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The low-frequency response of systems near a many-body localization transition can be dominated
by rare regions that are locally critical or “in the other phase”. It is known that, in one dimension,
these rare regions can cause the d.c. conductivity and diffusion constant to vanish even inside
the delocalized thermal phase. Here, we present a general analysis of such Griffiths effects in the
thermal phase near the many-body localization transition: we consider both one-dimensional and
higher-dimensional systems, subject to quenched randomness, and discuss both linear response
(including the frequency- and wavevector-dependent conductivity) and more general dynamics. In
all the regimes we consider, we identify observables that are dominated by rare-region effects. In
some cases (one-dimensional systems and Floquet systems with no extensive conserved quantities),
essentially all long-time local observables are dominated by rare-region effects; in others, generic
observables are instead dominated by hydrodynamic long-time tails throughout the thermal phase,
and one must look at specific probes, such as spin echo, to see Griffiths behavior.

PACS numbers:

I. INTRODUCTION

The many-body localization (MBL) transition is a
phase transition, occurring in isolated and usually disor-
dered interacting quantum many-body systems, at which
equilibrium statistical mechanics breaks down1,3,5–8. On
one side of the transition (in the “thermal phase”) the
system comes to thermal equilibrium under its own uni-
tary dynamics; on the other side (in the “MBL phase”),
it does not, acting instead as a “quantum memory”9–15.
A considerable amount of numerical and experimental
evidence supports the existence of these two distinct
phases5,7,16,18–22; in addition, the existence of the MBL
phase in certain one-dimensional systems can be proven
with minimal assumptions23. Although some properties
of both the MBL and thermal phases away from the tran-
sition are believed to be phenomenologically understood,
these phenomenological approaches (the “l-bit” model for
the MBL phase9,10,24, and equilibrium transport theory
and hydrodynamics for the thermal phase) are mutually
incompatible, and both break down as the transition is
approached. Hence many basic open questions remain
about the behavior near and at the MBL phase transi-
tion.

The numerical evidence, from the exact diagonaliza-
tion of small systems, suggests that the MBL transi-
tion in one dimension in systems with quenched random-
ness is governed by an infinite-randomness critical point7,

and that the regimes near the transition are “Griffiths”
regimes, in the sense that their low-frequency response
is dominated by the contributions from rare regions25–28.
In particular, the thermal phase near the transition ex-
hibits anomalous (sub)diffusion25,29, as well as anoma-
lous spectral correlations30,31, whereas the low-frequency
conductivity just on the localized side of the transition
goes as σ(ω) ∼ ω28. These features are naturally ex-
plained in terms of the following physical picture: a sys-
tem near the MBL transition is highly inhomogeneous,
and can be regarded as a patchwork of locally thermal-
izing and locally insulating regions. When the system is
globally in the thermal phase, its transport is (in one di-
mension) blockaded by rare insulating segments, giving
rise to anomalous diffusion. By contrast, when the sys-
tem is globally in the insulating phase, its low-frequency
response is dominated by locally thermalizing (or criti-
cal) islands and their surroundings.

The existing work on Griffiths effects near the MBL
transition has focused primarily on transport in systems
with quenched disorder (although the dynamics of con-
trast decay is briefly discussed in Ref.27, whose con-
clusions agree with ours). Moreover, the discussion of
the thermal side has been restricted to one dimension.
However, ongoing experiments with ultracold atomic sys-
tems21 are not limited to one dimension, and are most
naturally probed through quench dynamics and interfer-
ometry rather than transport. It is the objective of this
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paper to explore Griffiths effects in these more general
settings: to extend previous results from dimension d = 1
to d > 1 and from transport to more general dynamics.
We only consider states that correspond to nonzero (and
sometimes infinite) temperature. Also, when we consider
d > 1, we are making the assumption that the MBL phase
can exist as a truly distinct dynamical quantum phase
in d > 1, although the existing proof23 of the existence
of MBL is limited to the case of d = 1. Regardless of
whether strict MBL exists in d > 1, however, our results
should apply at intermediate times.

Our main focus in this paper is on the autocorrela-
tion functions of local operators: these can be related
to transport, but also to noise32, interferometric mea-
surements33, and quench dynamics (as discussed below).
We find that, in general, for the spatially-averaged equi-
librium autocorrelation function of most local operators
O, rare critical or insulating regions in the thermal phase
give a contribution to the long-time behavior of the form:

〈O(t)O(0)〉 − 〈O〉2 ∼ exp(−α logd t) , (1)

where α is a nonuniversal, observable-dependent constant
that varies continuously through the thermal phase and
goes to zero at the MBL transition. This result applies
for any operator O that “freezes” in the MBL phase, in
the sense that its autocorrelation does not decay to zero
in the MBL phase. The behavior (1) is power-law in
one dimension, but faster than a power-law in higher di-
mensions. Thus, in higher dimensions, Griffiths effects
are generically subleading to hydrodynamic power-laws;
however, we identify specific observables (such as spin
echo) as well as systems (“fully generic” Floquet sys-
tems with no conserved densities) for which hydrody-
namic power laws are absent and Griffiths effects are
therefore dominant. In addition to the rare-region con-
tribution to averaged autocorrelation functions, in one
dimension they can dominate autocorrelation functions
at a typical point17, by acting as bottlenecks as discussed
in Refs.25,26. In higher dimensions, this effect is absent.
These various regimes are summarized in Table I.

Many-body localization can also occur in systems with-
out quenched randomness that are subject to quasiperi-
odic potentials18,21. Within the MBL phase, both
quasiperiodic and random systems can be subject to a
different type of Griffiths effects due to rare regions of the
state that locally take the state to a many-body mobility

TABLE I: Summary of main qualitative results, indicating
regimes in which Griffiths effects are dominant and sublead-
ing.

Griffiths effects in... Hamiltonian Floquet

Generic spatially

averaged response

1D Leading Leading

Higher D Subleading Leading

Averaged spin echo Any D Leading Leading

Typical response

(generic or spin echo)

1D Leading Leading

Higher D Subleading Subleading

edge28, if such a mobility edge is present (as suggested in
Refs.3,16,34,35, but see also Ref.36). Since the MBL phase
is frozen, such rare regions of the state are dynamically
stable and thus behave like quenched randomness. But
in the thermal phase this cannot happen: a rare region of
the state that takes it locally in to the insulating phase
will not be stable, but instead will be “melted” (ther-
malized) by the surrounding thermal environment. Thus
we do not expect dynamic Griffiths effects in the ther-
mal phase of nonrandom quasiperiodic systems, where
there are no rare regions of the Hamiltonian (or Floquet
operator).

This work is arranged as follows. In Sec. II, we in-
troduce our notation and assumptions. In Sec. III we
summarize previous results on one-dimensional Griffiths
effects. In Sec. IV, we discuss Griffiths effects in the con-
ceptually simplest case: that of a Floquet system that
has no extensive conservation laws. In Sec. V we turn
to systems with global conservation laws in general di-
mensions, and discuss the competition between hydro-
dynamic long-time tails and Griffiths effects. We find
that, for generic autocorrelation functions, the Griffiths
effects are subleading in dimensions greater than one, and
identify specific observables—in particular, the spin echo
response (Sec. VI)—that remain dominated by Griffiths
effects in all dimensions. In Sec. VII we consider the
nature of the dominant rare regions; this discussion ad-
dresses the behavior of the prefactor α in Eq. (1) near
the transition. Finally, Sec. VIII summarizes our results.

II. NOTATION AND ASSUMPTIONS

We first set out some general assumptions and intro-
duce some notation that we shall use throughout the pa-
per. We consider systems that have one, or a few, ex-
tensive conserved scalar quantities (e.g., energy, charge,
and/or spin-projection along some axis), but no other
special symmetries, as well as fully generic Floquet sys-
tems, in which there are no extensive conserved quanti-
ties. We take the interactions to be short-range in space.
We take the disorder to be spatially uncorrelated (or to
have a correlation length that is short compared with
the length scales of interest to us). We assume that the
system is defined on a lattice with finite on-site Hilbert
space.

We shall be primarily interested in the behavior of au-
tocorrelation functions of generic Hermitian operators,
C(x, t) ≡ 〈O(x, t)O(x, 0)〉x − 〈O(x)〉2, where O(x) is an
operator with finite support centered at the point x. The
brackets 〈. . .〉 denote averages with respect to a (presum-
ably thermal) density matrix. For systems that have con-
served quantities, we shall also explore the autocorrela-
tion functions of operators that are “special,” such as the
conserved densities and their currents (denoted j). (For
the associated autocorrelation functions we use the stan-
dard notation, such as σ ∼ 〈jj〉 for the conductivity.) We
shall address both spatially averaged and typical behav-
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ior. We denote the spatial average of C(x, t) as [C(x, t)],
and it is defined in the obvious way. The typical value of
C(x, t) is formally defined as Ctyp(t) ≡ exp{[logC(x, t)]}.
The typical and average values differ because averaging
the logarithms reduces the weight of the contribution for
rare regions. We shall use this formal sense of “typical”
and its colloquial sense interchangeably: for the Griffiths
effects discussed here, it is straightforward to check that
these senses are indeed equivalent (i.e., rare regions do
not dominate the logarithmic average).

We denote the characteristic microscopic energy scale
of the system by W . The global control parameter driv-
ing the MBL transition is denoted by δ({Γ}), where Γ
denotes the physical parameters (energy density, interac-
tion strength, etc.) that affect the transition; we define
δ so that δ = 0 at the critical point, δ > 0 in the ther-
mal phase, and δ < 0 in the MBL phase. We will de-

note the local value of δ by δ̂. We shall assume that the
MBL transition is continuous; this assumption is consis-
tent with existing numerical evidence, but the evidence
itself is mostly restricted to one dimension.

We focus on the response at times that are long (or fre-
quencies that are small) compared with the characteris-
tic microscopic scales of the system. The rare regions we
shall consider are correspondingly large compared with
the lattice spacing, so that coarse-grained notions of the
“local properties” are meaningful for each region. In
most of this paper, we consider rare regions whose linear
size is large compared to the correlation length, which
is denoted ξ. Because these regions are large, one can
argue on “large deviations” grounds37 that the proba-
bility of having some rare local property γ behaves as
∼ exp (−r(δ, γ)V ), where V is the volume of the rare re-
gion, and r(δ, γ) is a (non-negative) “rate function” that
vanishes as γ approaches γtyp(δ), the typical behavior of
a region for the control parameter δ. For instance, if the
distribution obeys the central limit theorem we expect
that r(γ, δ) ∼ ϕ(δ)(γ − γtyp(δ))2 for small |γ − γtyp|. It
is conceivable that the prefactor ϕ(δ) itself vanishes or
diverges at the critical point, because the cost of a region
with anomalously thermal or localized properties might
scale nonexponentially at the critical point. If ϕ(δ) ∼ |δ|ρ
near the critical point, our conclusions are robust so long
as ρ > −1—this includes the cases where (a) rare regions
are anomalously common at the critical point, (b) the
rate function is nonsingular at the critical point, and (c)
rare regions are anomalously suppressed at the critical
point, but the suppression is not too severe. We cannot
rule out the possibility that ρ < −1, in which case rare
regions are completely suppressed at the critical point,
but as this scenario seems highly implausible we shall
not consider it further. Note that we are assuming that
to make an insulating rare region, a nonzero fraction of
that region has to be atypical, thus the factor of V in
the exponent in the probability. This seems reasonable
for rare insulating regions in the thermal phase, although
for the opposite case, namely rare thermalizing regions in
the MBL phase, it is less obvious that the atypical regions

need to be a nonzero fraction of the total volume in the
limit of such rare thermalizing regions of large volume38.

The correlation length ξ ∼ |δ|−ν as the transition is
approached. On length scales longer than ξ the system’s
behavior is typically thermal (or MBL for δ < 0), while
on shorter scales it is typically critical.

III. REVIEW OF ONE-DIMENSIONAL
TRANSPORT

We first briefly summarize previous results on Grif-
fiths effects in the thermal phase near the MBL transi-
tion (those in the localized phase are discussed in Ref.28,
and will not concern us here). The effect of rare “bottle-
necks” on the spread of entanglement in one-dimensional
systems can be understood fairly simply25,26. The bottle-
necks are rare insulating (or, potentially, critical) regions
of length L. The transit time across a rare insulating re-
gion increases exponentially with its length; we denote it
by t(L) ∼ exp(L/η), where η is a quantity that decreases
as the region becomes more insulating. The inclusions
that serve as bottlenecks at (large) time scale t are those
with L ≥ η log t. The probability of such a bottleneck
is thus ∼ exp (−r(δ, η)L) ∼ exp (−ηr(δ, η) log t), i.e., it
goes as a power-law of t.

To find the exponent, we must optimize over all pos-
sible internal parameters for the bottlenecks: in gen-
eral, locally more insulating regions will act as more
effective bottlenecks, but will also be rarer. Thus, we
must optimize the quantity ηr(δ, η). In one dimension, it
is believed (on numerical7 and renormalization-group26

grounds) that η approaches a finite value ηc at the crit-
ical point. Given this assumption, one can check that
the dominant bottlenecks in the weakly thermal phase
(small δ) are those that are locally critical. Thus, if the
typical distance from the critical point is δ, we expect
that the density of bottlenecks is given by t−1/z, with
1/z = ηcr(δ, ηc) giving the Griffiths dynamic exponent
z; note that z diverges as the transition is approached.
This density of bottlenecks determines the distance over
which information can travel in time t.

Thus entanglement typically takes time ∼ lz to spread
through the worst bottleneck it encounters in spreading
over distance l, and for z > 1 this dominates the entan-
glement spreading time. Energy or particle transport is
slower: for example, the charge autocorrelation function
or “return probability”25 (which is the inverse of the dis-
tance diffused in a time t) is given by 〈ni(t)ni(0)〉 ∼ t−β ,
where β = 1/(z + 1). Thus, transport is subdiffu-
sive when z > 1. This subdiffusive transport can be
linked to a non-trivial behavior of the a.c. conductiv-
ity (via a scale-dependent Einstein relation or a resistor-
capacitor model25), which has the low-frequency behav-
ior σ(ω) ∼ ω1−2β , also seen in numerics25.

There is some recent numerical evidence39 that dif-
fusive energy transport coexists with subdiffusive spin
transport. We discuss how Griffiths effects can give rise
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(a)

(b)

FIG. 1: Rare region effects in higher dimensions (a) vs. one
dimension (b). In all cases, there are insulating inclusions
with a wide distribution of sizes and local values of the control
parameter (indicated here by shading). In higher dimensions,
inclusions can be bypassed, and rare-region contributions are
due to degrees of freedom inside the inclusions. In one dimen-
sion, inclusions act as bottlenecks, and thus affect dynamics
even in typical regions.

to this coexistence in App. A.

IV. GRIFFITHS EFFECTS IN SYSTEMS WITH
NO EXTENSIVE CONSERVED QUANTITIES

We now turn from transport to the autocorrelation
functions of generic local operators. We shall first discuss
these in the conceptually simplest case, which is that of
a periodically driven system near a MBL transition, with
no extensive conserved quantities (we refer to this as a
generic Floquet system). “Thermal” equilibrium for such
unconstrained systems maximizes the entropy and thus
corresponds in some sense to infinite temperature. We
discuss these in the four separate cases (average vs. typ-
ical17 and d = 1 vs. d > 1).

A. Average behavior, any d

The average behavior of generic autocorrelation func-
tions is dominated by rare-region effects. Starting from
inside a rare region, the “escape” of particles or infor-
mation from this rare inclusion in to its thermal sur-
roundings will be extremely slow, with timescale t(L) ∼
exp(L/η), where L is the shortest linear dimension of
the inclusion. More insulating inclusions have smaller η.
The rate at which the interior of an insulating inclusion
thermalizes with the leads is asymptotically faster than
the rate at which the two leads can thermalize “elasti-
cally,” i.e., without entangling with the inclusion. The
matrix element coupling the middle of an inclusion to its
edge falls off as exp[−L/(2η)], leading to a Golden-Rule
timescale t(L) ∼ exp(L/η). By contrast, the matrix el-
ement coupling one edge directly to the other will fall
off as exp(L/η), which would give rise to a timescale
∼ exp(2L/η). The prefactors depend on properties of

the leads and are not L-dependent, so asymptotically
the “elastic” process is subleading for insulating inclu-
sions. It is not clear whether this is also true for critical
inclusions. Inclusions that are effectively insulating or
critical at time t must therefore have a volume of at least
∼ (η log t)d, and their density ∼ exp(−r(δ, η)ηd logd t).
Thus (anticipating that these rare regions will dominate
the spatial average) we have that

[C(t)] ∼ exp(−r(δ, η)ηd logd t) . (2)

The inclusions that dominate the long-time behavior are
those with local η that minimizes r(δ, η)ηd; this mini-
mum value is the coefficient α in Eq. (1). The rare-
region contribution to all spatially-averaged autocorrela-
tors and dynamical observables will take the form (2) for
operators that do “freeze” in the MBL phase. We note
that Eq. (2) superficially resembles a result from classical
spin glasses40; however, the physics is different, as we are
concerned with the escape from an insulating region and
Ref.40 considers collective domain flips in a spin glass.

B. Typical behavior, d = 1

In one dimension, when the Griffiths dynamic expo-
nent z > 1 the typical spacing between rare insulating
regions is given by t1/z, as noted above, and therefore
grows sublinearly in the time t at large t. This gives two
related mechanisms by which these rare regions affect
the typical long-time behavior of autocorrelation func-
tions. The operators within the rare region whose au-
tocorrelations do not decay on time t will have “tails”
in the adjacent regions containing typical sites. Also, on
timescale t, any typical part of a system can effectively
be regarded as being in a “box” of size L ∼ t1/z that
is isolated (on this timescale) from the rest of the sys-
tem. Thus, a generic long-time autocorrelation function
in such a box will have a value & 1/N(t), where N(t)
is the Hilbert space dimension of the box—specifically,
N(t) ∼ exp[sL(t)] where es is the number of states per
site. Thus, in the generic case, the most that a typi-
cal autocorrelation function can decay on time scale t is
given by a “stretched exponential”:

Ctyp(t) & Ctyp(t = 0) exp(−const.× t1/z) . (3)

Consequently, whenever z > 1 (i.e., in the Griffiths
regime of Sec. III), the long-time decay of typical auto-
correlators is slower than a simple exponential. (We do
not rule out the possibility of even slower decay, though
generically we expect inequality (3) to be saturated.)
Note that these typical autocorrelations are subleading
to average autocorrelations, which decay as a power law
in d = 1.
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C. Typical behavior, d > 1

For d > 1, the contributions originating from inside
rare insulating inclusions do not affect typical behav-
ior as the typical distance to the nearest such inclusion
grows superlinearly with t. (Thus, on a timescale t, a
typical site is not within the zone of influence of an in-
clusion that is insulating on timescales ∼ t.) Moreover,
because entanglement can spread around inclusions in
higher-dimensional systems, the inclusions do not act as
bottlenecks. Therefore, we can ignore Griffiths phenom-
ena entirely for this case. Since by assumption there are
no hydrodynamic quantities in generic Floquet systems,
these typical local autocorrelation functions decay expo-
nentially (but see Ref.41).

D. Summary and implications for spectral
functions

The discussion above shows that Griffiths effects de-
termine the decay of spatially averaged correlation func-
tions, regardless of dimension, in systems with no exten-
sive conserved quantities. This is because the average
is dominated by correlation functions inside the inclu-
sions, which take a long time to decay. Further, in one
dimension, Griffiths effects dominate the decay of typi-
cal correlations provided that the density of inclusions
is large enough: this is because inclusions act as bottle-
necks, inhibiting the equilibration of the typical regions
between them. An important implication of our discus-
sion, specific to the generic Floquet case, is that the coef-
ficient α (and thus the decay power law) is the same for
all spatially-averaged local correlators in one dimension
when z > 1, provided they are correlators of operators
that do “freeze” in the MBL phase42.

We briefly comment on the implications of these results
for spectral functions, which we can obtain directly by
Fourier transforming the autocorrelation functions dis-
cussed above. When the temporal decay is faster than
a power-law (i.e., for averaged correlation functions in
higher dimensions, and for typical correlation functions
in one dimension) the spectral functions exhibit at most
a weak essential singularity at ω = 0 due to rare regions.
This is on top of the typical behavior, which is a smooth
function that grows increasingly sharply peaked at ω = 0
as one approaches the MBL transition43 (the width of
this reflects the typical relaxation time, which diverges
at the transition). For averaged spectral functions in one
dimension, however, the long-time power-law decay im-
plies that the spectral functions have the low-frequency
behavior

[C̃(ω)] ∼ const.+ ω(1−z)/z, (4)

where a constant part due to the typical decay is always
present. Far from the MBL transition, z < 1, and this
Griffiths power-law is subleading to the constant in spec-
tral functions. Close to the transition, z > 1 and generic

local spectral functions exhibit a low-frequency diver-
gence. Note that, as the MBL transition is approached
in one dimension, these averaged spectral functions ap-
proach the form∼ 1/ω, which is possibly related to recent
discussions of 1/f noise in disordered spin systems32.

V. GRIFFITHS EFFECTS IN SYSTEMS WITH
EXTENSIVE CONSERVED QUANTITIES

We now turn to systems with global conservation laws,
such as energy or charge conservation. The densities of
conserved quantities relax diffusively (i.e., as ∼ t−d/2

for local autocorrelations) even in generic clean systems;
thus there are multiple sources of slow dynamics in these
systems. Once again, we address the various cases in
turn. We focus, in the main text, on the case of a single
conserved quantity. In a Hamiltonian system, this must
be energy; in a driven system, it can be any quantity
conserved by the drive. We discuss the case of multiple
conserved quantities in App. A; each conserved quantity
can in general have a separate value of the localization
parameter η, allowing for the coexistence of normal and
anomalous diffusion in one-dimensional systems.

A. Typical and average behavior, d > 1

In systems with conserved quantities, the rare-region
contributions to generic autocorrelation functions con-
tinue to take the form (2). However, in systems with
conserved quantities, these rare-region effects are not the
only source of slow dynamics in the system; in addi-
tion, there are hydrodynamic modes, corresponding to
slow fluctuations of the conserved densities. It is well
known44–46 that these give rise to long-time tails in the
decay of generic autocorrelation functions; i.e., the typ-
ical behavior of a generic autocorrelation function is to
decay at long time as a power law, which is slower than
the rare-region contribution, so that Griffiths effects are
subleading in averaged as well as typical autocorrelators
in d > 1. In fact, only a special set of autocorrelation
functions are immune from long-time tails; we discuss
how to identify and observe these below.

B. Typical and average behavior, d = 1

In one dimension, both rare regions and hydrodynam-
ics give power-law decay, and—as we now discuss—their
effects are intertwined. A generic autocorrelation func-
tion contains some overlap with the conserved densities
themselves, and these decay as t−β ≡ t−1/(z+1) when
z ≥ 1, as discussed in Sec. III. Autocorrelation functions
that do not directly overlap with the conserved densi-
ties are nevertheless coupled to these densities44 and thus
pick up subleading long-time tails with more rapidly de-
caying power laws. The typical behavior of autocorrela-
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tors will generically be sensitive to these subleading long-
time tails. On the other hand, the average behavior is
dominated by the slower of two power-laws: the power-
law originating from inside rare regions, and that orig-
inating from typical regions. We illustrate these points
below by discussing the relaxation of current and density
fluctuations as a function of their wavevector q.

1. Rare-region contribution

Within an inclusion that is insulating on timescale t,
generic local operators do not relax at all; thus, their con-
tribution to the spatial average is ∼ t−1/z, precisely as in
the previous section. (We should specify here that we are
considering operators that are even under time-reversal;
operators that have the “wrong” symmetry, such as cur-
rent, decay inside an inclusion.)

2. Local and global optical conductivity

As a specific case we consider the current-current au-
tocorrelation function, which is related to the optical
conductivity by a Kubo formula. For a system that is
time-reversal invariant, observables that are odd under
time-reversal will generically pick up the long-time be-
havior of the current, but not the density (which is even
under time-reversal). We first consider the behavior of
the local current, i.e., 〈ji(t)ji(0)〉 at some site i. On a
timescale t, for z > 1 this site is in effect contained in a
box of size L(t) ∼ tβ where β = 1/(z+ 1) is the subdiffu-
sion exponent25. Equilibrium density fluctuations imply
that typically the density to the left and right of site i
differ by 1/

√
L(t). This density imbalance relaxes on a

timescale t (which is the timescale for equilibration across

L(t)), and its relaxation involves moving ∼
√
L(t) units

of the “charge” associated with the conserved density
across site i. Thus the local current-current correlator at
site i has the power-law behavior

〈ji(t)ji(0)〉 ∼ [
√
L(t)/t]2 ∼ t−2+β (5)

Note that, unlike the density-density correlator, this de-
cays more rapidly as the MBL transition is approached;
this is natural as there are no frozen currents in the MBL
phase.

The total current in the region, denoted J , has a slower
long-time tail: to relax the initial density imbalance, a
net ∼

√
L(t) particles must be moved a distance ∼ L(t).

Including this factor (which can equivalently be seen as
multiplying ji by the number of sites over which current
flow is correlated at time t), we get an autocorrelation for
the total current of order 1/t2−3β . One can relate this
to the a.c. conductivity47 as follows. Since currents in
separate regions of size L(t) are uncorrelated we can just
add up the dissipation due to these uncorrelated regions;

this amounts to adding up their conductivities48. Each
region has a conductivity that is related to the current-
current correlator by

σ(q = 0, ω) ∼ 1

L(1/ω)

∫
dteiωt〈J(t)J(0)〉. (6)

This Fourier transform gives the result25 that

σ(q, ω) ∼ ω1−2β = ω(z−1)/(z+1) qL(1/ω)� 1. (7)

The above result applies not only to the q = 0 con-
ductivity but also to q > 0 conductivity provided that
qL(1/ω) � 1: in this limit the length-scale over which
relaxation occurs is governed by ω rather than q.

3. Density-wave relaxation, structure factor, and large-q
conductivity

An observable of particular experimental interest21 is
the relaxation of a patterned initial state (typically a
density wave of wavenumber q). The measured quan-
tity is the expectation value of this density wave at a
later time t, denoted Iq(t). While this is not a local
correlator, it can be analyzed using the same reason-
ing. At a time t, the density has relaxed over a scale
L(t) ∼ tβ , but on larger scales the system is cut into
segments separated by bottlenecks. The average devi-
ation from equilibrium of the density in a segment of
length L(t) between bottlenecks is ∼ 1/(qL(t)), and the
corresponding overlap is 1/(qL(t))2. Thus the typical re-
gions contribute an overlap ∼ 1/t2β . Note that this is
always subleading, in the spatial average, to the contri-
butions originating from inside the rare Griffiths regions
(because 2β ≡ 2/(z + 1) ≥ 1/z when z > 1). Therefore,
the contrast decay goes as Iq(t) ∼ t−1/z.

A very similar Griffiths analysis can be performed for
the q-dependent autocorrelation function of the density,
Ŝ(q, t) ≡ Tr[U†(t)ρ̂qU(t)ρ̂q exp(−βĤ)]. Between inclu-
sions that are insulating at time t, the remaining “mem-
ory” of the initial density modulation consists of a density
excess or deficit of order 1/(qL(t)) that is spread out uni-
formly over the scale L(t). Once again, this typical-region

contribution to Ŝ(q, t) goes as t−2β , and is subleading to
the rare-region contribution ∼ t−1/z from inside inclusion
cores.

Thus the autocorrelator Ŝ(q, t) ∼ t−1/z and its Fourier
transform, the structure factor S(q, ω) ∼ ω1/z−1. Conse-
quently49, the behavior of the conductivity σ(q, ω) when
q is finite and ω → 0 goes as

[σ(q, ω)] ∼ ω1+1/z qL(1/ω)� 1. (8)
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C. Summary

In this section we argued that, for systems with con-
served quantities, hydrodynamic power laws generically
mask Griffiths effects, in both average and typical auto-
correlation functions, in d > 1. In d = 1, on the other
hand, Griffiths power-laws are dominant sufficiently near
the transition. There are two sources of Griffiths power
laws: first, the inclusions themselves directly contribute
(as they do in Floquet systems); second, for d = 1 the in-
clusions act as bottlenecks for the transport, which slows
the relaxation of typical regions in between bottlenecks.
Thus, in contrast to Floquet systems, Hamiltonian sys-
tems have different continuously varying Griffiths expo-
nents for different observables. Moreover, not all expo-
nents vanish near the transition. Indeed, some observ-
ables, such as the current, decay faster (though still as
power laws) near the MBL transition, because they are
required by symmetry to vanish in the MBL phase.

In the frequency domain, a generic spectral function
will go (when ω → 0) as [C̃(ω)] ∼ A + Bωp, where p is
an exponent related to the temporal long-time tail of the
associated autocorrelator. When p ≥ 0, these power-laws
are subleading in the spectral function, though they still
dominate the long-time behavior of the autocorrelator.
In contrast with the Floquet case, both typical and av-
erage autocorrelation functions have power-law singulari-
ties as the transition is approached. However, the typical
and average power laws may differ, with the latter being
slower.

The dependence of the conductivity, σ(q, ω), on
wavevector q and frequency ω, in one dimension, illus-
trates many of these features. When ω is taken to zero
keeping q finite, relaxation can occur locally, and the con-
ductivity vanishes with an exponent ω1+1/z, due to slow
relaxation within rare regions. On the other hand, when
q is taken to zero keeping ω finite, relaxation requires
large-scale rearrangements of the conserved quantity, and
the conductivity vanishes with an exponent ω(z−1)/(z+1),
determined by slow relaxation across rare regions.

VI. BYPASSING LONG-TIME TAILS
THROUGH SPIN ECHO

Although generic autocorrelators exhibit long-time
tails for systems with conserved densities, in some cases
it is possible to construct simple operators that do not.
A specific class of such quantities are “transverse” oper-
ators O⊥ that change the value of a discrete conserved
quantity, such as single-particle creation operators [or,
e.g., in XXZ spin models, spin projections that are per-
pendicular to the conserved one]. Using the method of
fluctuating hydrodynamics44, one can argue that auto-

correlation functions of the form 〈O†⊥(t)O⊥(0)〉 decay ex-
ponentially even after nonlinear hydrodynamic effects are
included. The argument is as follows: long-time tails in
the autocorrelations of an operator O arise because of

time
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FIG. 2: Spin echo response for various disorder values W
in the thermal phase of the random-field Heisenberg model,
H =

∑
i hiS

z
i + Si·Si+1, where hi ∈ [−W,W ]. Thin lines

correspond to L = 12 (averaged over 10000 realizations) and
thick lines to L = 14 (averaged over 1000 realizations).

mixing between that operator and the slow operators of
the theory, i.e., conserved densities (or their products,
derivatives, etc.). If we denote some particular slow op-
erator by Q(t), then the extent of mixing between O and
Q(t) is governed by the operator inner product44,50

(O|Q(t)) ∝ Tr[OQ(t)] (9)

where for convenience we have chosen time labels such
that O ≡ O(t = 0). The slow operators Q(t) act only
within a particular sector of the global conserved quan-
tity, whereas the transverse operator O⊥ by definition
changes the value of the global conserved quantity. Thus,
(O⊥|Q) = 0 for a transverse operator, and consequently
these purely “transverse” autocorrelators do not pick up
long-time tails. Unfortunately such operators are also
orthogonal to the emergent conserved quantities in the
MBL phase; consequently, their autocorrelation func-
tions in the MBL phase will precess at a state-dependent
frequency, and thus decay upon spatial averaging51.

This decay of the autocorrelations within the MBL
phase can be undone using spin echo51; we now argue
that spin echo in the thermal Griffiths regime is domi-
nated by rare-region contributions in all dimensions. For
specificity, we consider a system of spins-1/2 with a global
U(1) symmetry, corresponding to a conserved spin pro-
jection, which we label z. The generalization to bosonic
and fermionic systems with particle number conservation
is straightforward (see Appendix A). In general, a local
spin-flip operator σxi in such a system in the MBL phase
will have nonzero overlap with one or more operators τxj
that flip a single conserved pseudospin.

In the spin-1/2 case with a globally conserved z mag-
netization, the spin echo response (or “fidelity”) at a site



8

i can be written51 as

F(t) = 〈ψ(t)|σzi |ψ(t)〉 ,

|ψ(t)〉 = −1

4
(1− iσyi )e−iHt/2(1− iσyi )2 (10)

×e−iHt/2(1− iσyi )|ψ(0)〉 .

The spin echo response is closely related to the autocor-
relation function of the non-conserved components of the
spin. As such, F(t) decays to zero at long time in the
thermal phase, while it saturates to a finite value in the
localized phase. This is the same as the behavior of the
generic autocorrelator we discussed above; thus, we once
again arrive at the rare-region contribution (2) to the spin
echo response. This power-law decay of the response in-
deed seems to arise in the random-field Heisenberg chain
(Fig. 2), though, as is typical in the thermal phase, our
numerical results have strong finite-size effects that arrest
the decay after some finite, L-dependent time.

VII. NATURE OF DOMINANT RARE
REGIONS

To establish the functional form of the rare-region con-
tribution, we did not need to address the question of what
the dominant inclusions are like: i.e., whether they are
locally critical or insulating, and by how much. However,
the nature of these inclusions determines the factor α in
the exponent in Eq. (1); in one dimension, this sets the
power-law with which correlation functions decay.

To address this question in some generality, we will
consider various possible scalings of the time for infor-
mation or particles to escape a critical inclusion of size L
embedded in a thermal bulk background. For an insulat-
ing inclusion, this time goes as t(L) ∼ exp(L/η), where L
is the shortest dimension of the inclusion. Since a critical
inclusion must relax faster than an insulating inclusion,
the possibilities for critical dynamics are (i) that t(L) re-
mains exponential in the length (i.e., t(L) ∼ exp(L/ηc)),
or (ii) that it grows sub-exponentially in L (e.g., as a
power-law of L, or as exp(κLψ) with ψ < 1). In one di-
mension, as discussed in Sec. III, there is evidence from
both numerical and renormalization-group methods that
possibility (i) obtains. In higher dimensions, there is no
direct evidence either way, although possibility (i) seems
more plausible52.

In what follows, we discuss in general terms how these
assumptions determine the behavior of the Griffiths pref-
actor/exponent α in Eq. (1) (in Appendix C we specialize
to the one-dimensional case, and discuss the leading cor-
rections to the behavior we have seen). We shall take the
general form exp(κLψ) for critical dynamics (0 ≤ ψ ≤ 1),
which includes all the cases of interest. The relaxation
rate of a localized inclusion will be t(L, ξ̂) ∼ exp(L/η(ξ̂))

when ξ̂ ≤ L, and t(L) ∼ exp(κLψ) for critical inclu-

sions where L ≤ ξ̂, where ξ̂ is the local correlation length
within the inclusion. Matching these regimes gives us

that η(ξ̂) ∼ ξ̂1−ψ ∼ |δ̂|−ν(1−ψ). Now, suppose the sys-
tem is in the thermal phase and typically at a distance
δ > 0 from the critical point. A localized inclusion with

internal control parameter δ̂ < 0 gives a contribution

exp(−η(δ̂)dr[δ, η(δ̂)] logd t) (11)

to the autocorrelation. To find the dominant inclusions,
we therefore need to minimize the quantity ηdr(δ, η). We

now use the critical behavior η ∼ |δ̂|−ν(1−ψ), the fact

that δ̂ is itself a local property, and the small-argument
behavior of the rate function from Sec. II to find that

ηdr(δ, η) ∼ δρ(δ − δ̂)2|δ̂|−νd(1−ψ) (12)

where ρ is the exponent defined in Sec. II, which satisfies
ρ > −1. Let us take δ to be in the thermal phase, a small
distance from the critical point, and find the dominant

δ̂. Two kinds of behavior are possible, depending on the
value of ν. In particular, we see that

νd(1− ψ) < 2⇒ α
δ→0−−−→ 0. (13)

In this case, the dominant δ̂ is near-critical when δ itself
is near-critical. On the other hand, if νd(1−ψ) > 2, the
optimal inclusions remain deeply insulating all the way to
the critical point (although α can still vanish if ρ > 0).
The cases ψ = 1 (corresponding to t(L) ∼ exp(L/ηc),
which seems most likely to be true) and ψ = 0 (corre-
sponding, e.g., to a finite dynamical critical exponent z)
are special. When ψ = 1, inequality (13) is always satis-
fied and the dominant inclusions are always near-critical.
When ψ = 0, the inequality is always violated (because
νd ≥ 2 in disordered systems53,54) and the dominant in-
clusions are deeply insulating.

VIII. CONCLUSIONS

In this work we have extended previous results on
Griffiths effects on the thermal side of the MBL tran-
sition from one dimension to higher dimensions and from
transport to spin echo and other dynamical observables.
We have identified various considerations that determine
whether a given observable and/or system will exhibit
a thermal Griffiths regime where the long-time behavior
is dominated by rare regions. To summarize, our main
conclusions are:

(a) In systems with no conserved quantities, the long-
time behavior of thermally and spatially averaged auto-
correlators takes the form (1) and is dominated by Grif-
fiths effects that are due to slow relaxation inside rare
regions that are locally insulating or critical. The coeffi-
cient α in Eq. (1) is the same for all autocorrelators. Au-
tocorrelators at typical spatial locations decay paramet-
rically faster (exponentially in d > 1 and with stretched
exponentials due to insulating bottlenecks in d = 1).
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(b) In systems with conserved quantities, when d > 1,
the long-time behavior of generic autocorrelators is dom-
inated by hydrodynamic tails. The Griffiths behavior (1)
can be recovered either as an intermediate-time tran-
sient, or by choosing specific measurements, such as spin
echo, for which hydrodynamic long-time tails are absent.
When d = 1, Griffiths effects dominate general autocor-
relators near the transition, but the Griffiths exponents
are modified by hydrodynamic effects.

Although our discussion has focused on MBL sys-
tems with short-range interactions, it can directly be ex-
tended to systems with longer-range (e.g., power-law58–60

or stretched exponential61,62) interactions, provided that
the interactions fall off fast enough for an MBL phase to
exist. Such systems avoid a subdiffusive phase in all di-
mensions, and Griffiths effects in them are qualitatively
similar to those in short-range systems with d > 1. An
interesting question is to what extent the Griffiths effects
discussed here extend to systems with correlated disor-
der. To give an extreme instance, many-body localization
can occur in systems without quenched randomness that
are subject to quasiperiodic potentials18,21. Within the
thermal phase, we do not expect Griffiths effects of the
type discussed here to play a significant role in this limit
of highly correlated disorder; however, the fate of the
subdiffusive phase as the disorder correlations are made
long-range is currently unclear.

These results for the thermal phase, with their strong
dependence on dimensionality and the existence of con-
served quantities, contrast markedly with Griffiths effects
within the MBL phase. Throughout the MBL phase, re-
sponse is dominated by locally atypical regions, either of
the disorder configuration or of the state (thus, again,
quasiperiodic and random systems can be understood on
the same footing). However, the rare-region effects in the
MBL phase appear to be dimension-independent, and al-
ways give rise to power laws in the dynamics28. Thus,
a MBL transition in higher dimensional systems would
have the intriguing feature that rare region effects are
dominant throughout the localized phase, but sublead-
ing throughout the thermal phase. The implications of
this for the critical behavior at the phase transition will
be addressed in future work.

Note added.—As this manuscript was being prepared,
a numerical study appeared65 providing evidence for
anomalous Griffiths effects in the imbalance decay (cf.
Sec. V B).
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Appendix A: Coexistence of normal and anomalous
diffusion

In this Appendix we discuss transport in one-
dimensional systems with multiple conserved quantities
near the MBL transition. For simplicity, we consider a
toy model consisting of a system with two types of ex-
citations, “neutral” (i.e., carrying energy but no charge)
and “charged” (i.e., carrying energy and charge). We
take the interactions between these two types of excita-
tions to be weak compared with the characteristic local
bandwidth of either excitation. With these assumptions
it is clear that the only possibilities are for both types of
excitation to be localized or for both to be delocalized:
delocalization in one sector spreads to the other in the
presence of interactions, because each sector acts as a
“bath” for the other66,67. Thus, it seems that a diverg-
ing localization length in one sector must imply the same
for the other. Nevertheless, the numerical values of the
localization length (and thus of the parameters η defined
in the main text) need not in general be the same for
both types of excitation.

Let us first consider a limit in which the two types of
excitation are entirely decoupled. Then in general, an in-
clusion of size L that is insulating or critical for both neu-
tral and charged excitations and is embedded in a ther-
mal background will have separate transit times tn(L) ∼
exp(L/ηn) for neutral excitations and tq(L) ∼ exp(L/ηq)
for charged excitations. Thus when ηq � ηn, this model
can have subdiffusion of charge together with diffusion of
energy, which is the situation seen numerically in Ref.39.
Note that the ratio tq(L)/tn(L) ∼ exp[L(η−1q − η−1n )],
which grows exponentially with the size of the inclusion.

We now investigate the stability of this situation when
the two types of excitations are weakly coupled. In addi-
tion to the direct process (involving the transmission of
charged excitations through the inclusion), it is now also
possible to have “hopping transport,” i.e., real transitions
in the charge sector that borrow energy from the “bath”
provided by the more rapidly relaxing neutral sector. In
the middle of the inclusion, the effective bath due to the
neutral sector has a correlation time tn(L) ∼ exp(L/ηn).
Thus, when L is large, the local bath is “slowly fluctuat-
ing” in the sense of Ref.43. We can then use the results
of that work to conclude that the charge rearrangement
rate
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Γhop.q ' t(L)1−2/(sζq) ' exp

[
−L

(
2/φq − 1

ηn

)]
. (A1)

The expression φq is the coefficient of the exponential
phase-space growth in the MBL phase28,43, with the
properties that φq → 0 deep in the MBL phase and
φq . 1 everywhere inside the MBL phase. (The param-
eter φq is conceptually distinct from ηq, being a dimen-
sionless scale rather than a length.) Thus, both the direct
and the “hopping” channel give rise to charge transport
that is parametrically slower (specifically, exponentially
slower in L) than energy transport, provided that φq � 1,
ηq � ηn (i.e., when the charge excitations in isolation
would be well localized).

This reasoning can be extended to the case of systems
that have local charge hopping but power-law density-
density interactions59, which are assumed to be suffi-
ciently rapidly decaying that MBL persists. Naively,
one might think that as the charge hopping is short-
range, charge transport through an insulating inclusion
of length L should be exponentially slow in L. In such
situations, the slowly fluctuating bath of energy excita-
tions provides a parametrically faster relaxation channel.
Following the logic of the previous paragraph, t(L) ∼ La,
where a is the power law. Thus,

Γ(PL)
q ' La(2/(sζq)−1) (A2)

Thus, subdiffusion does not occur in systems with lo-
cal charge motion but long-range density-density inter-
actions.

Appendix B: “Spin echo” for bosonic and fermionic
systems

In bosonic or fermionic systems that have a conserved
particle number, the main apparent obstacle to imple-
menting spin echo is that the natural analog of a π/2
pulse involves creating superpositions of states with dif-
ferent total particle number. In cold-atom experiments,
such superpositions can straightforwardly be created, as
discussed, for example, in Refs.33,63,64. The essential idea
is to trap two different hyperfine states of the atoms with
a strongly state-selective potential: for instance an exper-
iment might involve hyperfine state a, which is used to
realize the many-body physics of interest, and a “specta-
tor” hyperfine state b, which contains very few atoms.
The potential experienced by the atoms in state b is
strong enough to confine them to a single site or a few
sites. Given this setup, driving radio-frequency pulses of
the appropriate duration between states a and b can be
used to create local superpositions with different “parti-
cle number” (i.e., different numbers of a particles). The
rest of the spin echo sequence can be implemented as
usual, and can be checked to saturate to a finite value

deep in the MBL phase. Note, however, that this satura-
tion value need not be near unity, especially for softcore
bosons, because a 2π pulse does not correspond to the
identity (but might also involve injecting or removing
two particles from the system).

Appendix C: Leading finite-time corrections in one
dimension

In this Appendix we discuss the leading corrections to
the long-time asymptotic behavior analyzed in the main
text. We argue that these corrections can lead to sys-
tematic overestimates of the Griffiths dynamical expo-
nent z. In particular, entanglement (energy) spreading
at long but finite times might seem sub-ballistic (sub-
diffusive) even when the asymptotic behavior is ballis-
tic (diffusive). These corrections might account for the
surprisingly large size of the anomalous (z > 1) regime
seen in finite-time numerical studies29,65. For concrete-
ness and to make contact with numerics, we focus on
one-dimensional systems and make the assumption (mo-
tivated by numerical7 and renormalization-group stud-
ies26,27) that the relaxation time for a critical inclusion
of size L is given by t(L) ∼ exp(L/ηc).

We consider two sources of finite-time corrections:
(i) subleading contributions to the finite-time averages
of various observables, and (ii) corrections that arise be-

cause the optimal internal control parameter, δ̂, for a rare
region is itself a function of the size of that region, and
therefore implicitly of time.

1. Corrections due to averaging

The conceptually simpler of these issues can be under-
stood as follows. Let us consider the growth of entan-
glement across a particular cut in the system, starting
from a product state65. Specifically, we imagine averag-
ing the (von Neumann) entanglement entropy at time t
over cuts and/or disorder realizations, and denote this
averaged quantity [S(t)]. At short times, the system ex-
plores only the immediate vicinity of the cut, so that
[S(t)] ' [v]t, where v is a local “Lieb-Robinson speed”
for entanglement spread in the vicinity of the cut. Note
that [v] can be interpreted equivalently as a disorder-
average or a spatial average. This average is not domi-
nated by the bottlenecks due to Griffiths inclusions, since
they simply have a very small local v. By contrast, at
long times, entanglement in a given sample has spread
through many regions with different local speeds, and its
spread can be limited by the slowest regions it encounters.
Thus the typical single-sample value of S(t) ∼ [1/v]−1t,
and can be dominated by bottlenecks where the local
1/v is extremely large. (This is analogous to the stan-
dard observation that conductances add at high frequen-
cies whereas resistances add at low frequencies25.) Note
that [1/v]−1 ≤ [v], so the slope of the [S(t)] vs. t curve
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will necessarily decrease with time. This crossover from
a large slope at short times to a smaller slope at long
times will give an apparent exponent smaller than unity
even when the true long-time velocity [1/v]−1 is nonzero.
More generally, we expect that it can lead to systematic
overestimates of the exponent z (underestimates of 1/z)
in numerics.

We now discuss this crossover in more detail, focusing
on the case where the Griffiths dynamic exponent satis-
fies z < 1, so the bottlenecks are subleading to simple
“ballistic” entanglement spread and [1/v] remains finite.
In a single sample the average speed of spread out to
time t is given by spatially averaging inverse velocities
over the distance entanglement has spread in that sam-
ple: we denote this as vt ≡ 〈1/v〉−1t . The disorder average
is then the arithmetic average over disorder realizations
of vt, we denote this [vt]. (This prescription clearly re-
produces the limiting cases above.) We are interested
in how [vt] approaches its (here, nonzero) infinite-time
limit, v∞ ≡ [1/v]−1.

It is helpful to work with the probability distribution,
P (1/v), which has a long tail ∼ (1/v)−1−1/z due to the
rare bottlenecks. At a late but finite time t, this distri-
bution is effectively cut off at 1/v ∼ t, because slower
bottlenecks cannot be resolved at this time. Thus,

[1/v]− 〈1/v〉t '
∫ ∞
t

1

v

1

v−1−1/z
d(1/v) ∼ t1−1/z . (C1)

Consequently, the average speed up to time t, [vt], also
converges to its asymptotic value with a finite-time cor-
rection that vanishes at long time as ∼ t1−1/z. For z near
to, but just below, one this gives a strong and slowly de-
creasing finite-time correction, which can give rise to an
apparent entanglement growth that appears sub-ballistic
even when the asymptotic long-time behavior is ballistic.

Note that these crossovers are specific to the physical
quantity that is being averaged: the artifacts discussed
here would not arise if we were looking at a quantity such
as contrast decay or spin echo, for which the typical-
region contribution decays rapidly rather than growing
rapidly at short times. Thus, this effect could cause ap-
parent violations of scaling relations between exponents
in numerical studies.

2. Corrections due to size-dependence of optimal
inclusion type

For ψ = 1 critical dynamics, the dominant inclusions
that govern dynamical observables are asymptotically
critical, in the sense that their local control parameter

δ̂ → 0 as their size L→∞, even when the global control
parameter δ is slightly in the thermal phase. At finite
L, one must distinguish between two types of asymptot-
ically critical inclusions (see Fig. 3): (A) inclusions that

are internally critical, so that L � ξ(δ̂), and (B) inclu-
sions that are internally slightly in the localized phase,

so that ξ(δ̂) � L, but ξ(δ̂) → ∞ as L → ∞. Type-
A inclusions are the dominant bottlenecks for entangle-
ment and energy spread, as well as for autocorrelation
functions whose saturated value in the MBL phase is
a power law of ξ or larger. Type-B inclusions domi-
nate the behavior of autocorrelation functions that sat-
urate, in the MBL phase, at values that are exponen-
tially small in ξ. Although the rate functions for the
densities of type (A) and type (B) inclusions asymptoti-
cally approach the same value, the finite-time corrections
are different in the two cases, and are slow functions of
log t, as we now discuss. The key idea is as follows:
an inclusion of size L with internal localization length

ξ̂ & L is effectively critical. Thus the highest probabil-

ity type (A) critical inclusions are those with δ̂ slightly

thermal and L(t) ' ξ̂, so that their local control param-

eter |δ̂(L)| ∼ L(t)−1/ν . These are more probable than
an inclusion with strictly critical control parameter. The
probability of a type (A) critical inclusion of size L is
thus given by ∼ exp[−(rc − κL−1/ν)L], with rc > 0 and
κ > 0. Since L ∼ log t, the finite-time spread, for ex-
ample, of entanglement bottlenecked by type-A critical
inclusions will be of the form

S(t) ∼ t(1/z)−b(log t)
−1/ν

, (C2)

with b > 0, so finite-time studies will in general see an
apparent power-law spread that is slower than the true
asymptotic power law, with the correction vanishing with
time only as this small power of log t.

L-1/ν(t)

δ

thermal MBL

critical

A B

FIG. 3: Nature of dominant inclusions, assuming ψ = 1 crit-
ical dynamics (see main text for definition). The system
is globally in the thermal phase; for a given L, type-A in-
clusions are the critical inclusions with highest probability,
whereas type-B inclusions are the localized inclusions with
highest probability.

If there are Griffiths effects that are instead dominated
by type (B) inclusions, then at finite time these inclu-
sions are more rare than critical inclusions, so the finite-
time results will in this case give an underestimate of
the asymptotic Griffiths exponent z, with the finite-time
correction again vanishing only as a slow power of log t.
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