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We study nonequilibrium dynamics of the quantum Ising chain at zero temperature when the
transverse field is varied stochastically. In the equivalent fermion representation, the equation of
motion of Majorana operators is derived in the form of a one-dimensional, continuous-time quantum
random walk with stochastic, time-dependent transition amplitudes. This type of external noise
gives rise to decoherence in the associated quantum walk and the semiclassical wave-packet generally
has a diffusive behavior. As a consequence, in the quantum Ising chain, the average entanglement
entropy grows in time as t1/2 and the logarithmic average magnetization decays in the same form.
In the case of a dichotomous noise, when the transverse-field is changed in discrete time-steps, τ ,
there can be excitation modes, for which coherence is maintained, provided their energy satisfies
ǫkτ ≈ nπ with a positive integer n. If the dispersion of ǫk is quadratic, the long-time behavior
of the entanglement entropy and the logarithmic magnetization is dominated by these ballistically
traveling coherent modes and both will have a t3/4 time-dependence.

I. INTRODUCTION

Recent progress of experiments with ultracold atoms
in optical lattices1–11 has triggered intensive theoreti-
cal research to understand the properties of nonequi-
librium relaxation process of closed quantum systems.
One basic question is related to the behavior of the sys-
tem after a (global) quantum quench, i.e. after sudden
change of parameters in the Hamiltonian12–63. After
sufficiently long time, the system evolves to a station-
ary state which is, however different for integrable and
nonintegrable systems. Nonintegrable systems generally
show thermalization16–26, whereas for integrable systems
the so called generalized Gibbs ensemble is expected to
hold58–63. Concerning the functional form of the relax-
ation process a few exact results are available for inte-
grable systems, which can be - even qualitatively - ex-
plained in the frame of a semiclassical theory18,37,42,43.
This is based on the observation, that after the quench,
entangled pairs of excitations (so called quasi-particles)
are emitted, which propagate ballistically (in opposite
directions) in translationally invariant systems. This
explains, among others, the linear increase of the en-
tanglement entropy and the exponential decrease of the
magnetization after a global quench in homogeneous
chains. This semiclassical theory can be used for nonin-
tegrable systems, furthermore, this picture explains qual-
itatively the sub-ballistic dynamics in non-homogeneous
(random64–69 or aperiodic70) systems. For accelerated
dynamics, see Refs71,72.
Besides global quenches, another time-dependent pro-

cesses have been investigated, as well. Here we men-
tion local quenches18,73–79, when only a few parameters
are changed suddenly; adiabatic relaxation80–97, when
the parameters are slowly (generally linearly) ramped
through a quantum critical point, a process also used
in quantum annealing for random systems98; and peri-

odic quench99,100, which is a sequence of single quenches
occurring at discrete times. Periodically driven quantum

systems are of own interest101, which show many unex-
pected phenomena, like the Kapitza pendulum102, which
are not present in equilibrium systems. In this case the
Hamiltonian of the system is time dependent and often
finite dimensional, which is then mapped onto an infinite-
dimensional but time-independent Floquet Hamiltonian.

In the present paper, we consider a different setup,
when the drive is time-dependent, but not periodic, thus
Floquet theory does not hold. Namely, the drive of the
quantum system under study has a stochastic charac-
ter; it varies randomly in time but it is perfectly corre-
lated in space, mimicking interaction with a fluctuating
environment. Similar models, namely one-dimensional
nearest-neighbor interacting quantum spin chains with
external fields fluctuating independently on each site
have recently been studied from the aspect of informa-
tion propagation103. We can then ask the question how
an external noise alters the conservative time evolution
of observables after a quench. We aim at studying this
question in the Ising chain subject to a globally fluctuat-
ing transversal magnetic field. Recently, the nonequilib-
rium dynamics of this model with a weak Gaussian white
noise have been studied with a focus on the crossover
from a prethermalized regime toward a thermalized one,
where the transversal correlator is characterized by a
diffusive behavior104. The advantage of this model is
that the standard free-fermion technique makes possible
an efficient numerical treatment of the dynamics. We
will point out a close relationship between the dynam-
ics of this model and continuous-time quantum walks
(CTQW)105,106 in the presence of temporal noise. Stud-
ies of the latter model have been motivated by under-
standing of decoherence in quantum systems. Based on
numerical results, temporal noise in the CTQW is conjec-
tured to destroy interference manifesting itself in ballistic
spreading and to give way for diffusive spreading charac-
teristic for classical random walks for long times107,108.
Here, we will present numerical results for the time-
dependence of the average entanglement entropy and the
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relaxation of the average magnetization of the Ising chain
in a transverse field that is switched randomly between
two values at discrete times but remains constant within
periods of duration τ . Interestingly, the large-frequency
(small τ) and the low-frequency (large τ) regimes show
different asymptotic behaviors. In the former case, the
associated CTQW, which describes the quasi-particles
created after the quench, will lose its quantum coherence
due to the temporal noise and spreads diffusively. We
will argue within a semiclassical theory and confirm by
numerical results that this leads to a square-root time-
dependence of the entanglement entropy and the loga-
rithmic magnetization. For slow enough variations (large
τ), however, quantum coherence survives temporal noise
for discrete excitations, which therefore still propagate
ballistically. For certain cases, these rare modes will dom-
inate the dynamics of the above quantities, resulting in
a different asymptotic time dependence.
The rest of the paper is organized in the following

way. In section II, the model is introduced and, using
its fermion representation, a relationship to continuous-
time random quantum walks is pointed out. In section
III, the evolution of different quantities, such as the spa-
tiotemporal correlation function, entanglement entropy
and magnetization, are studied numerically and analyt-
ically. A theory explaining the deviations from diffusive
behavior by the existence of stroboscopic eigenmodes is
presented. Finally, results are discussed in section IV,
and some of the details of calculations are deferred to
the Appendix.

II. ISING DYNAMICS AND QUANTUM

WALKS

We are going to study the spin-1/2 transverse-field
Ising chain with time-dependent parameters, defined by
the Hamiltonian

H(t) = −J(t)
2

L−1
∑

i=1

σx
i σ

x
i+1 −

h(t)

2

L
∑

i=1

σz
i , (1)

where σx
i and σz

i are Pauli operators at site i. The num-
ber of sites L is assumed to be even. Note that, for
the sake of concreteness and simplicity in numerical cal-
culations, we have chosen here free boundaries, but our
asymptotic results apply to the bulk of a large system,
where boundary effects do not play a role.
We consider a simple form of time-dependence with

piecewise constant Hamiltonians in periods of duration
τ . The Hamiltonian H(n) acting in the nth time inter-
val (tn−1, tn], where tn ≡ nτ , n = 1, 2, . . . , is chosen
randomly from a set {Hl}Nl=1 of non-commuting, con-
stant Hamiltonians Hl containing parameters Jl and hl.
In the numerical calculations we used a dichotomous
noise (N = 2), where one of two Hamiltonians is cho-
sen at the beginning of each period independently with
equal probabilities. The parameters we mainly used were
J1 = J2 = 1, h1 = h, h2 = −h113.

We considered then the unitary time evolution from
some initial state |Ψ0〉:

|Ψ(tn)〉 = UnUn−1 · · · U1|Ψ0〉, (2)

where Un = e−iH(n)τ . Owing to the simple choice of a
piecewise constant time-dependence of the Hamiltonian,
the time evolution is composed of a sequence of conserva-
tively evolving segments. Let us therefore first recapitu-
late the nonequilibrium dynamics with a constant Hamil-
tonian, i.e. J(t) = J , h(t) = h, and then write it in a
form most comfortable for constructing time evolution in
the noisy model.
As it is well known, the Hamiltonian in Eq. (1) can

be written in a quadratic form of fermion creation (c†i )
and annihilation (ci) operators by means of the Jordan-
Wigner transformation109 as

H = −J
2

L−1
∑

i=1

(c†i − ci)(c†i+1− ci+1)−h
L
∑

i=1

(c†i ci−
1

2
) . (3)

In terms of Clifford operators defined as

d̂2i−1 = c†i + ci = (
∏

j<i

−σz
j )σ

x
i ,

d̂2i = c†i − ci = i(
∏

j<i

−σz
j )σ

y
i ,

i = 1, 2, . . . , L (4)

and having the anticommutation relations

{d̂m, d̂n} = 2(−1)m−1δmn (5)

the Hamiltonian assumes the form

H =
1

4

2L
∑

i,j=1

d̂†iHij d̂j (6)

with the symmetric matrix

H =





















0 h
h 0 J
J 0 h

h 0
. . .

. . .
. . . h
h 0





















. (7)

Using the relations in Eq. (5), one obtains the equation
of motion of Clifford operators in Heisenberg picture in
the form

dd̂i(t)

dt
= −i

2L
∑

j=1

Hij d̂j(t). (8)

This form of the evolution equations makes the relation-
ship of the model with continuous-time quantum random
walks transparent. Clearly, an identical form of equations
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can be written for the matrix element of d̂i(t) between

two fixed states as for d̂i(t) itself in Eq. (8). These
equations can then be interpreted as a CTQW on a one-
dimensional open lattice with 2L sites and with alter-
nating transition amplitudes h and J on odd and even
bonds, respectively, while the properly normalized matrix

elements of d̂i(t) play the role of probability amplitudes
of the quantum walk at time t.

Before proceeding with the stochastic model, two
caveats are in order. First, the relation between the dy-
namics of the quantum Ising chain and the CTQW holds
also for inhomogeneous systems, in which the couplings,
Ji, and the transverse fields, hi, are position dependent.
Being the dynamics of the random transverse-field Ising
chain ultra-slow, the same should be true for the CTQW
with spatial disorder. Second, the symmetric matrix in
Eq. (7) can be interpreted as the transfer matrix of a
classical, discrete-time random walk model. This cor-
respondence has been used to connect the equilibrium
critical behavior of the quantum Ising chain and that of
the related classical random walk110,111.

Let us now return to the time-dependent model with
noise. We will restrict ourselves to a stroboscopic view
of the time evolution at discrete times tn = nτ , n =
0, 1, 2, · · · . This facilitates numerical calculations since
one only needs to calculate the unitary evolution matrices
U1 = e−iH1τ and U2 = e−iH2τ over periods τ with con-
stant Hamilton matrices H1 and H2, respectively. This
can easily be done via diagonalising H1 and H2, which
have the form given in Eq. (7). The resulting matrices
U1 and U2 contain complex entries, see e.g. Ref.14, but
working with self-adjoint Majorana operators

ǎ2i−1 = d̂2i−1, ǎ2i = −id̂2i, i = 1, 2, . . . , L (9)

rather than with d̂i, their evolution matrices over τ , O1

and O2 will be real, see Ref.76. In the noisy system,
as we defined above, the evolution matrix O(n) in the
nth period is either O1 or O2 with equal probabilities.
Note, that between ǎi(τ) and its initial values, ǎj, the
matrix, O(1), represents a linear relation. After n steps
for a given realization of the temporal noise, the time
evolution is thus given by

ǎi(tn) =

2L
∑

j=1

[O(1)O(2) · · ·O(n)]ij ǎj . (10)

Working again with Clifford operators, their time evo-
lution in the noisy system is equivalent with a noisy
CTQW, in which the transition amplitudes change ran-
domly at discrete times t = tn.

III. NONEQUILIBRIUM RELAXATION IN

TEMPORAL NOISE

A. Spatiotemporal correlation function

In the framework of a semiclassical theory mentioned
in the Introduction, the key to the understanding of the
nonequilibrium dynamics in case of sudden quenches is
the way an excitation propagates through the chain. This
can be characterized by the correlation function of Ma-
jorana operators

Gl(t) =
1√
2
〈x|ǎl(t)ǎL|x〉, (11)

where |x〉 denotes the product state polarized in the pos-
itive x direction, |x〉 ≡ | →→ · · · →〉.114 It is easy to
calculate that the only non-zero initial values of Gl(t) at

time t = 0 are Gl(0) = 1/
√
2 and GL+1(0) = i/

√
2 and,

due to the unitary evolution for a given realization of the
noise [see Eq. (10)],

2L
∑

l=1

|Gl(t)|2 = const = 1 (12)

for any t ≥ 0.
The correlation function in Eq. (11) has a clear inter-

pretation in the quantum walk picture. Up to a constant
phase factor, it corresponds to the amplitude Al(t) on
site l at time t of a quantum walk, which was initialized
in the middle of the chain, i.e. on sites L and L+1 with
amplitudes −1/

√
2:

Al(t) ≡
1√
2
〈x|d̂l(t)d̂L|x〉 = −(−i)pGl(t), (13)

where p = l mod 2. With this initial condition, the
probability distribution of the position of the walker will
be left-right symmetric, i.e. |Gl(t)|2 = |GL−l+1(t)|2.
In order to probe the dynamics of quasiparticle excita-

tions, we have numerically studied the time evolution of
the probabilities |Gl(t)|2 in the model with temporal dis-
order. Clearly, |Gl(t)|2, similarly to other observables,
will depend on the particular realization of the noise,
and in case of a sufficiently narrow distribution, which is
the case here according to numerical results, it is reason-
able to consider an average over different temporal histo-
ries. A considerable advantage of the chosen dichotomous
noise is that the average of certain observables such as
|Gl(t)|2 can be efficiently computed by writing appropri-
ate recursions directly for the average. To see this, let us
start with the time evolution of the matrix

Gij(t) ≡ G∗
i (t)Gj(t) (14)

during a single segment:

Gij(tn) =

2L
∑

k,l=1

Oik(n)Ojl(n)Gkl(tn−1), (15)
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where we have used that O(n) is real.
Performing now the averaging results in

Gij(tn) =

2L
∑

k,l=1

Oik(n)Ojl(n) ·Gkl(tn−1) =

2L
∑

k,l=1

1

2
{[O1]ik[O1]jl + [O2]ik[O2]jl}Gkl(tn−1). (16)

Here, we have made use of the fact that the temporal
noise is uncorrelated. Using the second line in Eq. (16),

Gij(tn) can be computed recursively starting from the

initial values Gij(0) by O(L3n) operations. The diago-

nal elements Gii(tn) are the probabilities we are looking

for. We have numerically calculated |Gl(tn)|2 and, the
corresponding CTQW being dimerized, we have consid-
ered the probability pl(t) of the walker being in the lth
cell comprising site 2l− 1 and 2l:

pl(t) ≡ |G2l−1(t)|2 + |G2l(t)|2, l = 1, 2, . . . , L. (17)

as well as the variance:

σ2(t) =

L
∑

l=1

(l− l0)2 pl(t), (18)

where l0 = L+1
2 .

We have performed numerical calculations keeping the
couplings time-independent, J1 = J2 = 1, and letting
only the sign of the transverse field fluctuate, i.e. h1 =
−h2 = h for different h and τ . Expecting a power-law
dependence of the variance on time,

σ2(t) ∼ t2/z , (19)

for long times, we have calculated an effective, inverse
dynamical exponent

1

zeff(tn)
=

ln[σ(tn)/σ(tn−1)]

ln(tn/tn−1)
(20)

from finite-time data. These are plotted against time in
Fig. 1 for h = 1 and various τ . At the times used in
the numerical calculations, the finite-size effects coming
from the finiteness of the lattice are negligible.
As can be seen in the figure, the increase of the vari-

ance is slower-than-ballistic, i.e. 1/zeff(t) seems to tend
to a limiting value 1/z(τ), which is less than one and is
dependent on τ . For fast enough variations of the mag-
netic field, τ < π/2, the effective inverse dynamical ex-
ponent seems to approach 1/2, although the convergence
is slow for τ . π/2. This tendency changes abruptly at
τ = π/2. From this value on, τ ≥ π/2, 1/z(t) seems
to tend to values definitely higher than 1/2. The high-
est value is observed right at the edge of this domain,
τ = π/2, as well as for τ = π (not shown), while, for
τ > π/2, the limiting values are somewhat lower.
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FIG. 1: (Color online) Numerically calculated inverse dynam-
ical exponent as defined in Eq. (20) as a function of time for
J1 = J2 = 1, h1 = −h2 = 1 and different τ . The topmost
data correspond to τ = π/2, while the other data from bot-
tom to top correspond to values of τ in an increasing order.
The size of the system is L = 2048. The arrows indicate the
asymptotic values obtained by the theory in section IIIB.
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FIG. 2: (Color online) Numerically calculated distribution
pl(t) rescaled according to Eq. (21) at different times. The
size of the system is L = 512, the parameters of the model
are J1 = J2 = 1, h1 = −h2 = 1 and τ = 1. The thick curve is
a Gaussian fitted to the data at t/τ = 210

The distributions pl(t) also look differently for short
and long τ . For short enough τ , as exemplified in Fig. 2
for τ = 1, the profile shows diffusive scaling

pl(t) = t−1/2p̃[(l − l0)t−1/2], (21)

where the scaling function p̃(x) fits well to a Gaussian.

For larger τ , τ ∼ 1.4, the diffusive scaling still holds
but the scaling function starts to deviate from a Gaus-
sian, possessing a slower decaying tail. At τ = π/2, as
shown in Figs. 3 and 4, the central part of the pro-
file shows diffusive scaling, but two symmetrically placed
peaks appear, which move outwards ballistically. They
spread out diffusively and, at the same time, continuously
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FIG. 3: (Color online) Numerically calculated probability dis-
tribution pl(t) at different times. The size of the system is
L = 2048, the parameters of the model are J1 = J2 = 1,
h1 = −h2 = 1 and τ = π/2.
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FIG. 4: (Color online) Scaling plot of the probability distri-
butions pl(t) at different times shown in Fig. 3.

lose their weight W (t) as

W (t) ∼ t−a, (22)

with a = 0.30 at τ = π/2, see the scaling plot of the part
of the profile around a peak in Fig. 5.
It is easy to see that the slow decrease of the weight

of the peaks leads to the buildup of fat (algebraic) tails
of the scaling function p̃(x). Let us consider the total
probability outside of a ballistically expanding domain:

P>(t) =
∑

|l′|>vt

pl′(t), (23)

where l′ = l − l0 and assume that v is smaller than the
velocity of the peak. We have then P>(t) ∼ t−a or,
equivalently, in terms of the scaling variable x = l′/

√
t =

v
√
t, P>(x) ∼ (x/v)−2a. The scaling function p̃(x) =

−dP>(x)/dx thus decays

p̃(x) ∼ x−(1+2a), (24)
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FIG. 5: (Color online) Scaling plot of the probability distribu-
tions around the right-moving peak for the same parameters
as in Fig. 3. The velocity of the center of the peak is v = 0.5
and the scaling exponent of the weight decrease is a = 0.3.
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FIG. 6: (Color online) Log-log plot of the scaled probability
distributions for the same parameters as in Fig. 3. The slope
of the straight line is −1.60.

see Fig. 6.
We have computed the probability distributions for

other values of the duration τ = 1.75, 2, π/
√
2 and ob-

tained qualitatively similar results, however, with a ve-
locity of the front dependent on τ and a decay exponent
a = 0.55 for all the above values, see Fig. 7.
The contribution of ballistically propagating peaks to

the variance σ2(t) is O(t2−a), and this suppresses the
diffusive contribution of order t, since a < 1. Thus, for
τ ≥ π/2, we obtain z = 2/(2− a); otherwise the variance
grows linearly with time, i.e. z = 2.

B. Theory of stroboscopic eigenmodes

In the following, we give an explanation of the anoma-
lous behavior, i.e. different from classical diffusion ob-
served in the case τ ≥ π/2. Let us return to a formulation
of the model that is a bit more general than the example
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FIG. 7: (Color online) Scaling plot of the numerically calcu-
lated probability distribution pl(tn) at different times. The
size of the system is L = 2048, the parameters of the model
are J1 = J2 = 1, h1 = −h2 = 1 and τ = 1.75.

of the previous section and consider an arbitrary value
of the transverse field, h, (the coupling is set to J = 1
throughout). Since boundary effects do not play a role
in the spreading of the quasiparticle excitations seen in
the numerics, we can concentrate on the bulk of a large
system and can make use of translational invariance in
finding the eigenmodes of the corresponding CTQW, i.e.
eigenvectors of the matrix in Eq. (7) (for a fixed h) in
the bulk. Due to the dimerization, these are of two kinds,
f+
k and f−

k , having the components

f±
k (2n− 1) = N eiΘkeikn,

f±
k (2n) = ±N e−iΘkeikn, (25)

where N = 1
2L

−1/2, tan 2Θk = − sin k
h+cos k , and the possi-

ble wave numbers k (L in number) fill the Brillouin zone
[−π, π] equidistantly. The corresponding eigenvalues are

ǫ±k = ±
√

1 + h2 + 2h cos k. (26)

Note that, these are nothing but the excitation energies
of free fermions η̂2k−1, η̂2k, k = 1, 2, . . . , L obtained by a
Bogoliubov transformation, in terms of which the Hamil-
tonian in Eq.(6) assumes a diagonal form:

H =
1

4

L
∑

k=1

[ǫ−k η̂2k−1η̂2k + ǫ+k η̂2kη̂2k−1] . (27)

These modes can then be regarded as the excitations,
or quasi-particles that propagate in the system after a
quench.
Returning to the corresponding CTQW, let us consider

two Hamiltonians HA and HB, with different transverse
fields hA and hB, respectively, and denote their eigen-
vectors by f±

k,A and f±
k,B, respectively. The two sets of

eigenvectors are related to each other simply as

f±
k,A =

1

2
(ei∆k±e−i∆k)f+

k,B+
1

2
(ei∆k∓e−i∆k)f−

k,B, (28)

where ∆k = ΘA
k −ΘB

k . Consider now the time evolution
of eigenmodes ofHA under the action of UB(τ) = e−iHBτ :

UB(τ)f
±
k,A = e−iǫ+k,Bτ 1

2
(ei∆k ± e−i∆k)f+

k,B +

+eiǫ
+

k,Bτ 1

2
(ei∆k ∓ e−i∆k)f−

k,B, (29)

where we have used that ǫ−k = −ǫ+k . It is obvious from

Eq. (28), that f±
k,A are not eigenvectors of HB since the

eigenvalues corresponding to f+
k,B and f−

k,B are different

(having opposite signs). Nevertheless, if, for some k, the
condition

ǫ+k,Bτ = mBπ (30)

is fulfilled with some integer mB = 1, 2, · · · , then the
pair of vectors f±

k,A will be eigenvectors of UB(τ) with
eigenvalues +1 or −1,

UB(τ)f
±
k,A = (−1)mBf±

k,A, (31)

although they are not eigenvectors of HB itself.
The pair of vectors f±

k,A will thus be common eigen-

vectors of UA(τ) and UB(τ). Similarly, another set of
common eigenmodes appear if there exists a wave num-
ber k for which

ǫ+k,Aτ = mAπ (32)

is fulfilled with some integer mA = 1, 2, · · · .
Restricting the state space to the subspace of such

“stroboscopic” eigenmodes (SE) of HA and HB, the evo-
lution matrices UA(τ) and UB(τ) will commute, although
they are non-commuting on the complete state space.
The existence of stroboscopic eigenmodes will appear in
the spreading of the quantum walker of as a pair of bal-
listically moving peaks.
Note that, if HA is critical (hA = 1), the excitation

energy corresponding to the wave number k = π will be
zero, ǫ+π,A = 0. Consequently, the eigenmode of HB cor-
responding to k = π does not change under the action of
UA(τ), therefore it will be a trivial common eigenmode
of UA(τ) and UB(τ). Formally, this corresponds to that
Eq. (32) is fulfilled with mA = 0 for an arbitrary τ . But,
according to our assumption [HA, HB] 6= 0, consequently
hB 6= 1, and, in this case, one can see from Eq. (26), that

the group velocity at k = π is zero, i.e.
dǫ+k,B

dk |k=π = 0,
when UB(τ) acts. Therefore, the velocity of the signal ap-
pearing in the wave function due to the existense of such
a trivial SE is zero, i.e. it stays at the origin and thus
basically differs from other non-trivial SE-s that prop-
agate with a finite velocity. In the case when also the
other Hamiltonian is critical (hB = −1), another trivial
SE appears at the wave number k = 0.
As the conditions in Eqs. (30) or (32) are met only

for a discrete set of wave numbers k, a packet built from
modes of wave numbers in a narrow range [k−∆k, k+∆k]
around a stroboscopic eigenmode will be gradually losing
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FIG. 8: (Color online) Logarithm of the inverse lifetime of
modes as a function of the wave number k for the model with
J1 = J2 = 1, h1 = −h2 = 1, for different τ . Note that 1/τk =
0 for k = 0, π and for arbitrary τ , which is the consequence of
the appearance of trivial (non-propagating) SE-s since both
Hamiltonians are critical, see the text. For τ = π/2, non-
trivial (propagating) SE-s with a quadratic dispersion appear
at k = 0, π, while for τ > π/2, two pairs of non-trivial SE-
s with a linear dispersion appear at some intermediate wave
numbers.

its weight as components with even a slightly different
wave number will not be common eigenmodes and are
being scattered out.
The numerical results obtained for the model hA = 1,

hB = −1 are in accordance with the above picture. The
highest eigenvalue being ǫ+0,A = ǫ+π,B = 2, there exist no

(non-trivial) stroboscopic eigenmodes for τ < π/2. The
conditions in Eqs. (30) and (32) are first met at τ = π/2
with mA = mB = 1 for the highest excitation energy,
and for τ > π/2 with a lower excitation energy ǫ = π/τ .
For τ ≥ mπ/2, with integers m > 1, further stroboscopic
eigenmodes appear with excitation energies ǫ = mπ/τ .
In this region, multiple peaks are expected to emerge in
the profile; numerically calculated distributions for τ = π
(not shown) indeed contain two distinct peaks moving
with different velocities.
After having explained the origin of ballistically prop-

agating peaks, let us give a quantitative characterization
of their rate of decay. In order to do this, let us assume
that the initial state is an eigenstate of HA, |f+

k,A〉, and
consider the average probability of the system being in
this state at time t,

P+
k (t) ≡ |〈f+

k,A|f(t)〉|2. (33)

As it is shown in Appendix A, this state decays exponen-
tially as

P+
k (tn)− P+

k (∞) ∼ e−tn/τk , (34)

where the lifetime τk can be obtained as a root of a cubic
equation. The inverse lifetime is plotted against k in Fig.
8.

If, for a fixed τ and for some k, |f+
k,A〉 (and |f−

k,A〉) are
stroboscopic eigenmodes of HB, then UB(τ) in Eq. (A1)
will be the unit matrix (up to a possible sign), and we
have 1/τk = 0. The leading-order dependence of W (t)
on time comes from the contribution of slowly relaxing
modes around the minima τ−1

k0
= 0.

Considering an initial state that is localized in space,
it will be a combination of all eigenmodes of HA with
weights that can be taken as constant in the vicinity of
k0. We can then write for the contribution of a minimum
at k = k0

Wk0
(t) ∼

∫ k0+∆k

k0−∆k

e−t/τkdk ∼

∼
∫ k0+∆k

k0−∆k

e−tC(k−k0)
nk0 dk ∼ t−1/nk0 , (35)

where we have inserted the leading term of the expansion
of the inverse lifetime around k0, τ

−1
k = C(k − k0)nk0 +

o[(k − k0)nk0 ].
The order nk0

of the first correction is dependent on
whether or not ǫ+k0,B

is at the band edge. The reason for

this is that, regarding τ−1
k as a function of ǫ+k,B rather

than of k, it is quadratic around k = k0, τ
−1
k ∼ (ǫ+k,B −

ǫ+k0,B
)2 at any minimum k0. But the dispersion is linear

within the band, ǫ+k,B ∼ k − k0, while it is quadratic at

the band edges, ǫ+k,B ∼ (k − k0)2, thus we have nk0
= 2

and nk0
= 4 in the two cases, respectively.

If there exists a stroboscopic eigenmode at the band
edge (highest excitation energy), we have therefore
W (t) ∼ t−1/4, while if there are only SE-s with ener-
gies within the band, we have W (t) ∼ t−1/2. For the
model studied numerically, the upper band edge is at
ǫ+0,A = ǫ+π,B = 2, and such special SE-s exist for the val-

ues τ = mπ/2, m = 1, 2, . . . . In this case we observed
a = 0.30, while otherwise we have seen a = 0.55. These
are slightly higher than the theoretical values 1/4 and
1/2, respectively, and the discrepancy may be attributed
to corrections to the asymptotic behavior still present at
the time scale of numerical calculations.

C. Entanglement entropy

The nonequilibrium dynamics of the entanglement en-
tropy of a subsystem, which is part of an isolated quan-
tum system contains information about the properties of
the excitations which are created after a quench. Here,
we divide our system into two halves, thus the subsys-
tem contains the set of spins n ≤ L/2. For simplic-
ity, at t = 0, the complete system is in a product state
|ψ0〉 = |z〉 ≡ | ↑↑ . . . ↑〉, where all spins point to the pos-
itive z direction, thus initially there is no entanglement
between the two parts of the system. The entanglement
is quantified by the von Neumann entropy

S(t) = −Trn≤L/2ρS(t) ln ρS(t) (36)
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of the reduced density operator ρS(t) =
Trn>L/2|ψ(t)〉〈ψ(t)| of the subsystem at time t. For
free-fermion models, the entanglement entropy can be
calculated from the reduced correlation matrix of Ma-
jorana operators, Cmn(t) = 〈ψ0|ǎm(t)ǎn(t)|ψ0〉, m,n =
1, . . . , L76,112. Writing it as Cmn(t) = δmn+Γmn(t), S(t)
is determined by the eigenvalues ±νn, n = 1, . . . , L/2 of
the matrix Γ as

S(t) = −
L/2
∑

n=1

[

1 + νn
2

ln
1 + νn

2
+

1− νn
2

ln
1− νn

2

]

.

(37)
In the initial state, the non-zero elements of the matrix
are Γ2l−1,2l = −Γ2l,2l−1 = −i.
The essence of the semiclassical theory of entangle-

ment after a global quench can be formulated in the
language of CTQW as follows. The spreading of exci-
tations induced by the sudden quench is described by
quantum walks, which are localized on each site at t = 0
and start to spread out after the quench. The entangle-
ment entropy at time t is given by the integrated current

φ(t) =
∫ t

0 I(t
′)dt′ of quantum walkers from the subsys-

tem to the environment and vice versa. In case of a
sudden quench, the Hamiltonian is constant for t > 0,
and the spreading of quantum walks is ballistic. There-
fore φ(t) ∼ t, and we have an entanglement entropy that
increases linearly in time.
Applying this picture to the model with a fluctuating

field, we need to distinguish between two contributions
to the current of quantum walkers. First, there is a con-
tribution from the diffusive part of the wave function of
CTQW, which is always present. This gives a diffusive
current, i.e. φd(t) ∼

√
t. Second, if there exist strobo-

scopic eigenmodes, the corresponding ballistic peaks re-

sult in a contribution φb(t) ∼
∫ t
W (t′)dt′ ∼ t1−a. Conse-

quently, in the case there are no stroboscopic eigenmodes,
we obtain

S(t) ∼ t1/2 (38)

for long times in an infinite system. If, however, there ex-
ist stroboscopic eigenmodes with a quadratic dispersion,
for which a = 1/4, they give the dominant contribution
to the current and lead to

S(t) ∼ t3/4. (39)

If the stroboscopic eigenmodes have a linear dispersion,
thus a = 1/2, then both φd(t) and φb(t) have the same
time-dependence, thus the leading behavior is described
by Eq.(38). Since the shape of the probability distri-
bution is modified due to the presence of stroboscopic
eigenmodes one can expect some logarithmic multiplica-
tive correction to the leading behavior.
Numerical results for the time-dependence of the en-

tanglement entropy are shown in Fig. 9. The exponent
obtained from finite-time data for the case of no SE-s
(0.47) is close to the semiclassical prediction. In the case
there are SE-s of linear dispersion only, the numerical

 2
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ln
[S

(t
)]

ln(t)

τ=0.5π

t0.75

τ=0.75π

t0.55

τ=0.25π

t0.46

FIG. 9: (Color online) Time-dependence of the average en-
tanglement entropy calculated numerically for the model with
J1 = J2 = 1, h1 = −h2 = 1, for τ = π/4, π/2 and 3π/4. The
number of noise realizations was 2000. The straight lines are
linear fits to the data, and the typical deviations of the data
from the fitted lines are less than 0.01 in the fitting range. For
τ = π/4 there are no SE-s; for τ = π/2 there are ones with a
quadratic dispersion; for τ = 3π/4 there are SE-s with a linear
dispersion only. Note that the deviations from the asymptotic
linear form in the large t domain are due to finite-size effects.

value is somewhat larger (0.55), while in the case of the
presence of SE-s with a quadratic dispersion (0.75) the
exponent is in agreement with Eq.(39).

D. Magnetization

Finally, we study the relaxation of the magnetization
after a quench in the quantum Ising chain with fluctu-
ating transverse fields. After a global quench, it relaxes
exponentially for long times42,43,45,47,70, and this form of
time-dependence is correctly reproduced by a semiclassi-
cal theory42,43. The essence of the latter theory is that
quasiparticles emitted from each site after the quench
move ballistically and as a kink excitation, or domain
wall, flip the spins when they pass by. When several
quasiparticles pass a site, then, for odd (even) number of
particles, the given spin changes its sign (keeps its value).
In the following, we present a simple consideration based
on a stochastic process, which is able to predict the func-
tional form of the relaxation. Namely, the orientation of
a given spin changes with a rate I(t), which is determined
by the current of quasiparticles passing through that site.
In the language of CTQW, I(t) is the current of quan-
tum walkers starting out from every site after the quench
through the given site. Then, the probability p+(t) of the
given spin pointing to the positive x direction obeys the
master equation

d

dt

[

p+(t)
1− p+(t)

]

=

[

−I(t) I(t)
I(t) −I(t)

] [

p+(t)
1− p+(t)

]

. (40)
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FIG. 10: (Color online) The same as in Fig. 9 for the average
magnetization. The typical deviations of the data from the
fitted lines are less than 0.05 in the fitting range.

The solution of this simple equation for the magnetiza-
tion, mx(t) = 2p+(t)− 1, if initially mx(0) = 1, is of the
form

mx(t) = 2p+(t)− 1 = e−2
∫

t
0
I(t′)dt′ . (41)

In the case of a sudden quench, I(t) is constant, and
given by the sum of contributions of the quasiparticles as
I =

∑

k>0 vkfk, where vk = δǫk/δk is the semiclassical
velocity and fk is the occupation probability of the given
mode in the initial state. From this follows, thatmx(t) =
e−t/tr , and the relaxation time is given by tr = 1/(2I),
which agrees with the semiclassical result in42,43.

Applying the above considerations for the model with a
fluctuating field, the integrated current, φ(t), calculated
in the previous section has to be inserted in Eq. (41).
This yields a stretched exponential decay of the average
magnetization

mx(t) ∼ e−ct3/4 (42)

if SE-s with a quadratic dispersion exist, and

mx(t) ∼ e−ct1/2 (43)

otherwise, with a possible logarithmic correction in the
case of an SE with linear dispersion.

We have tested the validity of these conjectures by nu-
merically calculating the magnetization 〈x|σx(t)|x〉. Us-
ing 〈x|σx(t)|x〉 = 〈+|σx(t)|−〉, where |±〉 = 1√

2
(| →→

· · · →〉 ± | ←← · · · ←〉), it can be calculated as Pfaffian,
which is given as the square root of a determinant; for
the details, see e.g. Ref.70. According to the numerical
data presented in Fig. 10, the average magnetization fol-
lows a stretched exponential decay and the estimates of
the powers are close to those appear in Eqs. (42) and
(43) with small deviations seen also for other quantities.

IV. DISCUSSION

We have studied in this work the nonequilibrium re-
laxation dynamics of the Ising chain in a fluctuating
transverse field. As the model can be reformulated as
a Majorana chain with quadratic terms, its true dimen-
sionality is 2L rather than 2L, and, using this, we have
pointed out a close relationship between the dynamics of
the model and continuous-time quantum walks. Namely,
the equations of motion of Majorana operators, from
which all observables can be built up, in the Heisen-
berg picture are formally identical to a Schrödinger equa-
tion of a particle on a chain of length 2L, i.e. a one-
dimensional continuous-time quantum walk. The linear
time-dependence of the entanglement entropy and loga-
rithmic magnetization in the case of a sudden quench are
then intimitely related to the well-known ballistic spread-
ing of the CTQW associated with the model.
In the case of a fluctuating transverse field, the asso-

ciated one-particle model will be a noisy (or random)
CTQW. The external noise, in general, is known to
destroy quantum interference, and CTRW crosses over
to a classical random walk with the well-known diffu-
sive dynamics107,108. As we have shown by a semi-
classical reasoning and confirmed by numerical calcu-
lations, the diffusive spreading leads to a square-root
time-dependence of the entanglement entropy and log-
arithmic magnetization in the fluctuating model. Al-
though we have carried out calculations in a concrete
integrable model, we conjecture the square-root increase
of the entanglement entropy to be generally valid for
one-dimensional quantum systems subject to an exter-
nal noise, in the pure version of which entropy growth
is realized by the propagation of entangled quasiparticle
excitations.

For the particular case of a dichotomous noise com-
posed of segments of constant duration, we have found
that coherence is not completely destroyed. Namely,
so called stroboscopic eigenmodes can exist, which are
common eigenmodes of both clean evolution operators,
and these appear as ballistically propagating but alge-
braically decaying peaks in the wave function of the asso-
ciated CTQW. If SE-s with a quadratic dispersion exist,
the contribution of which is dominant over the diffusive
one, the power 1/2 in the above laws changes to 3/4. We
stress, however, that this phenomenon arises only for the
particular form of the noise with segments of constant du-
ration, and not for a general dichotomous Markov noise
or other noise with a random duration of segments. Even
a small noise in the duration τ or in the transverse fields
is expected to introduce a finite lifetime for stroboscopic
eigenmodes, which could be obtained by extending the
calculations of the Appendix, but this is out of the scope
of the present work.

Further directions in connection with stochastic noise
that could be explored are, among others, local quench
dynamics instead of a global one considered in this work,
or inclusion of spatial inhomogeneity, which, in the ab-
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sence of noise, gives rise to an ultra-slow dynamics in the
critical model and localization otherwise. These are left
for future research.
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Appendix A: Decay rate of modes

To calculate the probability P+
k (t) defined in Eq.

(33), notice that the state |f(t)〉 remains in the two-
dimensional subspace spanned by |f+

k,A〉 and |f−
k,A〉. The

unitary evolution operators of system A and B are rep-
resented in this basis by the matrices

UA =

[

e−iǫ+k,Aτ 0

0 eiǫ
+

k,Aτ

]

, UB =

[

ω∗
k −γk
γk ωk

]

, (A1)

where ωk = cos(ǫ+k,Bτ) + i sin(ǫ+k,Bτ) cos(2∆k) and γk =

sin(ǫ+k,Bτ) sin(2∆k).

Denoting the vector representing the state at time

tn by [F1(tn), F2(tn)]
T , and introducing F

(n)
ij ≡

F ∗
i (tn)Fj(tn), i, j = 1, 2, we can write, similarly to Eq.

(16),

F
(n)
ij =

2
∑

k,l=1

1

2
{[U∗

A]ik[UA]jl + [U∗
B]ik[UB]jl}F (n−1)

kl .

(A2)
Defining a four-component vector as F (n) =

[F
(n)
11 , F

(n)
12 , F

(n)
21 , F

(n)
22 ]T , the r.h.s. of Eq. (A2)

amounts to a multiplication of F (n−1) by the 4 × 4
matrix U ≡ 1

2 (U
∗
A ⊗ UA + U∗

B ⊗ UB):

F (n) = UF (n−1). (A3)

The long-time behavior of P+
k (tn) = F

(n)
11 is determined

by the spectrum of U . It has a unit eigenvalue for all k,
which corresponds to the stationary state limn→∞ F (n) =
[ 12 , 0, 0,

1
2 ]

T , while the asymptotic decay of P+
k (tn) is de-

termined by the eigenvalue with the second largest mod-
ulus rk, as

P+
k (tn)− P+

k (∞) ∼ rnk ∼ e−tn/τk , (A4)

where the lifetime τk of the mode is τk = τ/| ln rk|.
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(2012).
49 F. H. L. Essler, S. Evangelisti, M. Fagotti, Phys. Rev.

Lett. 109, 247206 (2012).
50 S. Evangelisti, J. Stat. Mech. P04003 (2013).
51 M. Fagotti,Phys. Rev. B 87, 165106 (2013) .

52 B. Pozsgay, J. Stat. Mech. P07003 (2013); ibid. P10028
(2013).

53 M. Fagotti, F. H.L. Essler, J. Stat. Mech. P07012 (2013).
54 M. Collura, S. Sotiriadis, and P. Calabrese, J. Stat. Mech.

P09025 (2013).
55 L. Bucciantini, M. Kormos, P. Calabrese, J. Phys. A:

Math. Theor. 47 175002 (2014).
56 M. Fagotti, M. Collura, F. H.L. Essler, P. Calabrese, Phys.

Rev. B 89, 125101 (2014).
57 J. Cardy, Phys. Rev. Lett. 112, 220401 (2014).
58 B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M.

Rigol, J.-S. Caux, Phys. Rev. Lett. 113, 117202 (2014).
59 B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G.
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