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We introduce a new algorithm for the reconstruction of the complex transmission function of
a specimen using segmented detectors in a scanning transmission electron microscopy (STEM)
geometry. The phase of the transmission function can be related to magnetic and electric fields
within the specimen and is sensitive to lighter elements. The technique is demonstrated for simulated
data and also using experimental datasets taken from a MoS2 mono-layer and a SrTiO3 crystal. We
present an extension to the algorithm to account for uncertainties in the illuminating probe. The
algorithm can be implemented using fast Fourier transforms and this provides the possibility of
reconstructing specimen transmission functions in real time.

PACS numbers: 42.30.Rx, 42.30.Wb, 61.05.jd

I. INTRODUCTION

Aberration corrected electron microscopy has ushered
in a new era of imaging at atomic resolution and this has
become an essential tool for characterization of functional
nanostructures. Often it is the phase of the wave after
the probe has transited the specimen, the exit-surface
wave, that encodes significant physical properties of the
specimen. For example, the phase is related to electric
and magnetic fields within the specimen. Consequently,
much effort has been devoted to reconstructing the com-
plex exit surface wave from one or more images or diffrac-
tion patterns, which themselves do not directly manifest
the phase information.

Deterministic retrieval of the exit-surface wave for
a CeO2 nanoparticle from the diffraction pattern
formed using a defocused coherent probe was recently
demonstrated.1 An independent retrieval of the exit sur-
face wave with the probe at a second position such that
the region of illumination on the specimen overlapped
the first yielded consistency in the region of overlap.
However, there are decided advantages in scanning a co-
herent probe, as done in scanning transmission electron
microscopy (STEM), to obtain a 4D dataset (where a
2D diffraction pattern is obtained for each probe posi-
tion while scanning the probe in 2D). When treated as
a whole, such 4D datasets are overdetermined if there
are regions of overlap of the area of the specimen illumi-
nated for different probe positions. The quantity which
it is then convenient to work with in such ptychographic
approaches is the transmission function of the specimen
rather than the exit-surface wave, as has been done in
several applications along these lines.2–4 The transmis-
sion function is defined as the quantity that multiplies
the incident probe wave function to give the exit sur-

face wave function. If the specimen is thin enough then
a transmission function in a single plane will represent
the effect of the specimen on the probe in a consistent
way for overlapping probe positions and the transmission
function will also represent the structure of the specimen.
This transmission function is the same as the exit sur-
face wave when the specimen is illuminated by a plane
wave, assumed to be unity everywhere as it illuminates
the specimen.

The advent of fast-readout 2D electron cameras has
greatly facilitated the acquisition of 4D datasets in
STEM.5 The use of such a rapid detector enabled Pen-
nycook et al.

6,7 to demonstrate efficient phase contrast
imaging in STEM using a pixelated detector and to ex-
plore the optimization of imaging conditions by synthe-
sizing different detectors in terms of the smaller pixels
on the CCD.8 Diffraction contrast imaging using virtual
apertures has also been explored.9 Such results can also
be compared to those obtained using fixed-configuration
segmented detectors. For example, Shibata et al.,10–13

and Lazić et al.
14 use fixed-configuration detectors for

differential phase contrast imaging.

In this paper we present a novel implementation of
segmented detector ptychography15–19 (SDP) for the re-
construction of a transmission function of a specimen.
The present approach is akin to the generalized hologra-
phy method outlined in Ref. 4. Measurements recorded
in the diffraction plane using a focused coherent atomic
scale probe are used to construct images correspond-
ing to segmented detectors. These are used, in con-
junction with the known illumination, to reconstruct
the transmission function. The approach is determin-
istic, can be implemented in a memory efficient way in
terms of fast Fourier transforms and can efficiently han-
dle very large 4D datasets. However, we note that a 4D
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dataset taken using a fast-readout 2D electron camera
is not a requirement to apply the SDP algorithm. The
technique is also applicable to datasets recorded using
segmented detectors.10,14,20,21 The technique is demon-
strated for simulated data and also using experimental
datasets recorded for a MoS2 mono-layer and a SrTiO3

crystal for two different thicknesses.

II. THEORETICAL FRAMEWORK

We assume that we have a specimen that is sufficiently
thin to represent the scattering of the incident electrons
by a transmission function T (r) in a single plane which,
for what follows, it will be convenient to write in the form

T (r) = 1 +O(r) , (1)

where we will refer to O(r) as the object function. An
atomic-scale, focused coherent electron probe placed at
position R on the specimen is denoted by ψillum(r,R).
The exit-surface wave after scattering by the specimen is
then given by

ψexit(r,R) = T (r)ψillum(r,R) ,

= [1 +O(r)]ψillum(r,R) . (2)

The exit surface wave in the far-field diffraction plane
can be written as

ψ̂exit(q,R) = Fr→q{ψillum(r,R)[1 +O(r)]}

= ψ̂illum(q,R) + ψ̂illum(q,R) ∗ Ô(q) ,

= ψ̂illum(q,R) +
∑

g

ψ̂illum(q− g,R)Ô(g) , (3)

where Fr→q denotes a Fourier transform from real space
to the reciprocal (diffraction) space and the hat symbol
(̂ ) emphasizes a reciprocal space quantity. The convolu-

tion of Ô(q) and ψ̂illum(q,R), denoted by the operator ∗,
is a result of the Fourier convolution theorem and a new
reciprocal space coordinate g has been introduced when
explicitly writing out this convolution in discretized form
in the final line of the equation.

Assume now that we have acquired a 4D dataset us-
ing a pixelated detector. We can synthesize detectors in
terms of sets of pixels that define each detector and we
can construct an image as a function of probe position R

for each such detector j in the following way:

Ij(R) =

∫

|ψ̂exit(q,R)|2Dj(q)dq , (4)

where Dj(q) is a binary function defining the region of
the diffraction pattern spanned by the synthesized detec-
tor.

Inserting Eq. (3) into Eq. (4) we obtain an expression

for the segmented detector signal

Ij(R) =

∫
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(5)

where we have used the decomposition ψ̂illum(q,R) =

ψ̂illum(q)e
−2πiq·R. Examining Eq. (5) we can identify

the first term as the wave component that is not scat-
tered by the specimen. The next two terms are cross
terms (and are the complex conjugate of one another)

which are linear with respect to the function Ô(g). The

final term, nonlinear with respect to the function Ô(g),
is assumed to be negligible and is ignored in subsequent
equations. This is equivalent to making a weak phase
approximation but it is possible to correct for this after
an initial solution, without the nonlinear term, has been
obtained.22 With this approximation and defining

φ̂j(g) =

∫

ψ̂∗

illum(q)ψ̂illum(q− g)Dj(q)dq (6)

we can rewrite Eq. (5) in the form

bj(R) =Ij(R)−

∫

∣
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ψ̂illum(q)

∣
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∣

2

Dj(q)dq ,

≈
∑

g

Ô(g)e2πig·Rφ̂j(g) + Ô∗(g)e−2πig·Rφ̂∗j (g) ,

=2
∑

g

Re
{

Ô(g)e2πig·Rφ̂j(g)
}

, (7)

where the quantities bj(R) are constructed from the syn-
thesized images and the illumination. The illumination is
assumed known, but if it is inadequately characterized at
the outset the appendix suggests a scheme whereby cor-
rections can be made to a reasonable guess of the illumi-
nation function. Equation (7) is a set of linear equations

for the unknown Fourier coefficients Ô(g), a fact which is
made more manifest by the following matrix formulation:
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This is a set of linear equations of the form Ax = b.
For each of the nD detectors there is a “row” of two sub-
blocks written in terms of real and imaginary parts in
the coefficient matrix A. Within the sub-blocks of A the
columns vary with the reciprocal space coordinate g and
the rows by the probe position R. Each sub-block has
dimension nR, the number of probe positions, by ng, the

number of Fourier coefficients Ôg, which is half the di-
mension of the vector of unknowns x (since we are solving

for the real and imaginary parts of Ôg separately). The
vector b contains the different bj(R) from Eq. (7) and
has dimension nD×nR. To have an overdetermined set of
equations we require nD×nR > 2ng which is ensured by
sampling above the Nyquist frequency where nR > 2ng.
It may be possible to overdetermine the problem with
sampling less than the Nyquist frequency by using a suf-
ficient number of detectors.
The details of the probe, which define the matrix on

the left hand side of Eq. (8), via Eq. (6), are important
in determining contrast. The probe aperture should con-
tain the significant Fourier coefficients pertinent to the
structure of the object we are seeking to retrieve. How-
ever, making the probe much narrower than the features
of interest is likely to reduce the sensitivity of the tech-
nique. In the extreme case of a delta function probe,
perfect phase objects give no contrast, irrespective of the
segmentation of the detector.
Equation (8) can be solved using conventional ap-

proaches such as QR or LU decomposition or singular
value decomposition (SVD).23 However, there can be
both memory and speed advantages in using the conju-
gate gradients least squares (CGLS) algorithm. Further-
more, the CGLS algorithm has some favourable proper-
ties for regularization in the presence of noise. The CGLS
method proceeds by constructing a series of vectors (in a
so-called Krylov subspace) which are dependent on both
the matrix A and the experimental data b. As a result,
the Krylov subspace is able to adapt itself optimally to
the input data, i.e. it is more accommodating of noise.24

The CGLS algorithm23 begins with the following ini-
tialization,

x0 = 0,d0 = b, r0 = ATb,p0 = r0, t0 = Ap0 . (9)

Here the initial guess is x0 = 0, but any starting guess
produces the same least-squares solution within a num-
ber which is equal to the number of unknowns (2× ng).
For each iteration i, the intermediate quantities that are
constructed in the CGLS algorithm are defined by

αi = ‖ri−1‖
2/‖ti−1‖

2, xi = xi−1 + αipi−1 ,

di = di−1 − αiti−1, ri = ATdi ,

βi = ‖ri‖
2/‖ri−1‖

2, pi = ri + βipi−1 and

ti = Api . (10)

Numerically x might be solved by explicit construction
of A and b and by following the algorithm in Eq. (10).
Alternatively, in this case, due to the structure of A,

explicit construction of A can be avoided by casting the
operationsApi and ATdi in terms of Fourier transforms,
as done in Ref. 1. We note that multiplication by the
matrix A maps a complex object, O(g) in Eq. (8), to
a set of real images for each detector j. Multiplication
by the matrix’s transpose AT maps a set of real images
back to a complex object. Consider the multiplication of

pi,j , the portion of vector pi corresponding to φ̂j(r), by
the relevant sub-block of matrix A in Eq. (10). From
Eq. (7) the multiplication by this sub-block of matrix A

may be expressed as

Api,j =
∑

g

p̂i,j(g)e
2πig·Rφ̂j(g) + p̂∗

i,j(g)e
−2πig·Rφ̂∗j (g) ,

= 2Re{Fg→R[p̂ij(g)φ̂i(g)]} (11)

With reference to Eq. (8), the transpose operation of A
may be written as

ATdi,j =
∑

j





2Re
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}

−2Im
{

e2πig·Rφ̂j(g)
}





[

di,j(R)
]

,

=

[

Re{ri(g)}
Im{ri(g)}

]

. (12)

The rows of the matrix in Eq. (12) now vary with respect
to g and the columns now vary with R. Expanding the
matrix multiplication and noting that di,j(R) is a purely
real quantity the matrix multiplication may be expressed
explicitly as

ri(g) =2
∑

j,R

Re
[

e2πig·Rφ̂j(g)di,j(R)
]

− iIm
[

e2πig·Rφ̂j(g)di,j(R)
]

,

= 2
∑

j

φ̂∗j (g)
∑

R

e−2πig·Rdi,j(R) ,

= 2
∑

j

φ̂∗j (g)d̂i,j(g) . (13)

As is well-known, consideration of Eq. (5) shows that
the maximum resolution in the image Ij(R) is twice the
magnitude of the maximum reciprocal space frequency,
gmax, allowed by the probe forming aperture. Then both

φ̂j(g) and bj(R) will be band pass limited by 2gmax.

The object function Ô(g) will be calculated from bj(R)
through successive convolution and correlation opera-

tions with φ̂j(g) according to Eq. (11) and Eq. (13)
which will preserve this band pass limit. The maximum
reciprocal space resolution of the retrieved transmission
function will also be 2gmax.
Before applying the algorithm to experimental data,

let us demonstrate how this algorithm works using sim-
ulated data which is free of noise. An arbitrarily chosen
complex transmission function T (r) is shown in Fig. 1(a)
in terms of its intensity (above) and phase (below). We
scale this to have typical values representative of elastic



4

7510 Cor

(e)

(b)(a)

(c)

(d)

FIG. 1. Reconstruction of a model transmission function us-
ing a focused coherent probe for the imaging conditions de-
scribed in the text. (a) Model transmission function intensity
(top) and phase (bottom). (b) Segments in the bright field
which are used to construct the images in (c). (d) The band
pass limited transmission function intensity (top) and phase
(bottom) which can be compared with the retrieved transmis-
sion function in (e) after 10 and 75 CGLS iterations and also
with the latter as corrected for neglect of the nonlinear term
in Eq. (5).

scattering potentials in condensed matter, and assume
we are imaging using a 200 keV probe with a conver-
gence semi-angle of 15 mrad, a field of view of 53.5 Å
and a defocus of 100 Å. Data from pixel detectors of-
fer much flexibility in the detector configurations used
to synthesize segmented detector STEM images. The
averaging implied in integrating over larger detector seg-
ments reduces noise effects, but leads to fewer constrain-
ing images. Using smaller segments leads to more con-
straints, but increases the dimensions of the A matrix
and makes the data more sensitive to noise. A detailed
analysis of how to optimise the contrast transfer function
in the presence of noise has been provided by Yang et

al.
8 For the present test, however, we choose to partition

the bright field disk into three wedges as shown in Fig.
1(b), the minimal number of segments needed such that
the contrast transfer functions adequately sample the 2D
object.19 (Increasing the number of segments does not
substantially alter the results.)

Using the procedure described above, the model trans-
mission function was retrieved from the images in Fig.
1(c). There is a band pass limit imposed by the probe
forming aperture and we can thus only expect to retrieve
the band pass limited transmission function shown in Fig.
1(d). After only 10 iterations, the basic phase structure

is evident in the reconstruction. By 75 iterations conver-
gence has been reached in the phase. However, the in-
tensity contains a larger admixture of phase information
than what is present in the band pass limited transmis-
sion function in Fig. 1(d). This is a consequence of the
reconstruction algorithm neglecting the nonlinear terms
in Eq. (5). We seek to correct for this following the

procedure described in Ref. 22. The values of Ô(g) ob-
tained from the reconstruction can be used to estimate
the nonlinear term in Eq. (5). This nonlinear term is
then subtracted from the the right hand side of Eq. (8),
and a second inversion performed. The results, labeled
“Cor” in Fig. 1(e), show a much improved reconstruc-
tion of the amplitude as well as the phase. The nonlinear
correction procedure can be further iterated, though our
experience is that this is not generally convergent. Note,
however, that the specimen information of most inter-
est in electron microscopy is primarily contained in the
phase, which was successfully reconstructed here without
need of the nonlinear correction procedure.

With the inversion cast in terms of fast Fourier trans-
forms the results shown are obtained in seconds using less
than a MB of memory (working on a 128×128 pixel grid).
The fidelity of the retrieved transmission function with
respect to the band pass limited transmission function
in Fig. 1(d) is shown as a function of iteration number
in Fig. 2 [without any correction for the neglect of the
nonlinear term in Eq. (5)]. A cross indicates the fidelity
of the object after correction for the nonlinear term that
is displayed in Fig. 1(e). The fidelity is defined as

ε =

∑

‖T − T ′‖2
∑

‖T ′‖2
, (14)

where T ′ is the comparison transmission function and T
is the retrieved transmission function. For the perfect
data of our test case, Fig. 2 shows the fidelity to con-
tinually decrease with increasing iteration number. As
we shall see later, in the presence of noise the CGLS
algorithm is “semi-convergent”, meaning that beyond a
certain number of iterations the fidelity metric increases
again.24

Lastly, in this section, we consider a practical issue
which will be pertinent when applying SDP to experi-
mental datasets – namely spatial incoherence due to a
finite source size. The effect of spatial incoherence may
be represented by the convolution of a STEM image with
a Gaussian distribution, G(R),

I ′j(R) =G(R) ∗ Ij(R) ,

=

∫

G(R −R′)Ij(R
′)dR′ . (15)

This may be integrated into the theoretical framework by
multiplying the matrix sub-blocks on the left and right
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FIG. 2. Fidelity as a function of CGLS iteration number for
the results shown in Fig. 1(e). The “×” indicates the fidelity
after correction for neglect of the nonlinear term.

hand sides of Eq. (10) by the Toeplitz matrix,

G =











G(0) G(R1) . . . G(Rn)
G(−R1) G(0) . . . G(Rn −R1)

...
...

. . .
...

G(−Rn) G(R1 −Rn) . . . G(0)











,

(16)

where the set {0,R1,R2, . . . ,Rn} represents the probe
positions in the image. We assume here periodic bound-
ary conditions on the real space grid on which G(R) is
evaluated, that is G(−Ri) = G(Rn −Ri). Rather than
inverting the matrix A, which describes the case of per-
fect spatial coherence, we instead invert the matrix prod-
uct GA. Then we are able to correct for spatial incoher-
ence to the extent allowed by the information transfer.

This is implemented by replacing φ̂j(g) in Eqs. (12) and

(13) with Ĝ(g)φ̂j(g).

III. RETRIEVAL OF THE TRANSMISSION

FUNCTION OF A MoS2 MONO-LAYER

A 4D dataset was taken on a thin MoS2 sample (one
mono-layer) down the [001] axis using a 300 keV STEM
probe with 17.1 mrad convergence angle at the National
Centre for Electron Microscopy (NCEM) in Berkeley,
California. Diffraction patterns were recorded for each
probe position using a Gatan K2-IS direct detection cam-
era. A finite source size of HWHM of approximately 0.45
Å was deduced by comparing a HAADF image that was
recorded simultaneous with the 4D dataset with forward
simulations using the freely available µSTEM software
package.25 Similarly, a probe defocus of -20 Å (underfo-
cus) was deduced by comparing images synthesized us-
ing different detector configurations from the 4D dataset
with equivalent images simulated with the µSTEM pack-
age for a range of different defocus values. Since the

FIG. 3. Results for the MoS2 sample. (a) Detector segments
in the bright field used to synthesize the images in (b). (c)
Retrieved phase of the transmission function. The method to
deconvolve the blur associated with spatial incoherence (es-
timated to be 0.45 Å) described in Sec. II was employed to
achieve the phase map shown in (c). The plot shown adjacent
compares a line scan taken from the phase map (Exp 1), as
indicted by the (red) arrow, with a line scan from a result
(not shown) where spatial incoherence is not taken into ac-
count (Exp 2) and a transmission function simulated using
µSTEM with one sulfur atom per unit cell (Sim). Both Exp
1 and Sim were convolved with the Gaussian associated with
the spatial incoherence for comparison with Exp 2. (d) Plot of
the fidelity, where the reference transmission function is Sim,
and the L-curve as a function of CGLS iteration. (e) Plot of
the phase of the transmission function calculated in µSTEM
assuming both 1 (Sim 1S) and 2 (Sim 2S) sulfur atoms per
primitive cell to that retrieved in (c) convolved with a Gaus-
sian associated with the spatial incoherence for the sake of
comparison.
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MoS2 sample is a true mono-layer, the multiplicative ap-
proximation holds – since all scattering occurs within one
spatial plane – and the weak phase approximation also
holds – since electrons focused to a point on the specimen
will scatter off at most one molybdenum atom or two sul-
fur atoms. Therefore, we expect the linear approximation
of Eq. (7) to hold.

The bright field disk was segmented as shown in Fig.
3(a) and images synthesized using each of these detec-
tors. To correct for scan drift and distortion in the syn-
thesized images, the simultaneous ADF image was used
to identify atomic peaks at the vertices of unit cells. The
deviation of these peaks from their known positions was
used to determine the transformation that was then ap-
plied to the synthesized images. Since this specimen was
known to be periodic we have averaged over the unit
cells in the scan to obtain the results shown in Fig. 3
(b). The reconstruction algorithm works equally well on
the raw data. However, increasing the signal-to-noise
and decreasing scan distortion via the averaging proce-
dure facilitates comparison with the simulated transmis-
sion function. Faster acquisition speed, either via fixed-
configuration segmented detectors or the next generation
of 4D pixel detector technology, would reduce distortions
and render this correction procedure unnecessary. The
phase of the transmission function reconstructed from
the segmented detector images is shown in Fig. 3(c)
with a schematic of the MoS2 unit cell overlaid on the 2D
map. Importantly, both molybdenum and sulfur atoms
are clearly visible in the retrieved phase. Whilst molyb-
denum atoms are clearly visible in each of the segmented
detector images of Fig. 3(b), the sulfur atoms are barely
evident. This is consistent with the prediction that phase
imaging is sensitive to light atoms.

A plot of the fidelity, using the calculated transmission
function displayed in Fig. 3(c) as the comparison trans-
mission function, is shown in Fig. 3(d) as a function
of CGLS iteration. The best match with the calculated
transmission function (best fidelity) is achieved after 6
CGLS iterations. For subsequent iterations the quality
of the retrieval declines and this is consistent with the
semi-convergence of the CGLS algorithm observed for
cases where the b vectors contain errors due to noisy
experimental measurements. The corresponding L-curve
is also displayed in Fig. 3(d). The 6th CGLS iteration is
found just before the subsequent iterations cause rapid
growth of ||x||2. Fig. 3(d) shows how selecting a number
of CGLS iterations just prior this point of inflection on
the L-curve can be used as a criterion to select an appro-
priate number of CGLS iterations. Such an approach is
necessary because in practice a reliable comparison trans-
mission function T ′ will not be available from which to
evaluate the fidelity in Eq. (14).

A line-scan taken along the (red) arrow, over columns
of molybdenum and sulfur atoms, is shown on the right
hand side of Fig. 3(c). This plot further shows the phase
predicted from a MoS2 mono-layer with the lower plane
of sulfur atoms removed, assuming the independent atom

approximation. The excellent agreement shown in Fig.
3(c) for the phase of the transmission function that is
retrieved from the experimental data and the simulated
transmission function may only be had if the a plane of
sulfur atoms is assumed to be missing. This is demon-
strated clearly in Fig. 3(e) which compares the experi-
mental result with the phase of simulated transmission
functions assuming two sulfur atoms per primitive cell
(2S) and one sulfur atom per primitive cell (1S). This
apparent deviation from the expected stoichiometry of
the manufactured MoS2 sample is attributed to damage
caused by the electron irradiation. This interpretation is
reinforced in two ways.
First, an estimate can be made of the probability of the

electron beam knocking a sulfur atom out of the mono-
layer specimen. Komsa et al.26 predict the cross-section
for sputter of a sulfur atom from MoS2 for 300 keV in-
cident electrons to be about 150 barns. With four sulfur
atoms per 1.7 × 10−19 m2 projected unit cell, the prob-
ability of an electron incident upon one unit cell sput-
tering a sulfur atom is 3.4 × 10−7. The 48 pA beam
current and 2.5 ms dwell time mean that 7.5× 105 elec-
trons are incident upon the sample per probe position.
As a crude estimate, this would lead us to expect that on
average 0.26 sulfur atoms were sputtered per probe po-
sition. The probe is not uniformly distributed across the
unit cell – for most probe positions the irradiation of the
sulfur locations will be small – but this crude estimate
nevertheless makes it likely that significant sputtering of
sulfur atoms is taking place due to electron irradiation.
Second, compare the rapid ADF scan shown in Fig.

4(a) obtained prior to recording the 4D dataset with the
ADF scan shown in Fig. 4(b) obtained during the 4D
data acquisition at a much slower scan rate (specifically,
a dwell time of 2.5 ms per probe position). While the
latter shows some drift distortion due to the slower scan,
it also shows clear evidence of localized beam damage.
Closer inspection reveals that the intensity at the sulfur
sites is, by and large, smaller in Fig. 4(b) than Fig. 4(a).
Note, though, that there is much site-to-site variation,
suggesting that in some case both sulfur atoms might be
sputtered, in others one, while in others both may remain
intact. It should be reiterated that the reconstruction in
Fig. 3(c) was based on repeat unit (Fourier) averaged
data: that the reconstructed phases is consistent with
one rather than two sulfur atoms at the sulfur site should
be understood to be an average, and that this average is
close to unity is coincidental rather than exact.

IV. RETRIEVAL OF THE TRANSMISSION

FUNCTION OF A SrTiO3 CRYSTAL

A 4D dataset was taken on a SrTiO3 sample down the
[001] axis using a 300 keV STEM probe with 21.3 mrad
convergence angle at NCEM, using the same apparatus
as in Sec. III.
Position averaged convergent beam electron diffraction
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(a)

(b)

Molybdenum Sulfur

FIG. 4. (a) Before and (b) during ADF images for the MoS2

sample. Arrows in images (a) and (b) indicate sites of sulfur
atoms. For the uppermost arrow the sulfur intensity is not
appreciably reduced between images (a) and (b) whilst for the
bottommost arrow the change in intensity indicates sputtering
of one or both sulfur atoms.

(PACBED) patterns were synthesized for two scan areas
of interest by adding the recorded diffraction patterns
together. Comparison with simulated PACBED patterns
enables the thickness of a specimen to be determined
with an accuracy better than 10%.27 PACBED patterns
were simulated using µSTEM25 and the L2 norm used
to decide which thickness provided the best fit to the
experimental data. The thickness of the specimen was
found to be 35.1 Å for the first region and 78.1 Å for the
second region. This suggests that this dataset will be a
good test of the validity of the approximation, made in
Sec. II, that the scattering from the specimen can be
represented by a transmission function in a single plane.
(In the context of differential phase contrast imaging,
the breakdown of this approximation with thickness has
recently been systematically explored through simulation
by Close et al.,12 though the manner in which it breaks
down need not be the same when analyzed via SDP.)

A finite source size of HWHM of 0.5 Å was deduced
from an independently taken HAADF image. As with
the dataset in Sec. III, a defocus of -30 Å for the 35.1
Å thick sample and a defocus of -20 Å for the 78.1 Å
thick sample was deduced by comparing the data with
the results of µSTEM simulations for different defocus
values and detector geometries.

The results for the 35.1 Å thick sample are shown in
Fig. 5(b-d) and the results for the 78.1 Å thick sample
are shown in Fig. 5(e-g). The bright field disk was seg-
mented as shown in Fig. 5(a). Images synthesized using
each detector are shown in (b) and (e). The phase of
the transmission function obtained from these images is
shown in (c) and (f) with a schematic of the SrTiO3 unit
cell overlaid. A line-scan taken along the (red) arrow,
over columns of strontium and oxygen atoms, is shown
on the right hand side. This line-scan also shows the

(d)

Position (Å)

Exp Sim
Cor

P
h
a

se
 (

ra
d

)

Strontium
Titanium

(a)

(b)

(c)

Oxygen

Position (Å)

P
h
a

se
 (

ra
d

)
Strontium
Titanium

(b)

(g)(f)

Oxygen

Exp Sim
Cor

(e)

FIG. 5. Results for 35.1 Å and 78.1 Å thick SrTiO3 samples.
(a) Detector segments in the bright field used to synthesize
the images in (b) for the 35.1 Å thick SrTiO3 sample. (c) Re-
trieved phase with a line-scan as indicated by the (red) arrow.
Sim is the simulated projected transmission function, Exp is
the retrieved transmission function and Cor is the retrieved
transmission function corrected for neglect of the non-linear
term. The method to deconvolve the blur associated with
spatial incoherence (estimated to be 0.5 Å) described in Sec.
II was employed to achieve the phase map shown in (c). The
results in (c) are convolved with this blur for the purposes
of comparing to the simulated transmission function in the
line-scan. (d) A bright-field image synthesized from the same
dataset using a detector with the same radius as the bright
field disk. The results displayed in (e-g) are the same as those
displayed in (b-d) except that they are for the 78.1 Å thick
sample.

phase for the projected transmission function of the rel-
evant structure for comparison, as calculated using the
µSTEM25 software package. Finally for comparison, sub-
figures (d) and (g) show for both thicknesses of SrTiO3

the bright field STEM images that were synthesized from
the same experimental data (a schematic of the SrTiO3

unit cell is also overlaid on these images). In both cases
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oxygen atoms are not visible in the bright field image but
are clearly visible in the retrieved phases shown in Fig.
5(c) and (f).
Unlike the line-scan for Fig. 3(c), the case of the MoS2

mono-layer, line-scans in Fig. 5 comparing the retrieved
phase of SDP with a calculated transmission function
do not show reasonable quantitative agreement. This is
partly due to the fact that both the weak phase approx-
imation [see Eq. (5)] and the multiplicative approxima-
tion [see Eq. (2)] are no longer valid for either case. Note
that agreement between the simulated and experimen-
tally retrieved transmission functions is generally better
in Fig. 5(c), which is a thinner sample and so represents
a less serious breach of both approximations, than it is
in Fig. 5(f). Regardless, the SDP phase map is a useful
tool that very clearly identifies the presence of oxygen –
an element which is not easily inferred from any of the
raw segmented detector images or the bright field images
in Fig. 5(d) and (g).

V. ACCOUNTING FOR PROPAGATION

THROUGH THE SPECIMEN – THE M-PLANE

INVERSION

The multiplicative approximation that was employed
to write Eq. (2) is correct in the limit of an infinitesi-
mally thin imaging specimen. We note that factorization
into a probe and object function for realistic thicknesses
has been discussed in Ref. 28. A focused coherent elec-
tron probe will evolve rapidly for propagation through
thick specimens and it is therefore necessary to investi-
gate methods to better account for thickness in the re-
trieval.
Scattering by a thick object may be modeled using

the multislice method29,30 by projecting the scattering
potential into a finite number of slices, Ti(r), and prop-
agating the resulting elastically scattered wave between
these slices. A weak phase (linear) approximation at each
slice may also be assumed.31–34 Scattering through a sin-
gle slice is calculated by integration with the function,

Si(r, r
′) =P (r′ − r)Ti(r

′) ,

=P (r′ − r)[1 +Oi(r
′)] , (17)

which is the multiplication by the transmission function
followed by a convolution with the propagator P (r). Scat-
tering through M layers of the sample would entail inte-
gration of ψillum(r) with Si(r, r

′) M times,

ψexit(r) =

∫

· · ·

∫

SM (r, rM−1) . . . S2(r2, r1)S1(r1, r
′)

×ψillum(r
′)drM−1 . . . dr1dr

′ . (18)

Within the paraxial approximation the propagator
may be written in reciprocal space as,

P̂ (g) = exp
[

−πig2λ∆z
]

, (19)

FIG. 6. Application of the M -plane inversion to the SrTiO3

dataset. For the 35.1 Å thick sample the retrieved amplitude
(a) without using the M -plane inversion and (b) using the M -
plane inversion. A line scan comparing the retrieved intensity
to the intensity of the simulated transmission function for a
layer of SrTiO3 with a thickness of one unit cell (3.905 Å)
is shown in (c). The results without M -plane inversion are
labeled “Exp” and the results with M -plane inversion “Cor”.
(d)-(f) are the same as (a)-(c) except that they are for the 78.1
Å case. The intensity of the simulated transmission function
for a layer of SrTiO3 with a thickness of one unit cell is shown
in (g) for comparison. The effect of the M -plane inversion on
the retrieved phase is displayed in (h) for the 35.1 Å thick
sample of SrTiO3 and in (i) for the 78.1 Å thick sample of
SrTiO3.

where λ is the wavelength of the electron wave function
and ∆z is the slice thickness. With a linear approxima-
tion for the object functions, Eq. (18) may be expanded
to give

ψexit(r,R) =ψillum(r,R) ∗ PM (r) +

M−1
∑

i=0

{[ψillum(r,R)

∗ P (i)(r)]Oi(r)} ∗ P
(M−i)(r) . (20)

In Fourier space this is

ψ̂exit(q,R) =ψ̂illum(q)e
−2πig·RP̂M (q)

+

M−1
∑

i=0

∑

g

ψ̂illum(q − g)e−2πi(q−g)·R

× P̂ (i)(q− g)Ôi(g)P̂
(M−i)(q) . (21)

For a sample that is periodic in the z direction, i.e.
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Oi(r) = O(r), and if φ̂(g) is redefined,

φ̂j(g) =

M−1
∑

i=0

∫

ψ̂illum(q− g)P̂ (i)(q− g)

P̂ ∗(i)(q)ψ̂∗

illum(q)Dj(q)dq , (22)

then the equation solved to retrieve O(g) will be exactly
the same as Eq. (8) in Sec. II. This method is dubbed the
M -plane inversion since the retrieval assumes scattering
of the probe by M distinct planes.
To test this modification to the algorithm theM -plane

inversion is applied to the SrTiO3 datasets explored in
Sec. IV. The number M of planes used in the retrieval
was set equal to the thickness in terms of SrTiO3 unit
cells for each specimen. It was found that applying the
M -plane inversion generally improved agreement with
the simulated transmission function for both the intensity
and phase of the retrieved transmission function. The in-
tensity results are displayed in Fig. 6 for the 35.1 Å sam-
ple in (a) without theM -plane inversion and (b) with the
M -plane inversion. A linescan which compares both re-
sults with the simulated transmission function intensity
for a layer of SrTiO3 with a thickness of one unit cell is
shown in Fig. 6(c). Fig. 6(d)-(f) shows the same results
as (a)-(c) except for the 78.1 Å thick SrTiO3 sample. Fig.
6(g) shows the transmission function intensity for a layer
of SrTiO3 with a thickness of one unit cell for comparison
with the experimental retrievals. It can be seen that the
M -plane inversion improves qualitative and quantitative
agreement between the experimental retrieval and the
simulated transmission function intensity for both thick-
nesses of SrTiO3 but the improvement is most marked
for the 78.1 Å thick SrTiO3 sample. The phase retrieved
for the transmission function of a SrTiO3 sample with a
thickness of a single unit cell is shown in Fig. 6(h) for the
35.1 Å sample and Fig. 6(i) for the 78.1 Å sample using
both the approach described in Sec. II (“Exp”) and the
M -plane inversion (“Cor”) and this is compared with the
simulated transmission function (“Sim”). In both cases
there is a very small change in the phase associated with
the oxygen column and a larger increase in the phase as-
sociated with the strontium column such that the overall
agreement with the simulated transmission function is
improved.
A different approach to that described in this para-

graph would be to parameterize the channeling with a
limited number of structural parameters, such as in the
S-state model.28

VI. CONCLUSION

We have demonstrated a method for phase retrieval
based on diffraction patterns acquired as a function of
probe position in STEM using fast readout detectors
(so-called 4D datasets). The approach allows the com-
plex transmission function of a thin specimen to be

retrieved from images synthesized from the diffraction
patterns taken as a function of probe position for as-
sumed, virtual segmented detectors in the diffraction
plane. This approach provides maximum flexibility in
the choice defining the images. However, the approach
introduced here can also be applied to data obtained
from “fixed-configuration” segmented detectors, where
each segment is a bucket detector rather than being de-
fined in terms of a number of pixels on a fast-readout
2D electron camera.10,14,20,21 In cases where the full 4D
dataset is recorded, the relative simplicity of SDP – a
small number of Fourier transform operations is applied
to a reduced 2D projection of the dataset – can comple-
ment other ptychographic approaches such as ePIE3 and
Wigner distribution deconvolution.35

We have demonstrated SDP using model data and
three experimental 4D datasets. The first application
was to a MoS2 mono-layer. The retrieved phase of the
transmission function was in good agreement with that
simulated from within an isolated atom approximation,
assuming that damage under the beam had led to approx-
imately 50% of the sulfur atoms being removed from the
specimen. The second application was to two separate re-
gions of a SrTiO3 sample, with different thicknesses. As
expected, better agreement was obtained between theory
and experiment for the thinner region. Importantly, sul-
fur and oxygen atoms, which have relatively low atomic
numbers and are therefore difficult to see in conventional
STEM images, were easily visible in the retrieved phase
maps.

For all of the simulated and experimental cases, the
complex transmission function can be retrieved using the
signal from a small number of segmented detectors. Only
two fast Fourier transforms need to be performed per
CGLS iteration and this means that real time phase re-
trieval is feasible.
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Appendix: Simultaneous reconstruction of the

illumination function

We have assumed that the probing illumination is well
known. If refinement of our knowledge of the probe is
required then we can proceed as follows. We consider the
scattering of the illumination ψillum(r) = ψ(r) + ψδ(r).
The quantity ψ(r) is our initial guess of the probe wave
function and ψδ(r) is a correction. A first estimate of
T (r) is retrieved using ψ(r) and is used to calculate ψδ(r).
For scattering of ψillum(r) by T (r) the exit surface wave
is

ψexit(r,R) = T (r)[ψ(r−R) + ψδ(r−R)] . (A.1)

In Fourier space we have

ψ̂exit(q,R) =[ψ̂(q)e−2πiq·R] ∗ T̂ (q)

+ [ψ̂δ(q)e−2πiq·R] ∗ T̂ (q) . (A.2)

For brevity we introduce the reference wave

ψ̂ref(q,R) = [ψ̂(q)e−2πiq·R] ∗ T̂ (q) . (A.3)

The convolution with ψ̂δ(q) in Eq. (A.1) is written ex-
plicitly as

ψ̂exit(q,R) = ψ̂ref(q,R) +
∑

g

ψ̂δ(g)e−2πig·RT̂ (q− g) .

(A.4)

We now define,

χ̂j(g,R) =

∫

ψ̂∗

ref(q,R)T̂ (q− g)Dj(q)dq

=[ψ̂∗

ref(g,R)Dj(g)] ∗ T̂ (−g) . (A.5)

We now follow the working in Sec. II. If Eq. (A.4) is
substituted into Eq. (4) and the final nonlinear term is
ignored the quantity bj(R) may be written

bj(R) =Ij(R)−

∫

|ψ̂ref(q,R)|2Dj(q)dq

=2
∑

g

Re[ψ̂δ(g)e−2πig·Rχ̂j(g,R)] . (A.6)

If it is assumed that an estimate of the transmission func-
tion, T̂ (q), is known then we can solve for ψ̂δ(g). To
illustrate how this proceeds Eq. (A.6) is expressed as a
matrix equation,











[

2Re[e−2πig·Rχ̂1(g,R)]
] [

−2Im[e−2πig·Rχ̂1(g,R)]
]

[

2Re[e−2πig·Rχ̂2(g,R)]
] [

−2Im[e−2πig·Rχ̂2(g,R)]
]

...
...

[

2Re[e−2πig·Rχ̂n(g,R)]
] [

−2Im[e−2πig·Rχ̂3(g,R)]
]











[

Re[ψ̂δ(g)]

Im[ψ̂δ(g)]

]

=











[

b1(R)
]

[

b2(R)
]

...
[

bn(R)
]











. (A.7)

Once again this is of the form Ax = b. However, we are
prevented from an efficient implementation of the CGLS

method using Fourier transforms, similar to that Sec. II,
by the dependence of χ̂(g,R) on both g and R.
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