation of the wire is slightly
below δT/T0 = 0.5, i.e., the wire is closer in temperature
to the colder right lead. We have already observed this
phenomenon in Ref. 26, which was also predicted in Ref.
10,12. We conclude by mentioning that the local poten-
tial exhibits the same oscillations. The interested reader
may find the corresponding plots in App. A.

V. DISCUSSION AND CONCLUSION

In this paper we have investigated the transient cur-
rents induced by a temperature gradient. The tem-
perature gradient has been applied by employing Lut-
tinger’s thermo-mechanical potential as proxy for tem-
perature variations. Furthermore, the formulation in
terms of the thermo-mechanical potential allowed us to
study temperature-driven particle and energy transport
in the so-called unpartitioned approach, where a nano
scale device is already contacted to metallic leads in the
initial preparation.

For a single-site impurity model we found that the
transient particle current flows in the opposite direction
to the steady-state current, which suggests that a fre-
quency dependent generalization of the Seebeck coeffi-
cient changes sign at high frequencies. Furthermore, we
provided a simple picture to interpret the numerical re-
sults for the transient particle current in terms of a impu-
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rity assisted re–population of the electrons in the leads.
Considering a tight-binding chain, representing, e.g.,

conductive polymers or nanowires, we found that the ve-
locity of the transient particle and energy wave is essen-
tially constant over a range of initial temperatures and
only depends on the hopping amplitudes. Furthermore
we have shown that in the steady state there is a sig-
nature of quantum interference–at least at low tempera-
tures. The local temperature and potential, as measured
by a floating thermal probe exhibits characteristic 2kF
Friedel oscillations.

Even though the model studied considered noninter-
acting particle, the results are highly relevant, since we
have recently introduced a thermal Density-Functional
Theory,22 which allows to map the interacting system
onto a fictitious non-interacting Kohn-Sham system.37

In the future it will be interesting to investigate to what
extent interactions, represented in terms of exchange-
correlation corrections to the thermo-mechanical and
charge potential will affect the presented results. We
are confident that the presented results are an impor-
tant step on the way to a fully microscopic description of
the combined particle and energy transport in interacting
systems.
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Appendix A: Additional plots

In this appendix we provide additional plots. In Fig.
8 and 9 we show snapshots of the spatial profiles of the
transient density and energy wave at low temperatures.
In Fig. 10 we show the local potential determined from
the steady-state density and energy of the nanowire.

Appendix B: Numerical details

The numerical computation of the time-dependent ob-
servables use two facts: 1) The system is noninteracting
which allows for a direct solution of the equations of mo-
tion for the field operators. 2) The time evolution is
triggered by a sudden change in the Hamiltonian. This
means that we do not have to worry about time-ordering.
The main complication comes due to the “openness” of
the system, i.e., the coupling of a finite system to semi-
infinite leads. It has be shown recently that if the leads
are treated in the wide-band limit, the time-evolution can
solved almost analytically.38,39 In our calculation we do
not take the wide-band limit and therefore we have to
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FIG. 8: (color online) Same as Fig. 5 in Sec. IV but with a
reduced initial temperature kBT0 = 0.025V . The velocity of
the transient wavefront remains unaffected.

rely on a numerically solution of the involved integrals.
In the following we provide a rough sketch of the numer-
ical implementation, focusing on two key aspects: The
evaluation of the Matsubara summation needed to rep-
resent the initial state, and the technique to compute the
Fourier transform leading to the single-particle propaga-
tors. An introduction to nonequilibrium quantum sys-
tems may be found in Ref. 40.

Since the Hamiltonian (1), given in Sec. II, is nonin-
teracting, we can formally solve for the time-dependent
fields operators (~ = 1):

φ̂ (t) =

∫ ∞
−∞

dω

2πi
e−iωtGR(ω)·(

φ̂ +
∑
αk

V ?
αkg

R
αk(ω)φ̂αk

)
, (B1a)

φ̂αk(t) =

∫ ∞
−∞

dω

2πi
e−iωt

(
gRαk(ω)φ̂αk + gRαk(ω)V αk ·GR(ω)·[

φ̂ +
∑
α′k′

V ?
α′k′g

R
α′k′(ω)φ̂α′k′

])
, (B1b)

where φ̂ denotes the vector of field operators referring
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FIG. 9: (color online) Same as Fig. 6, Sec. IV but with initial
temperature kBT0 = 0.025V . Also for the case with an exter-
nally applied gate voltage the velocity of the wavefront is the
same.

to the central region. In Eq. (B1) we have introduced the
device Green’s function

G(z) = (z −H −Σ(z))
−1

, (B2)

given in terms of the embedding self-energy,

Σ(z) =
∑
αk

V ?
αkgαk(z)V αk , (B3)

and the Hamiltonian of the central region. Σ(z), in turn,
is given in terms of the bare Green’s functions of the
leads,

gαk(z) =
(
z − εαk

)−1
. (B4)

Using the explicit solution for the field operators we
can write the time-dependent observables in terms of the
initial state density matrices for the central region,〈

φ̂†φ̂
〉

=

∫ ∞
−∞

dε

2πi
f(ε)

[
GA(ε)−GR(ε)

]
, (B5)
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FIG. 10: (color online) Plots of the local potential of the
nanowire studied in Sec. IV. The upper panel depicts the
local potentials for the wire without an external gate and the
lower panel with gate. Similar to the local temperature shown
in Fig.7 the local potential exhibits Friedel oscillations with
wave vector q = 2kF for a low initial temperature.

the boundary of the central region and the leads,

〈
φ̂†φ̂αk

〉
=

∫ ∞
−∞

dε

2πi
f(ε)

[
gAαk(ε)V αk ·GA(ε)

− gRαk(ε)V αk ·GR(ε)
]
, (B6a)〈

φ̂†αkφ̂
〉

=

∫ ∞
−∞

dε

2πi
f(ε)

[
GA(ε) · V ?

αkg
A
αk(ε)

−GR(ε) · V ?
αkg

R
αk(ε)

]
, (B6b)

and the leads,

〈
φ̂†α′k′ φ̂αk

〉
=

∫ ∞
−∞

dε

2πi
f(ε)

(
δαα′δkk′

[
gAαk(ε)− gRαk(ε)

]
+
[
gAαk(ε)V αk ·GA(ε) · V ?

α′k′g
A
α′k′(ε) (B7)

− gRαk(ε)V αk ·GR(ε) · V ?
α′k′g

R
α′k′(ε)

])
.
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In order to numerically evaluate integrals of the form〈
φ̂†βφ̂α

〉
=

∫ ∞
−∞

dε

2πi
f(ε)

[
GA
αβ(ε)−GR

αβ(ε)
]
, (B8)

we use the following representation of the Fermi function:

f(z) =
1

2
−
∑
f

Rf
z − izf

. (B9)

The residues Rf and the modified Matsubara frequencies
zf can be obtained from the matrix

Bjj+1 = Bj+1j =
1

2
√

(2j + 1)(2j + 3)
, 0 ≤ j . (B10)

Considering the eigenvalue problem

B · bf = bfb , (B11)

it can be shown41 that zf and Rf are given by

zf =
1

βbf
, (B12a)

Rf =
1

β

(
bf,0
2bf

)2

, (B12b)

where bf,0 denotes the component j = 0 of the eigenvec-
tor. Now we can use Eq. (B9) in Eq. (B8) to obtain〈

φ̂†βφ̂α

〉
=
∑
f

RfG
M
αβ(izf )

+
1

2

∫ ∞
−∞

dε

2πi

[
GA
αβ(ε)−GR

αβ(ε)
]
. (B13)

It has been shown that the truncated summation over
zf converges much faster than the original Matsubara
summation.42

For the calculation of the propagators we have to per-
form Fourier integrals of the type∫ ∞

−∞

dω

2π
e∓iωtFR/A(ω) . (B14)

A straight-forward numerical evaluation is hampered by
a strongly oscillating integrand for t � τ , where τ is a
characteristic time scale of the Hamiltonian. This can

be avoided by closing the integration contour with an
infinite semi-arc in the lower/upper half of the complex
plane for FR(ω)/FA(ω). However, the function FR/A

may has branch cuts on the real axis due to the em-
bedding self-energy. Figure 11 shows how the branch cut
can be rotated away from the real axis and directed along
the negative (or positive) imaginary axis. The semi-arc
has to be interrupted with integration contours running
along the deformed branch cuts. We label these contours
by Cω. This allows us to write the Fourier transform as

∫ ∞
−∞

dω

2π
e∓iωtFR/A(ω) = −

(∫
Cω

dω

2π
e∓iωtFR/A(ω)

± i
∑
m

e∓iωmtRes
[
FR/A(ωm)

])
, (B15)

FIG. 11: (color online) Sketch showing how the original
Fourier integration contour (red) for a retarded integrand is
replaced by an interrupted semi circle (blue) in the lower half
of the complex plane. However, in order to do so the branch
cut (green dashes) needs to be rotated away from the real axis
and oriented along the negative imaginary axis. In deforming
the branch cut we analytically continue the retarded function
into the lower half of the complex plane, which potentially
“uncovers” poles (orange stars), e.g., poles representing the
quasi-particle energy for the case of the Green’s function. The
contribution from the contour on the semi circle vanish due
to the Fourier exponential. The remaining contour, running
back and forth along the branch cut is denoted by Cω in Eq.
(B15).

where ωm are the poles in the lower/upper half of the
complex plane of FR/A(z), respectively. Since the con-
tour Cω is always parallel to the imaginary axis, the
Fourier exponentials are now exponentially decaying,
which improves the numerical stability and allows us
to compute the long-time behavior accurately and effi-
ciently.
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