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We study the excited states of interacting fermions in one dimension with particle-hole symmetric
disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group
methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits
infinite-randomness quantum critical behavior with highly degenerate excited states. We show that
though interactions are an irrelevant perturbation in the ground state, they drastically affect the
structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of
thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system
into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical
properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous
symmetry breaking. This system then has the interesting and counterintuitive property that edges
of the many-body spectrum are less localized than the center of the spectrum. We argue that our
results rule out the existence of certain excited state symmetry-protected topological orders.

I. INTRODUCTION

Many-body localization (MBL) extends the concept
of single particle (Anderson) localization due to ran-
dom chemical potentials1 to the excited states of isolated
interacting quantum systems2–4. MBL systems raise
the compelling prospect of supporting quantum coherent
information storage and processing5–11, and nontrivial
quantum order12–18 in highly excited states far from ther-
mal equilibrium19. Moreover, phase transitions between
MBL states14,20–22 (or between MBL and thermalizing
systems23–28) represent new classes of non-equilibrium
quantum critical behavior.

A natural generalization of random potential localiza-
tion is particle-hole symmetric (PHS) disorder such as
that due to random hopping amplitudes (or random vec-
tor potentials in dimensions higher than one). In one
dimension and in the absence of interactions, PHS dis-
order does not fully localize single-particle states at zero
energy, resulting in a marginally localized random-singlet
phase with infinite randomness quantum critical proper-
ties29,30. In this paper, we examine the fate of the highly
excited states of this marginally localized phase31 in the
presence of interactions by studying an equivalent prob-
lem, the random-bond XXZ spin- 1
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where Sµi = 1
2σi

µ, and σµi with µ = x, y, z are the stan-
dard Pauli matrices. We consider open boundary con-
ditions. In addition to spin conservation, Hamiltonian
(1) has an Ising symmetry generated by C =

∏
i σ

x
i . A

Jordan-Wigner transformation maps (1) into a spinless
fermion chain with nearest-neighbor interactions (that
vanish for ∆i = 0), with C now playing the role of PHS.

In thermal equilibrium and at zero temperature, interac-
tions are an irrelevant perturbation and do not affect the
ground state critical properties29. However, in the ab-
sence of interactions, the excited states are highly degen-
erate due to the combination of single-particle integra-
bility and symmetry, and hence even weak interactions
can be expected to dramatically modify the dynamical
properties of this system.

Using a combination of real-space renormalization
group (RSRG) arguments and exact diagonalization we
show that arbitrarily weak interactions necessarily de-
stroy the random-singlet critical properties in excited
states, either by inducing thermalization (at weak disor-
der) or by spontaneously breaking PHS (strong disorder).
In the latter case, this leads to a counterintuitive scenario
wherein the ground state is less localized (more entan-
gled) than excited states. In addition, the ground-state
random singlet phase can be thought of as a phase tran-
sition between a certain 1D symmetry protected topo-
logical insulator with chiral symmetry and a trivial in-
sulator, and hence understanding its dynamical behavior
will also shed light on questions of extending symmetry-
protected topological (SPT) order (and related Floquet
SPT orders) to highly excited states in MBL systems.
We argue that the spontaneous symmetry breaking in-
herent at strong disorder presents a fundamental obstacle
to achieving this goal.

These results should be contrasted with a prior study
of XXZ chains32 that used a related dynamical RSRG
method to argue that the quantum critical behavior of
the non-interacting ground state extends to highly ex-
cited states. However, as noted in32, these dynamical
RSRG results apply only to the fine-tuned Néel initial
state which artificially removes the excited-state degen-
eracies from the dynamically accessible Hilbert space.
We expect that our results reflect the true dynamical
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properties of generic (i.e., not fine-tuned) states.

II. STRONG DISORDER RENORMALIZATION
GROUP

A. RSRG-X

The T = 0 low-energy physics of the antiferromag-
netic XXZ spin chain (1) is well understood in terms
of a real-space renormalization group (RSRG) approach
valid at strong disorder29. The key idea is to focus
on the strongest bond of the chain Ω = Ji. Assuming
strong disorder, this bond is typically much larger than
its neighbors, Ω � JR, JL (JR/L ≡ Ji±1), so to lead-
ing order we can diagonalize this strong bond by form-
ing a singlet between the spins Si and Si+1. Quantum
fluctuations then induce an effective XXZ coupling be-
tween the spins SL = Si−1 and SR = Si+2. Iterating
this procedure, the effective disorder strength grows un-
der renormalization so that RSRG becomes asymptoti-
cally exact – i.e. gives exact results for universal quan-
tities29. This approach was recently generalized to con-
struct many-body excited states of random spin chains
by observing that at each step, it is possible to project
the strong bond onto an excited-state manifold14,32. The
resulting excited-state RSRG (RSRG-X14) iteratively re-
solves smaller and smaller energy gaps Ω and allows one
to construct, in principle, the full many-body spectrum.
Assuming ∆ ≡ ∆i 6= ±1 to avoid resonances, projecting
onto the eigenstates |↑↓〉 ± |↓↑〉 of the strong bond pre-
serves the XXZ form of the effective interaction between
SL and SR with parameters Jeff = JLJR/((1∓∆)Ω) and
∆eff = ∆L∆R(∆ ∓ 1)/2, respectively. Another possi-
bility would be to project onto the zero-energy states
|+〉 = |↑↑〉, |−〉 = |↓↓〉, where these two degenerate
states can be interpreted as components of a new effec-
tive superspin Seff with a different U(1) charge Sz = ±1
than the original UV spins 1

2 . Spin conservation implies
that Seff cannot be flipped by a first order process like
S+
L,RS

−
eff +h.c. Keeping track of all the symmetry-allowed

processes, we find the effective Hamiltonian

Heff = JL∆LS
z
LS

z
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z
RS

z
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+
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Ω(∆2 − 1)

[
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R

2
+ ∆S+

LS
+
RS
−
eff + h.c.

]
+ . . . (2)

where we have ignored second-order corrections to the
Ising SzL,RS

z
eff terms.

In the non-interacting case33 (∆i = 0), the effective
Hamiltonian always has the same XX form as the orig-
inal one so that the procedure can be readily iterated.
The sign of the J coupling being essentially irrelevant,
the flow equations for the couplings are identical to the
groundstate ones. This indicates that the random XX
chain at finite energy density is a “Quantum Critical
Glass”22 (QCG), a critical variant of MBL with logarith-
mic scaling of the entanglement and power-law mean cor-
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i Sz
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FIG. 1. Phase diagram of the random-bond XXZ
chain at energy density ε = 0.5 from exact diagonalization
results. The quantum critical behavior of the free model (∆ =
0) is destroyed by interactions, giving rise to either an ergodic
phase at weak disorder where all spins are highly entangled, or
to a many-body localized phase with spin glass order at strong
disorder. The phase boundary is estimated from finite-size
crossings at constant W (blue symbols) or constant ∆ (green
symbols). The excited states in the spin glass phase consist of
effective superspins (green spins) showing a random pattern
of frozen magnetization varying from eigenstate to eigenstate.

relation functions. Crucially, the effective spins Seff (cre-
ated when projecting onto the Sz = ±1 excited states)
completely decouple from the rest of the chain, thereby
producing an exponential degeneracy of the many-body
eigenstates generated by RSRG-X. This degeneracy is a
consequence of the PHS of the single-particle spectrum,
that dictates that single-particle energies come in pairs
(ε,−ε). The remainder of this paper focuses on investi-
gating the fate of these extensive degeneracies upon the
inclusion of interactions.

B. Interaction-induced spin glass order

From Eq. (2), we see that the interactions generate two
new types of term: second-order couplings S+

LS
+
RS
−
eff +

h.c. flipping the effective spin Seff and more importantly
Ising couplings SzR,LS

z
eff generated at first-order in per-

turbation theory. To leading order, the effective Hamil-
tonian takes the form of a simple Ising coupling that
will dominate over the much weaker second order flip-
flop terms involving SL, SR. Although it is hard to keep
track of all the multi-spin terms emerging after many
RSRG-X iterations, the trend is already clear. Namely,
superspins made of n > 2 aligned UV spins will be even-
tually generated in the course of the RG. Because of spin
conservation, it is increasingly harder to flip these large
superspins as this will involve higher-order processes in
perturbation theory involving many super-spin clusters.
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FIG. 2. Ergodic to spin glass (MBL) transition. At
weak disorder (W = 0.5), our data are consistent with an
ergodic to spin glass (MBL) transition as ∆ is increased. Top:
Ratio of consecutive level spacings showing a transition from
GOE to Poisson statistics. Middle: Scaling of χEA showing
a divergence with system size in the localized phase. Inset:
Extrapolations of mEA with L−1 finite-size corrections (see
text) are consistent with spin glass order in the MBL phase.
Bottom: Finite-size scaling of the entanglement entropy.

This strongly suggests a physical picture of the excited
states in terms of almost frozen superspins with strong
Ising interactions, very weakly coupled by flip-flop terms
generated at higher order in perturbation theory. The
eigenstates would then consist of (super)spins showing a
random pattern of frozen magnetization — breaking the
Ising symmetry — varying from eigenstate to eigenstate.

Such spontaneous breaking of PHS by interactions gen-
erates a random chemical potential term

∑
i µiS

z
i (e.g.

in a mean field treatment µi =
∑
j=i−1,i+1 Jj∆j〈Szj 〉),

which localizes the extended single-particle modes near
zero energy and cuts off the quantum critical spin fluctu-
ations at length scales longer than the spin-glass corre-
lation length. Spontaneous PHS breaking appears to be
the only route to an MBL phase in this model: in par-
ticular, single-spin terms hiS

x,y,z
i acting on the super-

spins are forbidden by symmetry. This result implies
that whereas the edges of the many-body spectrum are
quantum critical with algebraic mean correlations, high
energy density eigenstates are more localized, in sharp
contrast with random-field MBL systems where higher
energy densities tend to favor delocalization4,26.

III. NUMERICAL RESULTS

Though the above argument based on RSRG-X
strongly suggests that even infinitesimally weak interac-
tions will destroy the quantum critical glass behavior of
the random XX spin chain and lead to spin glass or-
der instead, it is hard to explicitly track all the higher-
order terms generated during the renormalization pro-
cess that could (in principle) flip the super-spins. In
order to clarify this issue, we now turn to numerical
exact diagonalization methods to study (1). We draw
the couplings Ji ∈ (0, 1] from the power-law distribution
P (J) = 1

W
1

J1−1/W and we choose ∆i to be uniformly dis-
tributed in the interval [−∆,∆]. We also restrict to even
L and

∑
i S

z
i = 0, and consider the even sector of the Z2

symmetry C. For each disorder realization, we first calcu-
late the extremal energies Emin and Emax and define the
normalized energy density ε = (E−Emin)/(Emax−Emin).
We then use the shift-invert method26 to obtain the 50
eigenstates with energy closest to ε = 0.5, corresponding
to the middle of the many-body spectrum. Results are
averaged over at least 2× 103 disorder realizations.

To distinguish between ergodic and non-ergodic
phases we measure the level spacing parameter rn =
min(δn, δn+1)/max(δn, δn+1)23 characterizing the ratio
between consecutive level spacings δn = En − En−1 av-
eraged over energy levels n. Its disorder-averaged value
changes from that characteristic of random matrices in
the Gaussian orthogonal ensemble, rGOE ' 0.530734 in
the ergodic phase, to rPoisson = 2 ln 2 − 1 ' 0.3863 (re-
flecting absence of level repulsion) in the MBL regime.
We also compute the bipartite entanglement entropy
Sn = −trρn ln ρn, where ρn the reduced density matrix
in the nth eigenstate after tracing over half of the sys-
tem. The entanglement scales as Sn ∼ 1, logL, and L
for MBL, QCG, and thermalizing systems respectively.
To characterize the spin glass order, we introduce an
Edwards-Anderson-like order parameter,

mEA =
1

L2

∑
n

∑
i 6=j

〈
n
∣∣σzi σzj ∣∣n〉2 , (3)

which tends to a constant (zero) in the thermodynamic
limit for a spin-glass ordered (disordered) phase. (We
also consider the auxiliary quantity χEA ≡ LmEA

21,
which can in principle distinguish short-range spin glass
order from certain types of quasi-long range order.)

A. Phase diagram

The results are summarized in the phase diagram of
Fig. 1 (see Appendix A 1 for details). For weak disor-
der (0 ≤ W . 1.5), and ∆ < ∆c(W ), we find GOE
level statistics, extensive entanglement, and vanishing
spin glass order signaling a thermal phase. In this range
of W , increasing ∆ drives an MBL transition to a spin
glass-ordered phase at ∆ = ∆c(W ), heralded by a cross-
ing in the finite size scaling plots of r, S, and χEA (Fig. 2).
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FIG. 3. Strong disorder spin glass phase (W = 2.0). Left: Poisson statistics of the level spacings. Inset: when not
restricted to a given Z2 sector, the gap ratio r′ decreases with system size (well below the Poisson value), signaling pairing of
the excited eigenstates. Middle: Sub-extensive scaling of the entanglement entropy. Right: Extrapolations of the spin glass
order parameter mEA = χEA/L are consistent with non-vanishing values in the thermodynamic limit for all values of ∆ > 0,
indicating spin glass order. Extrapolations are performed using 1/L2 (1) and 1/L (2) finite-size corrections. We note that the
small dip around ∆ ≈ 1 is naturally accounted for by the enhanced probability of local resonances ∆i ≈ 122 (see text). Inset:
Linear scaling of χEA with system size, consistent with spin glass order.

Interestingly, our numerics strongly suggest that for
weak enough disorder, arbitrarily weak interactions lift
the degeneracies of the non-interacting case and lead to
thermalization. This is natural since at weak disorder
and ∆ = 0, degenerate PHS-conjugate pairs of orbitals
that are either doubly occupied or both empty (corre-
sponding to superspins in the RSRG-X language) have
large spatial extent and overlap with many other de-
generate pairs of orbitals. Then, upon the inclusion of
interactions there are many strongly overlapping reso-
nances that lead to thermalization. In other words, at
weak disorder each orbital typically overlaps with many
others, such that the higher-spin S+

LS
+
R . . . S

−
eff type flip-

flop terms are no longer strongly suppressed by many
powers of a small parameter, and the massive degener-
acy of the non-interacting case can be lifted by quantum
fluctuations which naturally lead to thermalization. For
strong disorder however, each degenerate pair of orbitals
are sharply localized and interacts mainly with its near-
est neighbors through predominantly Ising interactions
leading to the spin glass MBL phase discussed above.

B. Strong disorder regime

For strong disorder (W & 1.5), we observe a clear
finite-size scaling trend towards Poisson level statistics,
and sub-extensive entanglement entropy. In this strong-
disorder regime, our RSRG-X predictions should apply,
and we therefore expect an MBL spin glass phase (Fig. 3).
To distinguish between QCG and MBL phases, we exam-
ine the scaling of the spin glass order parameter with
system size. Whereas for an MBL phase with long-
range spin glass order limL→∞mEA 6= 0, for a QCG
with only algebraic quasi long-range order, mEA ∼ L−α

(χEA ∼ L1−α). We observe that χEA clearly grows with
system size, inconsistent with a QCG with α > 1. In

particular, this observation rules out a QCG in the same
universality class as the random XX case (∆ = 0)32,
which would have α = 229. From our RSRG-X scenario,
we expect two types of finite size corrections to mEA:
1/L terms coming from short-range ordered regions , and
1/L2 terms from the vestige of random-XX QCG. Ex-
trapolating our data for mEA using fits to either 1/L
or 1/L2 finite-size corrections predicts a non-vanishing
limiting value of mEA, suggesting spin-glass order for all
∆ > 0 (Fig. 3). Though our data is perfectly consis-
tent with linear growth of χEA = LmEA ∼ L, we can-
not definitively rule out a more exotic QCG phase with
α� 1, distinct from the ∆ = 0 XX random singlet phase.

In this spin glass (MBL) phase, the eigenstates for large

systems should be cat states |n〉± = (|n〉 ± C |n〉)/
√

2
that are even/odd under the Z2 symmetry generated
by C =

∏
i σ

x
i , where |n〉 is some eigenstate-dependent

pattern of σz magnetization (with some background of
random-singlet spins). The energy splitting between the
two true eigenstates |n〉± is exponentially small in sys-

tem size and scales as ∼ e−L/ξ with ξ the localization
length, implying that the broken-symmetry state |n〉 be-
comes metastable in the limit of large systems12. Mean-
while, the level spacing scales as δ ∼ e−(ln 2)L at “infinite
temperature” (corresponding to our choice of normalized
energy density ε = 0.5). At strong disorder, the local-
ization length in the spin glass phase should be small
and we therefore expect the eigenstates to be “paired”12:
the level spacing between each doublet is exponentially
small compared to the typical level spacing. This im-
plies that the r ratio should vanish, provided one does
not restrict to a given Z2 sector (recall that up to now,
we worked in the even sector of the particle-hole sym-
metry C). In a quantum critical glass phase (with quasi-
long range order), we expect the energy splitting of these
quasi-doublets to become stretched-exponential14,35, i.e.
much larger than the many-body level spacing, thereby
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forbidding a regime with paired eigenstates. The r ratio
thus provides us with a clear way to distinguish true long-
range spin glass order from the quasi-long range order of
a quantum critical glass in small systems.

We checked that for sufficiently strong disorder (W =
2.0 and W = 2.5) where there is no sign of an ergodic
phase, the r ratio computed in the full spectrum of the
Sz = 0 sector (denoted by r′) indeed decreases with sys-
tem size, even for small values of 0.2 ≤ ∆ ≤ 1.0 (Fig. 3)
where a quantum critical glass phase was previously pre-
dicted32. This strongly supports our claim of a spin glass
phase extending all the way to infinitesimal ∆.

We also remark that the small dip around ∆ ≈ 1
in Fig. 3 is naturally explained by the enhanced prob-
ability of local resonances |∆i| ≈ 1. Recall that uni-
form anisotropies ∆i = 1, ∀i with global SU(2) sym-
metry are known to lead to thermalization for arbitrary
disorder strength15,22,32. In our case of inhomogeneous
anisotropies distributed uniformly in [−∆,∆], the proba-
bility of having a resonance 1− ε < |∆i| < 1 + ε for small
ε > 0 is obviously strictly zero if ∆ < 1 − ε, decays as
∼ 1/∆ for ∆ > 1 + ε, and therefore exhibits a maximum
near ∆ ≈ 1 (at ∆ = 1 + ε).

IV. CONSTRAINTS ON PROTECTION OF SPT
ORDER BY MBL

Our RSRG-X arguments and numerical results both
show an inherent instability of the XX critical point to-
wards a non-critical MBL spin glass upon the inclusion
of interactions. Interestingly, these results imply a re-
lated instability of certain symmetry protected topolog-
ical (SPT) orders, that one might have thought could
emerge in highly excited states of MBL systems. Con-
sider Eq. 1, with an even number of spins, dimerized

hoppings Ji = 1
2J

(0)
i

(
1 + δi(−1)i

)
, and weak interactions

(∆i � 1). Then the ground state is topologically trivial
for δ = δi > 0, but exhibits SPT order with symmetry-
protected spin- 1

2 topological edge states for δ < 0 (see
Appendix B). This model is dual to a 1D fermion SPT of
class AIII 36,37 via a standard Jordan-Wigner mapping,
where the edge states are protected by the symmetry
U(1) × ZS2 where S = CK, with K acting as complex
conjugation (see Appendix B).

In the perfectly dimerized limit, δ = −1, the ground
state consists of singlets on all dimerized bonds, with
dangling spin- 1

2 degrees of freedom at the left and right
ends, and excitations are either non-degenerate Sz = 0
triplets, | ↑i↓i+1〉+ | ↓i↑i+1〉, or doubly degenerate Sz =
±1 triplets, | ↑i↑i+1〉, | ↓i↓i+1〉 on a strong bond. Moving
away from the perfectly dimerized limit, δ & −1, these
doubly degenerate Sz = ±1 bond-triplets weakly interact
via virtual excitations of the intervening non-degenerate
Sz = 0 bonds. These interactions are strongly random,
decaying exponentially in distance between the Sz = ±1
bonds, and symmetry dictates that these interactions be
of XXZ form (plus less relevant multi-spin interactions).

Thus the Sz = ±1 excitations form a new effective XXZ
chain that, crucially, has no memory of the initial dimer-
ization pattern δi. According to the preceding sections
of this paper, at finite energy density this effective XXZ
chain will either thermalize (weak disorder) or sponta-
neously break symmetry (strong disorder); in both cases,
the underlying SPT order is destroyed.

V. DISCUSSION

We have argued that the notion of particle-hole sym-
metric Anderson localization does not extend to the MBL
case. Even though interactions are an irrelevant pertur-
bation in the ground state, they drastically affect the
structure of excited states leading either to thermaliza-
tion at weak disorder or to spontaneously broken particle-
hole symmetry at strong disorder, thereby destroying in
both cases the quantum critical properties of the non-
interacting model.

Our results also imply the instability of SPT order with
U(1)×ZS2 symmetry. Previous analyses of whether SPT
order can extend to highly excited states of MBL sys-
tems15,17,18 focused on whether it is possible to construct
a locally integrable (commuting projector) “fixed-point”
model of the phase for which all excited states are local-
ized with concurrent SPT order. Our present study fur-
nishes an example where such a locally integrable model
is possible (the perfectly dimerized state), but for which
there are inherent degeneracies in the excitations that,
upon weak perturbation away from the strictly integrable
limit, result in spontaneous symmetry breaking. Our re-
sults also rule out the realization of certain stable Flo-
quet SPT orders38–41 with no equilibrium counterparts,
such as those in driven systems, that require an MBL
setting to avoid catastrophic heating42–44. It would be
very interesting to investigate whether our results can
be generalized to rule out the existence of PHS many-
body localization and related excited state SPT orders
in higher-dimensional systems.
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California Office of the President (SAP).

Appendix A: Additional numerical results

1. Numerics and phase diagram

We computed the r parameter, the entanglement en-
tropy and the spin glass order parameter mEA = χEA/L
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averaged over eigenstates at energy density ε = 0.5 and
over disorder, for various values of the parameters W ,
∆ and L. The random couplings Ji ∈ (0, 1] are drawn
from the power-law distribution P (J) = 1

W
1

J1−1/W and
we choose ∆i to be uniformly distributed in the interval
[−∆,∆].

At weak enough value of the disorder strength (0 ≤
W / 1.5), we find evidence of an ergodic to MBL tran-
sition as a function of ∆ (Fig. 4). For ∆ smaller than a
critical value ∆c(W ), the overall disorder strength is not
enough to localize the system, and we observe clear signa-
tures of a thermal phase (extensive entanglement entropy,
GOE level statistics and mEA = 0). For ∆ > ∆c(W ),
the system is localized with Poisson level statistics, sub-
extensive entanglement entropy indicating a breaking of
ergodicity and diverging spin glass parameter χEA. The
entanglement entropy as a function of L shows a clear
crossover from volume-law to sub-extensive behavior as
a function of ∆ (Fig. 5). This MBL transition can also
be observed at fixed ∆ by tuning W (Fig. 6).

2. Uniform anisotropies ∆i = ∆

Note that we took the anisotropy parameters ∆i to be
random since randomness in Ji generates randomness in
∆i upon renormalization, so that we expect qualitatively
similar conclusions for uniform ∆i = ∆, except around
the pathological SU(2) symmetric point |∆| = 1 that is
known to lead to thermalization for arbitrary disorder
strength22 (see also15,32). To verify this numerically, we
also considered the case of uniform anisotropies ∆i = ∆
in the strong randomness regime W = 2 (Fig. 7). We
find that, away from the SU(2)-symmetric point ∆ = 1,
the results are qualitatively similar to the random ∆i

case as expected, with a spin-glass MBL phase at all val-
ues of ∆ 6= 1. Precisely at the SU(2)-symmetric point
∆ = 1, the results are more intricate. Because of the
different spin sectors S2 = j(j + 1) that do not mix
with each others, it is natural to expect Poisson statis-
tics in the Sz = 0 sector even though the system should
be thermalizing. We find numerically a r ratio below
the Poisson value, suggesting a finite-size segmentation
of the spectrum. This is consistent with the fact that
we observe sub-extensive entanglement for ∆ = 1, which
suggests that the system has not yet reached the scaling
regime which should be dominated by almost classical
large superspins. We nevertheless observe that the point
∆ = 1 is much less localized than ∆ 6= 1 for the same
disorder strength W = 2. Moreover, our numerical re-
sults indicate the absence of spin glass order precisely at
∆ = 1, also consistent with thermalization. We have also
checked that taking ∆i = ∆ does not modify the phase
diagram shown in Fig. 1 quantitatively provided ∆ 6= 1.
We leave a detailed numerical analysis of this interest-
ing SU(2)-symmetric point for future work, and restrict
ourselves to random anisotropies ∆i which lead to qual-
itatively similar results but has the strong advantage of

avoiding pathological features that are not the subject of
interest for our study.

Appendix B: Fermion description and symmetry
protected topological phases

To be self-contained and make contact with our dis-
cussion in the main text, we briefly review the equiv-
alent descriptions of the XXZ chain in terms of spinless
fermions, and its connection to symmetry protected topo-
logical phases (SPTs) for the case of dimerized couplings.

The XXZ spin chain (Eq. 1 of main text) maps to
an interacting fermion chain, via the standard Jordan-

Wigner mapping Szi = c†i ci − 1
2 , S+

i = Sxi + iSyi =(∏
j<i σ

z
j

)
c†i :

Hspin =

2N−1∑
i=1

Ji
(
Sxi S

x
i+1 + Syi S

y
i+1 + ∆iS

z
i S

z
i+1

)
,

Hfermion =

2N−1∑
i=1

Ji

[
1

2

(
c†i+1ci + h.c.

)
+∆i

(
ni −

1

2

)(
ni+1 −

1

2

)]
, (B1)

where we take L = 2N even.

1. Symmetries

We now discuss the symmetries of the above model.
We will first describe the symmetries in the spin lan-
guage, and then use the Jordan-Wigner mapping to ob-
tain their action on the fermion operators.

First, the spin chain has a U(1) symmetry generated

by Sz rotations Uφ =
∏
j e
−iφσz

j /2, that corresponds to
the conserved z-axis magnetization. The model also has
Z2 time-reversal symmetry, implemented by T = K,
where K is the antilinear operator representing complex
conjugation, and an Ising (Z2) symmetry generated by
C =

∏
j σ

x
j . Note that the action of this symmetry flips

the axis of the conserved spin, CUφC† = U−φ.
Turning to the fermions, we see that the symmetries

act on the second-quantized fermion operators as follows:

UφcjU
†
φ = e−iφcj ,

T cjT −1 = cj with T iT −1 = −i, (B2)

CcjC−1 = (−1)j+1c†j . (B3)

Note that the time-reversal symmetry is anti-unitary,
while Uφ, C are unitary. In the fermionic language, U(1)
corresponds to the particle number conservation, while
C corresponds to particle-hole symmetry. In addition,
we can construct an anti-unitary symmetry S ≡ C × T ,
usually termed “chiral” or “sublattice” symmetry,

ScjS−1 = (−1)j+1c†j with SiS−1 = −i. (B4)
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FIG. 4. Ergodic to spin glass (MBL) transition as a function of ∆, for W = 0 (top: uniform Ji = 1) and W = 1 (bottom).
Left: Ratio of consecutive level spacings showing a transition from GOE to Poisson statistics. Middle: Scaling of χEA showing
a divergence with system size in the localized phase. Right: Finite-size entanglement crossover.
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FIG. 5. Crossover between volume- and area-law scaling of the entanglement entropy as a function of ∆ for W = 0.5.

Note that T 2 = C2 = 1 when acting on fermion op-
erators, but that S2 has no well defined action on cj ,
because we can redefine S2 by an arbitrary phase eiα by
combining it with a U(1) rotation S → S̃ = eiα/2

∑
j njS.

A note on nomenclature. We caution that there is a
potentially confusing alternative terminology frequently
used for non-interacting fermion systems, wherein the
particle-hole symmetry C is called ‘antiunitary’ while
S is called ‘unitary’. The alternative convention arises
because the traditional symmetry classification of free
fermion systems considers the action of symmetries
on the first-quantized Hamiltonian H, where the non-

interacting second-quantized Hamiltonian H is defined

via H =
∑
i,j c
†
iHijcj (see also footnote on p.7 of45).

Given a unitary symmetry, C, that interchanges parti-

cles and holes, CciC−1 =
∑
j(U

∗
C )ijc

†
j , then H satisfies

U†CH∗UC = −H.

Owing to the complex conjugation on the LHS of the
preceding expression, the unitary symmetry C is some-
times termed ‘anti-unitary’ in this context. Similarly, the

anti-unitary symmetry S implies U†SHUS = −H, hence
S ‘looks unitary’ when acting on H. When referring to
operators as unitary or anti-unitary, we will always refer
to the action on the second-quantized operators, which is
more appropriate for the generic case of interacting sys-
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FIG. 6. Ergodic to spin glass (MBL) transition as a function of W at fixed ∆ = 2.0.

FIG. 7. Strong disorder regime (W = 2.0) with uniform anisotropy ∆i = ∆. Away from the pathological SU(2)-symmetric
point ∆ = 1, the results are qualitatively similar to the random ∆i case, consistent with a many-body localized phase with
spontaneously broken particle-hole symmetry at all values of ∆ 6= 1.

tems. Hence we will refer to C as unitary, and S, T as
anti-unitary.

2. Ground-state SPT Order

When the hoppings in (B1) are dimerized, Ji →
J
2

(
1− δ(−1)i

)
with 1 > δ > 0, the ground-state real-

izes an SPT phase with symmetry protected topologi-
cal (complex) fermion zero mode end states. The non-
trivial edge structure is most easily seen by considering
the limit of zero interactions (∆i = 0) and strong dimer-
ization, δ = 1. Here, the fermion Hamiltonian possesses
a strictly localized complex fermionic zero mode c1 (c2N )
on the left (right) side of the chain respectively. Focusing
just on the left side of the chain, the fermionic zero mode
c1 spans a degenerate two-state Hilbert space {|±〉} with

c1|−〉 = 0 and |+〉 = c†1|−〉.
It turns out that the protection of these edge states

relies only on U(1) and the ZS2 subgroup of ZC2 × ZT2 , in
the sense that we may break T and C separately so long
as their product S remains a good symmetry. Then, the

relevant symmetry group is U(1) × ZS2 , corresponding
to class AIII in the Cartan notation36,37,45. A classic
example of a problem in this symmetry class is the Su-
Schrieffer-Heeger model46. In d = 1, free fermion prob-
lems in this class have a Z classification, which reduces
to a Z4 classification upon including interactions47.

This zero energy edge mode has a projective implemen-
tation of the U(1)×ZS2 symmetry group, which protects
it from being gapped by any interaction with local bulk
degrees of freedom, which all transform non-projectively
and hence cannot couple in a symmetric fashion with
the edge state. The projective action of symmetry on
the edge-state can be seen by considering just the Z2

subgroup of the U(1) generated by the fermion number
parity: PF = eiπ

∑
i ni . For the full system (and for any

set of bulk degrees of freedom), the fermion parity op-
erator commutes with charge conjugation, [PF ,S] = 0.
However, acting within the low-energy subspace spanned
by the zero-mode states |±〉 of one end of the chain, we
see that ± have opposite eigenvalue of PF : 〈+|PF |+〉 =

−〈−|PF |−〉. On the other hand, S changes c1 → c†1,
and hence exchanges S|±〉 = |∓〉. Hence, the symmetry
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group is implemented projectively at the end of the chain:
PFSPFS|±〉 = (−1)|±〉. This projective action of sym-
metry indicates that the zero-modes are topologically sta-
ble to any symmetry-respecting perturbation that does
not close the bulk gap47,48. In particular, this phase and
topological edge states exist in the ground state over a
finite range of parameters near the perfectly dimerized
limit (though the zero modes are generically only expo-
nentially well localized to the edge).

The phase described above is the elementary, n = 1,
“root” phase of the 1D AIII chains. In the absence
of interactions, we may combine any integer number
n of these phases to obtain a new non-trivial phase.

For n = 2 chains, let us denote by c†1 and d†1 the
fermionic edge modes acting on the left side of the two
perfectly-dimerized chains n = 1 and n = 2: the ground-

state Hilbert space can then be written as {|00〉, |10〉 =

c†1|00〉, |01〉 = d†1|00〉, |11〉 = c†1d
†
1|00〉}. Since Sc1S−1 =

c†1 and Sd1S−1 = d†1, the sublattice symmetry S acts
on the zero-mode states as S|00〉 = |11〉, S|11〉 = −|00〉,
S|10〉 = |01〉, and S|01〉 = −|10〉. The n = 2 phase there-
fore has S2 = −1 when acting on the edge states, whereas
S2 = 1 acting on any local bulk degree of freedom. Sim-
ilarly, n = 3 has a combination of {PF ,S} = 0 and
S2 = −1 on the edge states. However, there is no projec-
tive action of symmetry for phases with n = 0 mod 4,
and hence in the presence of interactions these phases
become equivalent to topologically trivial ones47. Our
argument that the excited states of the n = 1 phase with
strong randomness are unstable to spontaneous symme-
try breaking also applies to the other members (n = 2, 3)
of this AIII SPT family, and rules out the protection of
SPT order.
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