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We show that the anharmonic decay of large-amplitude coherent phonons in a solid generates
strongly enhanced squeezing of the phonon modes near points of the Brillouin zone where energy
conservation in the three-phonon decay process is satisfied. The squeezing process leads to temporal
oscillations of the mean-square displacement of target modes in resonance with the coherent phonon,
which are characteristic of coherent phonon decay and do not occur in the decay of a phonon in a
well-defined number state. For realistic material parameters of optically excited group-V semimetals,
we predict that this squeezing results in strongly enhanced oscillations of the x-ray diffuse scatter-
ing intensity at sharply-defined values of the x-ray momentum transfer. Numerical simulations of
the phonon dynamics and x-ray diffuse scattering in optically-excited bismuth, using harmonic and
anharmonic force parameters calculated with constrained density functional theory, demonstrate
oscillations of the diffuse scattering intensity of magnitude 10-20% of the thermal background at
points of the Brillouin zone, where resonance occurs. Such oscillations should be observable us-
ing time-resolved optical-pump/x-ray-probe facilities available at current x-ray free-electron laser
sources.

PACS numbers: 63.20.kg, 63.20.dk, 78.47.D-, 78.70.Ck

The effect of mode coupling in strongly anharmonic
materials has long been of interest, with important con-
sequences for thermal transport and thermalization of
energy within the vibrational modes[1]. The anharmonic
decay of vibrational modes has been qualitatively un-
derstood in terms of quantum perturbation theory for
many decades[2] and in more recent times, accurate quan-
titative calculations of phonon decay rates, based on
density functional theory, have been possible[3]. It has
been pointed out [4] that higher-order correlations of the
phonon modes during the quantum decay process of a co-
herent phonon at very low temperature could in principle
create squeezed quantum states, although substantial dif-
ficulties were envisaged in the detection of such squeezed
states.

We show in this paper that significant non-trivial cor-
related dynamics occur in the target modes (decay prod-
ucts) at high temperature during anharmonic decay of
a coherent phonon — in particular, the target modes of
the decay process exhibit squeezed phonon dynamics in
this regime, generated in a process analogous to classical
parametric resonance [5]. From simulations of the decay
of the photo-excited coherent A1g mode in bismuth, we
show that such resonant squeezing of modes causes oscil-
lations of the x-ray diffuse scattering in some regions of
the Brillouin zone, which are of the order of 10-20% of
the room-temperature diffuse thermal background, and
should be directly observable using time-resolved x-ray
diffuse scattering[6]. Although mode squeezing is often
viewed as a primarily quantum phenomenon[7, 8], this

effect is by no means confined to the quantum regime[9]
and we suggest a broader physical regime of phonon
motion, in which squeezing phenomena play an impor-
tant role and which will be important in understanding
the complex dynamics of impulsively excited materials.
The analysis presented here also demonstrates how the
time- and momentum-resolution of ultrafast x-ray diffuse
scattering[6] can probe aspects of the quantum and clas-
sical dynamics of materials that have been inaccessible
using traditional quantum-optic measurements.

The use of ultrafast optical pulses to generate coherent
and squeezed states of atomic motion in molecules and
solids has been a topic of wide interest in the past two
decades[4, 10–20]. In solid state systems, much of the at-
tention has been focused on long-wavelength modes that
directly couple to the incident optical radiation in the
electronically photo-excited state of the material. The
ultrafast (sub-picosecond) dynamics of non-zero wave-
vector modes throughout the Brillouin zone has not been
directly accessible experimentally until very recently.
However, the intensity, time-resolution (in principle bet-
ter than 100 fs) and momentum-resolution of newly de-
veloped x-ray free-electron laser (XFEL) sources now al-
lows one to investigate the dynamics of phonons through-
out the Brillouin zone on a sub-picosecond timescale[6].
The integrated effect of mode squeezing throughout the
Brillouin zone, caused by optically-induced changes of
mode frequencies, has been observed in oscillations of
the optical reflectivity of KTaO3[13, 14] and oscillations
of the Debye-Waller factor in bismuth [21]. More re-
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cently, momentum-resolved mode squeezing in germa-
nium, again associated with optically-induced changes of
mode frequency, have been measured by time-resolved x-
ray diffuse scattering, mapping the dispersion of phonon
branches in the Brillouin zone [6, 22].

Photoexcited bismuth has been extensively studied be-
cause the high-symmetry A1g mode is particularly sensi-
tive to photoexcitation. The material is a simple, classic
semimetal, which in principle allows one to study energy
relaxation processes and induced atomic dynamics in a
material intermediate between semiconductors and met-
als [10, 15, 18, 23, 24]. The A1g atomic motion in photo-
excited bismuth[16, 25, 26] has been measured recently
using time-resolved Bragg scattering.

Modern first-principles electronic structure methods
are capable of accurate prediction of the phonon dynam-
ics, including anharmonic potential terms, and electron-
phonon coupling in materials. Previous theoretical work
on coherent phonon motion in bismuth has concentrated
largely on the coupling of electronic photo-excitation
with the zone center A1g and Eg modes, [17, 18, 24] with
some other calculations of the softening effects of pho-
toexcitation on modes throughout the Brillouin zone[19].
In this paper we address the anharmonic coupling of the
A1g mode to modes with wave vectors throughout the
Brillouin zone.

To illustrate the generic effect of resonant mode squeez-
ing during coherent phonon decay, we consider a simpli-
fied model, in which a coherent zone-center mode is an-
harmonically coupled to a single “target” phonon branch,
to which it decays by annihilation of a phonon in the co-
herent mode and creation of two phonons in the target
mode[2]. The Hamiltonian (per unit cell) of the system
is of the form:

H =
1

2

[
P 2

0 + Ω2Q2
0

]
+

1

2N

∑
q

[
P 2
q + ω2

q (1 + 2gqQ0)Q2
q

]
,

(1)
where N is the number of unit cells in the system, Q0

and P0 are the zone-center normal mode coordinate and
momentum, respectively, Ω is its frequency, and Qq, Pq
and ωq are the corresponding quantities for the target
phonon branch at momentum q in the Brillouin zone.
The anharmonic coupling constant gq defines the third-
order anharmonic coupling between the zone-center mode
and the target phonon branch. Assuming that ~ωq < kT ,
where k is the Boltzmann constant and T is the absolute
temperature, standard quantum perturbation theory [2]
gives the energy decay rate of the zone-center mode as

γ0 = kT
π

2N

∑
q

|gq|2 δ(2ωq − Ω)

= kT
π

2
|gq|2D2−phon(Ω), (2)

where D2−phon(Ω) is the two-phonon density of states
per unit cell at sum frequency Ω. Classical perturbation
theory yields an identical result [27].

To understand the resonant mode squeezing effect,
we treat the system classically, interpreting the dynam-
ical variables in the Hamiltonian as classical quantities
[28] When the coherent phonon mode is excited, with
Q0 = A cos(Ωt), the harmonic time variation of the ef-
fective restoring force constant ω2

q (1 + 2gqQ0) for the
target mode q induces squeezing of the mode Qq with
a non-zero, time-dependent mean-square displacement,
δ〈Q2

q(t)〉. As is familiar in the case of classical paramet-
ric resonance [5, 29], the magnitude of the oscillations
of the mean-square δ〈Q2

q〉 is largest on resonance, when
2ωq = Ω. The (steady-state) correlation can be calcu-
lated in perturbation theory as [30]:

δ〈Q2
q(t)〉 ≈ −A gq

[
Eq
ωq

]
γq sin(Ωt) + ∆ωq cos(Ωt)

γ2
q + ∆ω2

q

, (3)

where Eq is the vibration energy in mode q, ∆ωq =
2ωq − Ω, and γq is the energy decay rate of the target
mode q due to coupling to other modes. The out-of-
phase term, sin(Ωt), contributes a damping force on the
coherent mode Q0 via the anharmonic coupling term,
gqω

2
qQ0Q

2
q, in the Hamiltonian and the summation of

these terms over all q gives the damping rate in Eq. 2
when the energy per mode equals the classical thermal
energy, Eq = kT . The oscillation of δ〈Q2

q(t)〉 causes a
corresponding oscillation in the x-ray diffuse scattered
intensity that would allow the observation of this reso-
nant squeezing, as discussed further below.

If the coherent mode is driven in the more conven-
tional, single pulse displacive excitation, its displacement
is approximately of the form, Q0 = 0, for t < 0 and
Q0 = A cos(Ωt)e−γ0t/2 for t > 0, and the squeezed corre-
lation in mode q is approximately

δ〈Q2
q(t)〉 ≈ −

EqgqA

ωq
√

(γ′)2 + ∆ω2
q

[
e−γ0t/2 sin

(
Ωt+ δ′q

)
− e−γqt sin

(
2ωqt+ δ′q

)] ,
(4)

where γ′ = γq − γ0/2 and δ′q = tan−1[∆ωq/γ
′]. Here a

slow sin [∆ωq t/2] envelope of the squeezing signal occurs,
similar to the variation of occupation of final quantum
states in quantum state decay [31]. However, we note
that squeezing oscillations of the final states at frequency
Ω are characteristic of coherent phonon decay and do not
occur when the initial state is a single energy eigenstate
of the zone-center mode, although the decay rate of the
single energy state is identical to that of the coherent
state at this level of perturbation theory.

To see if it is feasible to observe such resonant squeez-
ing oscillations through the corresponding oscillations of
the x-ray diffuse scattering signal, we estimate the typi-
cal order of magnitude of the oscillating signal, relative to
the thermal background. The thermal background x-ray
diffuse scattered intensity is proportional to the mean-
square displacement 〈Q2

q〉 of modes at the wave vector q
in the Brillouin zone. The amplitude of the oscillations of
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the x-ray diffuse scattering signal, relative to the thermal
background, is then of the order of

δIq
Iq
∼

δ〈Q2
q〉

〈Q2
q〉
≈ A |gq|
〈Q2

q〉
[Eq/ωq]√
γ2
q + ∆ω2

q

, (5)

and noting that for classical thermal equilibrium,
Eq = ω2

q 〈Q2
q〉, we find

δIq
Iq

∼ A |gq|
ωq√

γ2
q + ∆ω2

q

. (6)

The maximum intensity oscillations occur at resonance,
where 2ωq = Ω and

δIres
I

∼ A |g| ωq
γq

= x0

√
Ma0|g|

ωq
γq

= x0g̃
ωq
γq
, (7)

where M is the reduced mass per unit cell for the
zone-center coherent mode, a0 is the lattice constant,
x0 = A/

√
Ma2

0 is the coherent atomic motion ampli-
tude as a fraction of the lattice constant, and g̃ =√
Ma0|g| is a dimensionless anharmonic coupling con-

stant, which is typically of the order of unity (see Sup-
plemental Material). Even when we assume relatively
short-lived phonons, with lifetimes of the order of 2 ps,
ωq/γq ∼ 2π(1.5 THz)/(0.5 ps−1) is of the order of 20,
giving oscillations of the order of 10% in the x-ray in-
tensity at points of resonance in the Brillouin zone if the
coherent atomic motion is of the order of 0.01a0, which
is typical for strongly excited coherent A1g phonons in
the group-V semi-metals [16, 26].

We note that the decay rate of the coherent mode is
directly related to the average coupling g̃ and the two-
phonon density of states at resonance. The optimal con-
ditions for driving resonant squeezing of the target modes
is where g̃ is relatively large but the two-phonon density
of states is small, allowing the damping of the coherent
mode to be moderate, and where the lifetimes of the tar-
get modes are long. Other aspects of the coherent mode
symmetry are not directly relevant, except that the exci-
tation of large coherent mode amplitudes in transparent
materials or for low-symmetry modes may be difficult. In
that case, where the coherent mode amplitude is small,
the amplitude of the diffuse x-ray oscillations will be cor-
respondingly reduced.

To more completely test this concept of the excita-
tion of resonant squeezed phonon motion, we have per-
formed numerical simulations of the coupled dynamics of
the A1g phonon in photo-excited bismuth, including its
anharmonic coupling to modes throughout the Brillouin
zone. The anharmonic coupling of the coherent mode
is determined using first-principles constrained density
functional theory[32], calculating the (6 × 6) dynamical
matrices Dq(x0, n) as functions of the A1g atomic dis-
placement cx0, where c is the lattice constant along the

trigonal axis, and electron-hole plasma density n for the
optically excited system on a 20× 20× 20 grid of points
q in the Brillouin zone, using a modified version of the
abinit code, as described in Ref. 19. The calculated ma-
trix elements of Dq are interpolated with linear functions
in n and x0. The energy per unit cell E0 as a function
of x0 and n for the optically excited system, in the ab-
sence of coupling to other phonon modes, is taken from
Ref. 18. The function E0 is consistent with time-resolved
x-ray diffraction measurements [16] and calculated equi-
librium phonon dispersions throughout the Brillouin zone
are in very good agreement with neutron scattering data
[19].

We numerically integrate the coupled equations of mo-
tion for the A1g displacement,

ẍ0 = − 1

Mc2
∂E0(x0, n)

∂x0
− 1

N

∑
λ,λ′,q

dDλλ′q

dx0
〈Q∗λqQλ′q〉,

(8)
and for the correlation functions 〈Q∗λqQλ′q〉 of the other
modes, where λ is a phonon branch index, with ini-
tial conditions equal to the thermal average values, as
discussed in the Supplemental Material at [URL to be
inserted by publisher]. Optical excitation of the sys-
tem is simulated by increasing n from 0 to 0.5% of va-
lence electron density in 100 fs, corresponding to an ab-
sorbed fluence of approximately 0.75 mJ/cm2 at wave-
length 800 nm in a 50 nm film [16]. This drives an initial
coherent phonon amplitude, x0 ≈ 0.0025, as discussed in
Ref. 18. To allow for lattice heating due to incoherent
electron-phonon scattering, we vary the temperature T
of the thermal bath, which couples to the target phonon
modes Qλq, with time; the lattice temperature increases
with a time constant of 2 ps [23, 33, 34], while the photo-
excited electron-hole plasma cools correspondingly (as-
suming the ratio of the plasma to lattice heat capacities
to be equal to the number of electron-hole pairs per unit
cell). Although no phenomenological damping term is in-
cluded for the coherent phonon, induced correlations in
the modes Qq cause a damping force on the A1g motion,
arising from the second term on the r.h.s. of Eq. 8, and
the energy of the motion decays with a time constant of
2.9 ps, in reasonable agreement with the experimentally
measured phonon lifetime of 2.0 ps[35]; thus, we are con-
fident that the magnitude of the anharmonic coupling of
modes is well represented in the simulation.

We have calculated the time-dependent x-ray diffuse
scattering signal for points throughout the Brillouin zone.
For an x-ray scattering wave vector, ∆k = q −G, where
G is a lattice vector, the scattered x-ray intensity is pro-
portional to

I(∆k) = 〈|S(∆k, t)|2〉 (9)

= e−2W (∆k,t)
∑
λ,λ′

Kλq〈QλqQλ′q〉 K∗λ′q

where Kλq =
∑
α exp[−i∆k · xα] ∆k · uα,λq. Here xα
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FIG. 1. Calculated x-ray diffuse scattering intensity I(q) (Eq.
9) versus time delay after optical pump pulse for selected scat-
tering wavevectors along the Σ line (from Γ through K to X)
in the Brillouin zone, ∆k = q = ξ(g1 − g3), where gi are the
basis vectors of the rhombohedral reciprocal lattice, for values
of ξ = 0.05 (bottom curve), 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45, 0.5 (top curve).

is the position of atom α in the unit cell, including the
zone-center A1g coherent phonon displacement, uα,λq is
the displacement of atom α for mode λ of wave vector q,
and W is the Debye-Waller factor:

W (∆k, t) =
1

4NM

∑
λ,λ′,q

Kλq〈Qλq ∗Qλ′q〉 K∗λ′q . (10)

If ∆k is perpendicular to the c axis, then the factors
exp[i∆k ·xα] in K do not oscillate when the A1g mode is
excited and only the squeezing oscillations of 〈QλqQλ′q〉
contribute to the oscillations of I(∆k). We have taken
the damping rate γq of the target modes to be (5 ps)−1,
consistent with typical decay rates of phonon modes for
Bi.

Shown in Fig. 1 are the oscillations of the calculated
x-ray diffuse diffraction signal for points q along the Σ
line (from Γ to X through K) in the first Brillouin zone
(G = 0) in the first 10 ps after photo-excitation, cal-
culated from our simulation of the anharmonically cou-
pled system. We note that we are sensitive to longitu-
dinal oscillations only for this diffraction geometry. In
other zones, oscillations associated with transverse oscil-
lations are detectable. No background subtraction has
been made on the signal shown, so that the time-zero
value for each trace gives the background scattered in-
tensity at that wave vector.

We see that near points which satisfy the resonance
condition, 2ωLA = Ω, large oscillations occur at fre-
quency Ω [36]. These oscillations are modulated by a
sin [∆ωqt/2] envelope. Near the X-point, the resonance
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FIG. 2. Upper panel: Calculated equilibrium phonon bands
in Bi along the Σ line in the Brillouin zone. The solid lines
indicate LO and LA branches, for which overtone (2ω) and
combination (ωLO + ωLA) frequencies are indicated by dot-
ted lines in the lower panel. Lower panel: (Color online)
Squeezing oscillation spectrum as a function of frequency and
momentum along the Σ line, calculated by Fourier transform
of the calculated x-ray diffuse scattering for each momentum,
q = ξ(g1 − g3) — see Fig. 1. Color corresponds to the log10

of the intensity, as indicated on the color scale.

condition, ωLA + ωLO ≈ Ω is satisfied in the photoex-
cited system and we again see resonant squeezing oscil-
lations of the term 〈QLAQLO〉 for ξ = 0.5. The oscil-
lations are superimposed on a background diffuse sig-
nal, which increases smoothly in time by approximately
25% from a combination of increased lattice temperature
(from carrier-phonon scattering[23]) and softening of the
phonons at q[21], due to the optical excitation of carri-
ers by the pump pulse. We also note that the diffuse
scattering in this zone increases with q2.

In Fig. 2 we show the Fourier transform of the time-
dependent scattered x-ray intensity. The upper panel
shows the phonon dispersions along Σ. The spectrum is
most intense at points where the resonance condition is
satisfied. In addition to the peaks associated with the
resonance, 2ωLA = Ω, we also see a peak near X, where
ωLA+ωLO ≈ Ω, associated with decay into a combination
of LA and LO phonons. Also evident in Fig. 2 are much
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lower amplitude squeezing oscillations, associated with
the sudden change of harmonic force constants caused
by photoexcitation, as recently observed in photoexcited
germanium [6].

Given the magnitude and period of the resonant
squeezing oscillations, we expect that they should be
clearly observable using recently developed time-resolved
diffuse scattering methods [6]. Thus, time-resolved x-
ray diffuse scattering can reveal previously unobserved
squeezing correlations of the product phonons in the an-
harmonic decay of coherent phonons.
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