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Abstract

An absolute stress-density path for shocklessly compressed copper is obtained

to over 450 GPa. A magnetic pressure drive is temporally tailored to gener-

ate shockless compression waves through over 2.5 mm thick copper samples.

The free–surface velocity data is analyzed for Lagrangian sound velocity us-

ing the iterative Lagrangian analysis (ILA) technique, which relies upon the

method of characteristics. We correct for the effects of strength and plastic

work heating to determine an isentropic compression path. By assuming a

Debye model for the heat capacity, we can further correct the isentrope to

an isotherm. Our determination of the isentrope and isotherm of copper

represents a highly accurate pressure standard for copper to over 450 GPa.
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1. Introduction1

The high–pressure and low–temperature equation of state is critical to a2

number of natural science and engineering studies. For example, the equa-3

tion of state of hydrogen is the dominant source of uncertainty in our un-4

derstanding of the structure and composition of Jupiter’s core [1], which5

has significant implications for our understanding of the formation of plan-6

ets in our solar system. The abundance of extrasolar planets in the 1-107

Earth mass range is generating significant interest in the the high–pressure8

properties of planetary minerals due to their effect on the structure and9

thermal evolution of super Earths and correspondingly potential planetary10

habitability. Central to these low–temperature high–pressure studies is the11

existence of a standard method of determining the stress state being stud-12

ied. Attempts to develop accurate isothermal absolute-pressure standards13

using Brillouin scattering and x-ray diffraction have been limited to below14

60 GPa [2], and therefore at higher pressures shock Hugoniot data are often15

used to constrain the low temperature isotherm due to the exact nature of16

the Rankine-Hugoniot relations, [e.g. 3, 4]. However, these shock-wave re-17

duced isotherms (SWRI) require significant corrections from the measured18

Hugoniot states as the shock pressure and shock heating increases. Further-19

more, the models for the thermal pressure are oftentimes not constrained by20

experimental data but determined from theoretical calculations, inhibiting21

rigorous error propagation. With the advancement of single stage diamond22

anvil cells reaching pressures of 375 GPa[5] and the advent of two-stage di-23

amond anvil cells capable of reaching pressures greater than 770 GPa[6, 7],24

there is a tremendous need for accurate pressure calibrants and rigorous error25
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analysis in the range accessible to this novel diamond anvil cell technology.26

Copper is commonly used as a pressure standard within the high–pressure27

community due to the availability of accurate shock wave data[3, 8, 9, 4].28

However, as discussed in Ref. [4], the shock wave reduced isotherm for copper29

is only valid to 200 GPa. The high–pressure behavior of copper is also critical30

to the capabilities at the Sandia Z machine[10], where copper is used as an31

electrode material in shockless compression experiments and as a flyer plate32

for ultra-high velocity plate impact experiments [11]. Copper is also starting33

to be utilized as an ablator material for shockless compression experiments34

at the National Ignition Facility [e.g. 12], and validation or improvement35

of the available equation of state models is critical to the design of future36

experiments.37

Shockless compression experiments have previously been used to deter-38

mine the high–pressure and low–temperature response of aluminum [13], di-39

amond [14, 12], and tantalum [15, 16]. In this work, we determine the stress-40

density response of shocklessly compressed copper. Copper is an excellent41

material to study by shockless compression experiments as it is expected to42

have no high–pressure phase transitions and low shear strength.43

Using the Z pulsed-power accelerator at Sandia National Laboratories[10],44

magnetically driven uniaxial compression waves were generated in copper45

samples that ranged in thickness from ∼ 2.4 to 3 mm thick. The Z acceler-46

ator produces a temporally shaped current pulse, of up to 20 MA and 120047

ns in duration, that flows along the inner surface of the copper electrodes,48

generating a time-varying magnetic field. The interaction of the magnetic49

field and the current flux produces a time varying force on the inner surface50
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of the copper electrodes, see schematic diagram in Figure 1. In the stripline51

geometry, the samples on opposing sides of the short circuit loop undergo52

identical loading conditions, making this an excellent platform for shockless53

compression experiments.54

2. Experimental Method55

Two separate experiments, each with four sample pairs, were performed56

on copper: experiments Z2689 and Z2791. The OFE-OK grade copper elec-57

trodes were 99.998% pure with an average grain size of 80 µm and a measured58

HRF hardness of 43. The electrodes were 43.5×11×8 mm and slightly ta-59

pered at the base. Rectangular copper steps were diamond milled into the60

solid electrode to generate samples of the desired thickness, between ∼2.461

and 3 mm thick and 9.0×7.7 mm in lateral dimension. The thickness of each62

copper sample was measured to an accuracy of ∼3 µm.63

The multi-point quadrature velocity interferometer system for any re-64

flector (VISAR) operated at 532 nm. Three separate VISAR sensitivities65

were used on each sample, with fringe sensitivities that ranged from 257 to66

483 m s−1 fringe−1. After correcting the absolute timing of each VISAR67

channel for the etalon delay, individual free–surface velocities were averaged68

to reduce random uncertainties in the timing of individual VISAR channels,69

∼0.2 ns, and the random phase uncertainty in the fringe count, ∼5% of the70

fringe sensitivity. Two-dimensional magneto-hydrodynamic (MHD) simula-71

tions were performed to confirm that the 200 µm bare optical VISAR fibers72

were probing regions only undergoing uniaxial strain.73

The averaged free–surface velocities from each sample pair for experiment74
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Z2689 and Z2791 are presented in Figures 2 and 3 respectively. One can see75

that in shot Z2689, Figure 2, shockless compression data were obtained on76

all of the pairs up to a free–surface velocity of ∼ 3.5 km s−1. In shot Z2791,77

Figure 3, the current pulse shape was modified in order to avoid a shock78

forming in the middle of the pulse shape and shockless compression data79

were obtained on two of the pairs, N01-S01 and N02-S02, up to the peak80

free–surface velocity.81

Due to the high electrical conductivity of copper, diffusion of the magnetic82

field through the copper samples is relatively slow. However, on shot Z2791,83

the pair N01-S01 shows that the peak velocity on N01 increases beyond the84

peak velocity of S01. This deviation is caused by the reverberation of the85

free–surface release wave with the magnetic diffusion front, which limits the86

range of analyzable data [17].87

3. Results88

3.1. Stress-Density Analysis During Shockless Compression Experiments89

In an ideal shockless compression experiment, one would measure the in-90

material particle velocity as a function of time at multiple positions within91

the compressed sample [18]. From the in-material particle velocity profiles,92

the Lagrangian sound speed is determined by the difference in measurement93

positions divided by the time it takes for a perturbation to travel from one94

position to the next, where a perturbation could be defined as an incremental95

increase in velocity. In this optimal shockless compression experiment, one96

could determine the Lagrangian sound speed, CL, as a nearly continuous97

function of the in-material particle velocity, up, where CL = CE
ρ
ρ0

and CE is98
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the Eulerian sound velocity.99

While in-material particle velocity profiles can be measured on insulators100

using techniques such as magnetic particle velocity gauges [19], for opaque101

metals one cannot measure a true in-material particle velocity and velocity102

profile measurements are limited to interfaces or free–surface velocity mea-103

surements. The iterative Lagrangian analysis (ILA) method [20, 21] was104

developed to correct for the effect of the free surface reflection, or map the105

free–surface velocity profiles to in-material velocity profiles.106

One way to consider the ILA method is that there is a unique solution107

to the isentropic equation of state for the problem where samples of two108

different thickness are shocklessly compressed by the same pressure boundary109

condition and the free surface velocity profiles are the problem constraints.110

The numerical techniques optimize over the equation of state and the pressure111

boundary condition until a solution matching the free surface velocity profiles112

is achieved. A more detailed description of the ILA method can be found in113

Ref. [15].114

Recent work has shown that small shocks have a weak effect on the de-115

termination of the stress-density response using the ILA technique[22]; how-116

ever, the data presented here are of sufficiently high accuracy to be sensitive117

to the small systematic error induced by analyzing data with small shocks.118

Therefore, only data without shocks are included in the analysis of the free–119

surface velocity measurements; this includes all the pairs from shot Z2689 up120

to 3.5 km s−1. The data from Z2791 N01-S01 are included up to 8 km s−1
121

and Z2791 N02-S02 up to 8.8 km s−1. The sound speeds and residuals from122

the weighted mean for each sample pair are presented as a function of free–123
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surface velocity in Figure 4.124

The uncertainty in CL is determined from the uncertainty in the slope of125

a fit to the Lagrangian thickness versus time for each particle velocity,126

(

δCL

CL

)2

= 2

(

δX

X2 −X1

)2

+2

(

δt

t2 − t1

)2

+

[

δup,1
(t2 − t1) dup,1/dt

]2

+

[

δup,2
(t2 − t1) dup,2/dt

]2

,

(1)

where δX= 3 µm is the measured thickness uncertainty for each step height127

X2 and X1, δt=0.12 ns is the absolute timing uncertainty of the free–surface128

velocity profile, t2 and t1 are the in-material times where the steps reach the129

particle velocity of interest, δup,i ≈0.01 km s−1 is the velocity uncertainty130

for profile i and dup,i/dt is the acceleration at the time of interest. Conse-131

quently, the uncertainty in CL is ∼ 1% for each sample pair. The weighted132

average Lagrangian sound velocity is determined as a function of free–surface133

velocity, weighted by 1/δC2

L. The uncertainty in this weighted average CL is134

conservatively determined as the maximum of either the mean uncertainty135

in CL, as determined by equation 1 or the standard deviation in CL at each136

free–surface velocity.137

The weighted average CL can then be directly integrated to obtain the138

longitudinal stress, σx, and density, ρ, as a function of particle velocity, up,139

σx = ρ0

∫ up

0

CLdup (2)

and140

ρ = ρ0

[

1−

(
∫ up

0

dup
CL

)]

−1

. (3)

The uncertainties are propagated through the integrals to obtain uncertain-141

ties in longitudinal stress and density,142

δσx = ρ0

∫ up

0

δCLdup, (4)
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and143

δρ =
ρ2

ρ0

∫ up

0

δCLdup
C2

L

(5)

where the uncertainties are propagated linearly rather than in quadrature144

because the errors appear to be correlated rather than random.145

A more complete description of the ILA technique can be found in Ref.146

[15]. Ref. [15] also describes some of the issues facing the assumption of147

reversibility and isentropic flow inherent within the ILA technique, partic-148

ularly for high–strength materials that exhibit significant time dependence.149

As copper is expected to have relatively low strength and to stay within the150

thermally activated regime over the stress range and strain rates considered151

in this study [23], the effects of rate dependence or irreversible flow should be152

negligible for copper. To test this assumption, we performed forward simula-153

tions of the ramp compression experiments using the ARES hydrocode [24].154

These simulations utilized the SESAME 3325 equation of state for copper [25]155

and two different strength models: the standard time-independent Steinberg-156

Guinan strength model [26] and the Preston-Tonks-Wallace (PTW) strength157

model [23], which includes strain-rate dependence on the yield surface. We158

find that the ILA of simulated data generated with the PTW strength model159

disagrees with the simulated in-material stress density response by a small160

systematic difference of 0.3% in stress over the entire density range of in-161

terest, which is well below the experimental errors and thermo-mechanical162

corrections described here. The ILA of simulated data generated with the163

standard Steinberg-Guinan strength model is in nearly perfect agreement164

with the true in-material stress density response over the entire range of inter-165

est. Consequently, the ILA technique accurately determines the in-material166
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stress–density response and any systematic contributions due to the ILA167

technique itself are small and can be ignored for copper.168

3.2. Correcting Shockless Compression Data for Strength Effects169

Here we present a method for determining the principal isentrope and 298170

K isotherm from the stress–density states that are determined from a shock-171

less compression experiment. A correction is necessary because the stress–172

density path obtained by the ILA technique does not represent an isentrope173

due to strength and plastic work heating. For relatively low strength materi-174

als like copper, we find these corrections from the shockless compression data175

are small, ∼ 2 − 3%, but because of the high accuracy of the experimental176

measurements, 2− 4%, these corrections are now significant.177

At this point forward we are considering an analysis of the thermody-178

namic states at constant density, consequently, the uncertainty in density is179

accounted for in the uncertainty in the stress state,180

δσx(ρ)
2 = δσx(up)

2 +

(

∂σx
∂ρ

δρ(up)

)2

. (6)

Under uniaxial strain conditions, the longitudinal stress, σx, deviates from181

the mean hydrostatic stress, Phyd, by an amount sx, referred to as the stress182

deviator,183

σx = Phyd + sx. (7)

The work done by the stress deviators against plastic deformation of the ma-184

terial increases the entropy and temperature of the system. This source of185

dissipation is referred to as plastic work heating. For uniaxial strain condi-186

tions, and assuming a von Mises yield criterion [27], the differential amount187
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of plastic work heating, dWp can be determined by the following equation,188

derived in Ref. [28],189

dWp =
1

ρ0

2

3
Y [dǫx − (dY/2µ)] (8)

where Y is the yield strength, and µ is the shear modulus. For conditions of190

uniaxial strain, the natural strain, ǫx, is determined by the relative compres-191

sion of the system according to192

ǫx = ln (ρ/ρ0) . (9)

Assuming the material behaves quasi-harmonically, the plastic work heat-193

ing causes the mean hydrostatic pressure to deviate from an isentrope by194

Phyd − Ps = γρ

∫ ǫx

0

βdWp, (10)

where γ is the Grüneisen parameter, Ps is the pressure on the principal isen-195

trope, and β is the Taylor-Quinney factor, which describes the fraction of196

plastic work that partitions into thermal energy of the system [29] . Ref. [29]197

found that for copper, β=0.9. More recently, Ref. [30] found that for poly-198

crystalline copper the Taylor-Quinney factor increases linearly with strain-199

rate from 0.5 to 0.7 over a strain rate of 3000 to 8000 s−1. The experiments200

considered here are at significantly higher strain rate, 106 s−1, and a linear201

extrapolation of the results by Ref. [30] would suggest β = 1 at our high202

strain rates. In this work, we assume a β of 0.9; however, because the strong203

of copper is low, the amount of plastic work is also small and the choice of204

beta is relatively insensitive as to decrease β by 50% only changes the final205

pressure on the isentrope by 0.3%.206
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Here we have made the simplifying assumption that only the fraction of207

plastic work that goes into thermal energy contributes to the pressure of the208

system. The other (1−β) of plastic work contributes to the potential energy209

of the lattice by creating defects, which in keeping with the assumption of210

deriving Equation 8, is volume conserving.211

3.2.1. Thermal Pressure Model212

To determine the correction from the mean hydrostatic stress along the213

shockless compression path, Phyd to the isentrope, Ps, we require a model for214

the Grüneisen parameter. The Grüneisen parameter is also useful for calcu-215

lating the temperature change along an isentrope. Fortunately, the shockless216

compression data obtained here can be combined with porous Hugoniot data217

[31, 32] and solid Hugoniot data [33, 34, 35] to constrain a Mie-Grüneisen218

equation of state for copper over the entire density range of interest. The219

Grüneisen parameter is determined at the density of each shock data point220

by the ratio of the difference in pressure to the difference in internal energy221

between the shock state, PH and EH , and the pressure and internal energy222

along an isentrope at the same density, PS and ES, respectively,223

γ =
(PH − PS)

ρ (EH −ES)
, (11)

where the internal energy on the Hugoniot is given by the Rankine-Hugoniot224

equations [36] and the internal energy along the isentrope is determined by225

integrating the first law of thermodynamics at constant entropy.226

The data are fit to the Al‘tshuler form of the density dependence of the227

Grüneisen parameter, which assumes the Grüneisen parameter is tempera-228
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ture independent,229

γ = γ
∞
+ (γ0 − γ

∞
)

(

ρ0
ρ

)η

, (12)

where γ
∞

is the infinite compression limit, η describes the density depen-230

dence, and γ0 is the ambient pressure value, which we have fixed at the231

standard temperature and pressure value of 2.0(0.1) [37]. In Figure 5, we232

present the Grüneisen parameters obtained using Equation 11 for a range of233

initially porous and solid density Hugoniot data on copper. Also presented in234

Figure 5 is our weighted nonlinear least squares fit to Equation 12, where we235

find γinf = 1.41 and η = 13.6. As mentioned earlier, here we have made the236

assumption that the Grüneisen parameter is temperature independent. We237

find that this is a valid assumption based upon the agreement between the238

results of this technique and that of a local technique relating the sound speed239

along the Hugoniot to the slope of the Hugoniot, where Ref. [38] measured240

a γ of 1.55(15) at a density range of ∼14–15 g cm−3 on the Hugoniot.241

The standard deviation in the residuals and the average absolute residual242

between the experimental Grüneisen parameter and the best fit model are243

0.68 and 0.38, respectively, which we believe to be overestimates of the uncer-244

tainty in the model as these metrics are dominated by a few data points with245

large scatter at low compressions. However, for the purposes of uncertainty246

propagation, we assume a ∼ 25% uncertainty in the Grüneisen parameter,247

which propagates to a 0.2% uncertainty in the pressure on the isentrope.248

Unlike for shock-wave reduced isotherms, where the stress at high pressures249

becomes extremely sensitive to the thermal pressure model, here we find the250

pressure along the isentrope to be insensitive to the thermal model because251

of the relatively small amount of heating in the shockless compression exper-252
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iment.253

3.2.2. High Pressure Strength254

The high–pressure yield strength of copper has been measured on the255

shock Hugoniot by Ref. [39, 40] and the data are presented in Figure 6. The256

high–pressure yield strength of copper has also been calculated using molec-257

ular dynamics simulations by Ref. [41], which is in excellent agreement with258

the experimental data. We use a scaled Steinberg-Guinan model to fit the259

experimental yield strength of copper [26], where we scale the ambient pres-260

sure yield strength parameter, Y0 and find the best fit to the yield strength261

data for 1.82Y0. In this case, the yield strength measurements on the copper262

Hugoniot achieve a similar strain-rate to the shockless compression experi-263

ments. Consequently, we feel it is adequate to use a strain rate independent264

strength model, calibrated by gas gun data, to correct for the yield strength265

in the shockless compression experiments.266

In order to correct for the yield strength over the entire range of pres-267

sures accessed by the shockless compression experiments, a significant ex-268

trapolation of the scaled Steinberg-Guinan is required. To account for this269

extrapolation in the correction at high pressures and at low temperatures270

along the shockless compression path, we assume a 50% uncertainty to the271

yield strength at high pressures. As copper is not expected to undergo a272

phase transition, and the experimental data and theoretical predictions are273

well represented by this empirical strength model, it is likely that we are274

overestimating the uncertainty in the yield strength. However, even such a275

large estimate in the uncertainty of the yield strength at high pressure only276

corresponds to an ∼1% uncertainty in the pressure on the isentrope. For277
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comparison, the magnitude of the individual corrections from the shockless278

compression data to the 298 K isotherm are presented in Figure 7.279

3.2.3. Hydrostatic Hugoniot States280

Although it is not often discussed in the literature, Hugoniot measure-281

ments should not be compared directly to equation of state models. One282

must correct Hugoniot data, at least within the solid phases, for the devia-283

toric stress and the thermal pressure generated due to plastic work heating.284

The plastic work heating along the Hugoniot can be calculated based upon285

the waste heat generated along the Rayleigh line by the longitudinal devia-286

toric stress, sx [42],287

Wp,Hug = sx

(

1

ρ0
−

1

ρ

)

. (13)

The hydrostatic Hugoniot for a material is then given by288

PHug = σx,Hug − sx − γρβWp,Hug, (14)

where σx,Hug is the longitudinal stress at the Hugoniot state. For copper,289

this correction is equivalent to reducing the shock wave velocity in the solid290

by ∼ 0.025 km s−1 or ∼0.5%.291

In order to correct all the porous Hugoniot and solid Hugoniot for strength292

effects, we must first determine the critical shock pressures for incipient melt-293

ing of copper along the porous and solid density Hugoniots. We fit a Simon294

equation to the high–pressure melt curve of Ref. [43],295

Tmelt = TRef

(

P − PRef

a
+ 1

)

1/c

(15)

and find Tref=1351 K, a=16.304 GPa, and c=1.8331. To calculate the shock296

temperatures along the principal and porous Hugoniots, we use our data297
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along the isentrope as a reference curve and we assume copper behaves as a298

quasi-harmonic Debye solid [44], with θ0=343.5 K. We find that the principal299

Hugoniot intersects the high–pressure melt curve at 224 GPa, which is in good300

agreement with the measured critical shock pressure for incipient melting of301

232 GPa [38]. This agreement is surprisingly good, given that we did not302

apply any anharmonic or electronic contributions to the heat capacity. We303

then assume that copper loses all strength for shock temperatures above the304

melt curve. These corrected hydrostatic Hugoniot points are used in the305

calculation of the Grüneisen parameters and the stress along the principal306

isentrope.307

3.2.4. Summary of the Method for Reducing Shockless Compression Data to308

an Isentrope309

At this point, all aspects of correcting the shockless compression data to310

the principal isentrope have been described in Sections 3.2.1, 3.2.2, and 3.2.3.311

However, the procedure is slightly complicated as some of the terms in the312

correction require information about the isentrope. Therefore, we use an iter-313

ative procedure to self-consistently solve for the pressure along the isentrope.314

This iterative procedure is as follows:315

1. Determine a model for the density dependence of the Grüneisen param-316

eter using available Hugoniot data and assuming our shockless compres-317

sion data represent an isentrope, see Section 3.2.1.318

2. Fit the strength data on the Hugoniot of copper to the Steinberg-319

Guinan model by scaling Y0. Model the strength along the ramp320

compression path based upon the fit to Hugoniot strength data and321
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corrected for the lower temperature along the shockless compression322

path, see Section 3.2.2.323

3. Calculate the plastic work heating and the thermal pressure from plas-324

tic work heating along the shockless compression path using Equa-325

tions 8 and 10.326

4. Determine the pressure along the isentrope by subtracting the devia-327

toric stress and the thermal pressure from the shockless compression328

path, Equations 7 and 10.329

5. Calculate the plastic work heating at each Hugoniot point below the330

melt curve using Equation 13.331

6. Determine the pressure along the hydrostatic Hugoniot states by sub-332

tracting the deviatoric stress and thermal pressure, Equation 14.333

7. Repeat steps 1-6 with the revised model for the isentrope, hydrostatic334

Hugoniot points, and Grüneisen parameter.335

The corrections for the strength, and thermal pressure due to plastic work336

heating are only a few percent, Figure 7, and consequently, this procedure337

converges in only two iterations.338

To determine the pressure along the 298 K isotherm, one must subtract339

the thermal pressure from the isentrope at the elevated temperature along340

the isentrope, Ts,341

P298 = Ps − γρ [Eth. (Ts)− Eth. (298))] , (16)

where Eth. is the thermal energy at density ρ determined from the Debye342

integral [44] and the temperature along the isentrope is determined from343

integrating the thermodynamic derivative, γ = ∂lnTs

∂lnρ
.344
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As in Ref. [4], a higher order Vinet equation of state was then fit to the345

isentrope, isotherm, and shockless compression path. The fitting form is346

P (X) = 3K0

[(

1−X1/3
)

/X2/3
]

exp
[

η
(

1−X1/3
)

+ β
(

1−X1/3
)2

+ ψ
(

1−X1/3
)3
]

(17)

where X = ρ0/ρ, and the best fit parameters K0, η, β, and ψ are described347

in Table 1. The maximum deviation between the fits and the data is 3 GPa348

at the peak stress state and significantly better at lower pressures; however,349

the fits are to be used as interpolating functions and are not necessarily valid350

in extrapolation.351

In Figures 8 and 9, we present the 298 K isotherm determined from this352

study. One can see that the isotherm agrees within 2% of that of Ref. [9]353

up to 65 GPa, where the thermal pressure on the Hugoniot is starting to no354

longer be negligible. Beyond 65 GPa, our 298 K isotherm is slightly stiffer355

than the results of Ref. [9] and [4], by about 6 GPa at 150 GPa, which is356

just outside our 1-σ uncertainty of 5 GPa. It is interesting to see that careful357

fitting of high–accuracy but low–pressure thermodynamic data on copper by358

Holzapfel [45], with a smooth extrapolation to the Fermi gas limit yields a359

nearly perfect agreement with the isotherm determined in this work.360

3.3. Ruby R1-Line Calibration361

The most common pressure standard within the high pressure diamond362

anvil cell community is the ruby R-line luminescence [46, 47]. Utilizing the363

quasi-hydrostatic compression data on copper and ruby presented in Ref.364

[9], we are able to re-calibrate the high–pressure ruby scale using our 298 K365

isotherm for copper. Here we assume the standard power law expansion for366
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the hydrostatic pressure as a function of the shift in the Ruby R1 line [3],367

P =
A

B

[

(

λ

λ0

)B

− 1

]

(18)

where we find the best fit parameters A=1915.1 GPa and B=10.603.368

The main source of uncertainty in this ruby calibration is the uncertainty369

in the copper isotherm, ∼3% in stress at 150 GPa, see Table 1 for upper and370

lower bounds. Ref. [48] notes the possibility of a 1-2% systematic uncertainty371

in the stress due to potential non-hydrostatic stresses in the medium used in372

the diamond anvil cell (DAC) experiments of Ref. [9], which also contributes373

to the uncertainty in our ruby calibration. Other sources of uncertainty,374

such as the determination of the R1 line position and the density of copper375

as determined by XRD in the DAC, are small [9].376

In Figure 11, we present a comparison of our ruby calibration with the377

ruby calibrations of Mao et al. [46], Aleksandrov et al. [49], Holzapfel et378

al. [50], Dewaele et al. [9], and Chijioke et al. [48]. The comparisons are379

plotted to 200 GPa to show how each of the fits extrapolates, however, the380

data upon which these fits are based only extend to pressures as high as 150381

GPa [9]. One can see that the ruby calibration fits from Refs. [48, 51, 45]382

are well within the error bars of this work and that the ruby calibration from383

Refs. [49, 9] are 1-σ away from this revised fit.384

4. Discussion385

The dominant contribution to the uncertainty in the isotherm of copper386

is the random experimental errors associated with the uncertainty in the387

step thicknesses, the uncertainty in the relative timing of the free–surface388
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velocity profiles, and the uncertainty in the measured free–surface velocity389

of the shockless compression experiments. These separate uncertainties all390

contribute relatively equally to the total random experimental uncertainty in391

stress at a given density, ranging from∼ 2% at 50 GPa to ∼ 4.5% at 450 GPa.392

The other major sources of uncertainty are the high–pressure strength of393

copper, ∼ 1%, the Taylor-Quinney factor, ∼ 0.3%, and the Grüneisen model,394

∼ 0.2%.395

These uncertainty contributions are not, however, unique to shockless396

compression experiments. For shock experiments below the melt tempera-397

ture, there will be a deviatoric stress contribution to the longitudinal stress398

and also thermal pressure generated from plastic work heating. The amount399

of plastic work that goes into thermal energy, and therefore thermal pressure,400

is still parameterized by the Taylor-Quinney factor. For shock temperatures401

above the melt curve, there is significant uncertainty in the latent heat of402

melting at constant volume.403

Where this thermo-mechanical reduction technique for obtaining isotherms404

from shockless compression data becomes much more accurate than shock405

wave reduced isotherms is at pressures well above the bulk modulus, where406

several tens of percent corrections are required from the pressure at the Hugo-407

niot state to the pressure on the isotherm. As an example, at a density of408

17 g cm−1, the pressure on the 298 K isotherm is ∼450 GPa, whereas the409

pressure on the principal Hugoniot is ∼780 GPa, consequently, a thermal410

pressure correction of 330 GPa is required for the shock wave data. For an411

assumed 10-25% uncertainty in the Grüneisen parameter and a 5% uncer-412

tainty in the Hugoniot pressure [34], the total uncertainty in the SWRI would413
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range between 50 and 100 GPa, or two to four times the uncertainty in the414

isotherm obtained from reducing shockless compression data. A compari-415

son of the required corrections for the SWRI-technique and the technique416

described here are presented in Figure 10. The specific cross-over pressure417

where isotherms reduced from shockless compression experiments becomes418

more accurate than SWRI’s depends most sensitively on the uncertainty in419

the Grüneisen parameter. If one assumes a 10% uncertainty in the Grüneisen420

parameter, the SWRI will be more accurate up to 250 GPa on the isotherm;421

however, if one assumes a 25% uncertainty in the Grüneisen parameter then422

the SWRI will be more accurate only up to ∼70 GPa.423

Furthermore, as two-stage diamond anvil cells become more prevalent in424

the static high–pressure community, the materials used as pressure standards425

will reach densities where the SWRI technique is no longer viable. Shock-426

less or multi-shock techniques will be the only means of obtaining accurate427

pressure calibrations in the terapascal regime.428

5. Conclusions429

We have obtained shockless compression data on copper to over 450 GPa430

using a magnetically applied pressure drive at the Sandia Z Machine. The431

free–surface velocity data were analyzed using the ILA technique to obtain432

the Lagrangian sound speed as a function of particle velocity. The Lagrangian433

sound speed was then integrated to determine an absolute stress-density path.434

The available data on the high–pressure strength of copper was combined to435

constrain a modified Steinberg-Guinan strength model. A Mie-Grüneisen436

Debye thermal model was then iteratively fit to the shockless compression437
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data and the available principal and porous Hugoniot data. The shockless438

compression stress-density data were corrected for the deviatoric stress and439

thermal pressure due to plastic work heating to generate a nearly absolute440

principal isentrope. The principal isentrope was then corrected using our best441

fit Mie-Grüneisen Debye model to obtain the room temperature isotherm442

of copper to 450 GPa with an uncertainty of less than 5% at the highest443

pressures obtained. A high precision fit to the shockless compression data,444

the isentrope, the isotherm, and a new ruby calibration are presented for445

immediate use for the purposes of pressure calibration within a diamond446

anvil cell.447
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Multiple VISARs

with different sensitivies

Cathode
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B

Figure 1: Schematic stripline geometry used for the shockless compression experiment on

copper. The current density (J) flows on the inner surface of the anode to the cathode,

creating a magnetic field vector (B), which interacts with the current density and acceler-

ates the anode and cathode away from each other. VISAR probes measure the free surface

velocity of the copper anode and cathode and are shown in green.
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Figure 2: Average free–surface velocity profiles for each of the four pairs of samples on

shot Z2689. Shown within each subplot are the thickness measurements for both of the

samples.
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Figure 3: Average free–surface velocity profiles for each of the four pairs of samples on

shot Z2791. Shown within each subplot are the thickness measurements for both of the

samples.
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Figure 4: Measured Lagrangian sound velocity as a function of the free–surface velocity for

two pairs on shot Z2791 (solid lines) and 4 pairs on shot Z2689 (dashed lines). Below are

plotted the residuals for each of the sound velocity measurements relative to the weighted

average sound velocity of all the traces.
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Figure 5: Grüneisen parameter determined from comparison of principal and porous Hugo-

niot data with measured isentrope. Also included is our best fit.
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Figure 6: High–pressure yield strength data determined along the principal Hugoniot.

Also presented is a scaled fit to the Steinberg-Guinan strength model along the Hugoniot

(red) and isentrope (blue), where the strength along the Hugoniot drops to zero at 224

GPa due to shock melting.
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pression data to the 298 K isotherm of copper. Plotted are the corrections for the deviatoric
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correction from the principal isentrope to the 298 K isotherm (blue solid line).

28



9 10 11 12 13 14 15 16 17
0

100

200

300

400

500

600

700

800

Density [g/cc]

S
tr

es
s 

[G
P

a]

 

 
this work−298 K isotherm
Holzapfel, 2010, isotherm
Dewaele et al. 2004, isotherm
Mitchell and Nellis, 1981, Hugoniot
Altshuler et al. 1960, Hugoniot
Nellis et al 1988, Hugoniot

Figure 8: Equation of state data for copper on the principal Hugoniot and the 298 K

isotherm. Shown are Hugoniot data from Mitchell and Nellis [34], Altshuler et al. [33],

and Nellis et al. [35]; and isotherms from Dewaele et al. [9], Holzapfel [45], and this work.
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Figure 9: Equation of state data for copper up to 120 GPa. Shown are Hugoniot data

from Mitchell and Nellis [34], and isotherms from Dewaele et al. [9], Chijioke et al. [4],

Holzapfel [45] and this work.
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Figure 11: Comparison of fits to the pressure dependence of the ruby R1 line by Mao et al.

[46], Aleksandrov et al. [49], Dewaele et al. [9], Holzapfel [51], Chijioke et al. [48], Dewaele

et al. [52], Holzapfel [45], and this work. Also shown as black dashed lines are the 1-σ

uncertainty bounds on the ruby R1 line calibration of this work. Above 150 GPa, these

fits are no longer constrained by data and are presented as extrapolations for comparison

purposes.
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Table 1: Best fit parameters for the third order Vinet fit, Eqn. 17, to the shockless com-

pression data, the principal isentrope, and the 298 K isotherm starting at an initial density

of 8.939 g cm−3. For the purposes of error propagation, also shown are fits to the upper

and lower 1-σ uncertainty bounds on each fit.

Thermodynamic K0 η β ψ

Path [GPa]

Shockless Expt. 143.39 6.109 2.1348 4.567

Shockless: Upper 151.52 4.9902 12.858 -23.575

Shockless: Lower 135.4 7.2838 -9.1176 34.055

Principal Isentrope 136.35 7.1173 -7.1245 30.58

Isentrope: Upper 144.01 6.0987 2.5918 5.2783

Isentrope: Lower 128.8 8.1918 -17.365 57.209

298 K Isotherm 127.61 8.151 -14.452 49.034

Isotherm: Upper 134.69 7.1621 -5.0546 24.726

Isotherm: Lower 120.62 9.1941 -24.357 74.617
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