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Motivated by recent free-standing graphene experiments, we show how thermal fluctuations affect
the mechanical properties of microscopically thin solid ribbons, which can be many thousand times
wider than their atomic thickness. A renormalization group analysis of flexural phonons reveals
that elongated ribbons behave like highly anisotropic polymers, where the two dimensional nature
of ribbons is reflected in non-trivial power law scalings of the persistence length and effective bending
and twisting rigidities with the ribbon width. With a coarse-grained transfer matrix approach, we
then examine the nonlinear response of thermalized ribbons to pulling and bending forces over a
wide spectrum of temperatures, forces and ribbon lengths.
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I. INTRODUCTION

Over the last few decades the effects of thermal fluc-
tuations acting on one dimensional polymers and two
dimensional solid membranes have been studied exten-
sively. It is well known that polymers remain straight
only at short distances, while on distances larger than
persistence length `p polymers perform a self-avoiding
random walk.1,2 On the other hand, because of strong
thermal renormalizations triggered by flexural phonons,3

arbitrarily large two dimensional membranes remain flat
at low temperatures, with strongly scale-dependent en-
hanced bending rigidities and reduced in-plane elastic
constants.4,5

A related scaling law for the membrane structure func-
tion of a solution of spectrin skeletons of red blood cells
was checked in an ensemble-averaged sense via elegant X-
ray and light scattering experiments.6 However, recent
advances in growing and isolating free-standing layers
of crystalline materials such as graphene, BN, WS2 or
MoS2

7 (not adsorbed onto a bulk substrate or stretched
across a supporting structure) hold great promise for ex-
ploring how flexural modes affect the mechanical proper-
ties of individual sheet polymers that are atomically thin.
Graphene also offers the opportunity to study how soft
flexural phonons affect the electron transport under var-
ious conditions,8,9 and there is a prediction of a buckling
instability in hole-doped graphene.10 Experiments car-
ried out in a vacuum (as opposed to membranes embed-
ded in a liquid solvent) can be extended to very low tem-
peratures, where the quantization of in-plane and flexural
phonon modes becomes important.11,12

Here, inspired by recent work by Blees et al.,13 we con-
sider thermal fluctuations of microscopically thin solid
ribbons of width W and length L � W . We show that
sufficiently long ribbons behave like highly anisotropic
one dimensional polymers, with the two-dimensional na-
ture reflected in very large renormalizations of bending
and twisting rigidities at the scale of the ribbon width
W , and with unusual nonlinear force-extension curves.

It is natural to coarse-grain and construct a ribbon with
L/W � 1 square membrane blocks of size W×W . Below
we make this idea precise, by integrating out all fluctua-
tions on scales smaller than W . The work of Blees et al.13

focuses on the deflections and thermal fluctuations of
free-standing graphene in the cantilever mode, and found
a renormalized bending rigidity for 10µm wide, atom-
ically thin ribbons at room temperature ∼4000 times
larger than its microscopic value at T = 0, presum-
ably due to a combination of thermal fluctuations and
quenched in ripples.14 More generally, these experiments
on free-standing graphene allow single molecule explo-
rations of highly anisotropic polymers, which can be
many thousand times wider then their atomic thickness.
Here, we focus on the effects of thermal fluctuations. Al-
though these ribbons were much shorter than the persis-
tence length `p, which is on the order of meters (see be-
low), it is possible to reach the semi-flexible regime (rib-
bon length L & `p) for narrower graphene nano-ribbons.
With narrower free-standing ribbons in mind, we use a
coarse-grained transfer matrix approach to analyze the
response of thermalized ribbons to pulling and bending
for the wide spectrum of temperatures, forces and ribbon
lengths.

II. THERMALIZED MEMBRANES

To properly define the relevant quantities, we first dis-
cuss thermal fluctuations of large two dimensional mem-
branes under an external edge tension σij . The free en-
ergy cost associated with small deformations of mem-
branes around the reference flat state is15

E =

∫
dxdy

1

2

[
λu2

ii + 2µu2
ij + κK2

ii − 2κG det(Kij)
]

−
∮
dr m̂iσijuj , (1)

where first two terms describe the cost of stretching,
shearing and compressing, and the next two the cost of
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membrane bending. The boundary integral measures the
work done by external tension (m̂i describes the unit nor-
mal vector in the X-Y plane to the membrane boundary),
and summation over all indices i, j ∈ {x, y} is implied.
The strain tensors

uij = (∂iuj + ∂jui)/2 + (∂if)(∂jf)/2,

Kij = ∂i∂jf, (2)

describe deformations from the preferred flat metric and
zero curvature respectively; we kept only the lowest
orders in terms of the in-plane phonon deformations
ui(x, y) and out-of-plane deformations f(x, y).15

The effects of thermal fluctuations are reflected in cor-
relation functions obtained from functional integrals,4,5

Guiuj (r2 − r1) =
1

Z

∫
D[ui, f ]ui(r2)uj(r1)e−E/kBT ,

Gff (r2 − r1) =
1

Z

∫
D[ui, f ] f(r2)f(r1)e−E/kBT , (3)

where T is temperature, Z =
∫
D[ui, f ]e−E/kBT is the

partition function and r = (x, y). In the absence of
external tension (σij ≡ 0), it is known that non-linear
couplings of strain tensor uij through the out-of-plane
flexural phonon deformations f(x, y) [see Eq. (2)] pro-
duce universal power law scalings of correlation functions
G(q) =

∫
(d2r/A) e−iq·rG(r) in the long wavelength limit

Guiuj (q) ≡
kBTP

T
ij (q)

AµR(q)q2
+

kBT
(
δij − PTij (q)

)

A (2µR(q) + λR(q)) q2
∼q−2−ηu ,

Gff (q) ≡ kBT

AκR(q)q4
∼ q−4+η, (4)

where A is membrane area, PTij (q) = δij − qiqj/q
2 is

transverse projection operator, η ≈ 0.823,16–18 and the
exponents ηu + 2η = 2 are connected via Ward identities
associated with rotational invariance.17 Thermal fluctu-
ations become important on scales ` ≡ π/q larger than
thermal length,3,16–19

`th =

√
16π3κ2

3kBTY
, (5)

where Y = 4µ(µ + λ)/(2µ + λ) is the Young’s modulus,
and these correlations can be interpreted as scale depen-
dent renormalized elastic moduli κR(`), κGR(`) ∼ `+η

and λR(`), µR(`) ∼ `−ηu .4,5 Bending rigidities thus di-
verge for large membranes, while in-plane elastic con-
stants become extremely small.

In order to see the role of external tension σij 6= 0,
which will help us understand pulling forces in ribbons, it
is convenient to integrate out the in-plane degrees of free-
dom and study Eeff = −kBT ln

(∫
D[ui] e

−E/kBT
)
, the

effective free energy for out-of-plane deformations,4

Eeff =

∫
dxdy

[
(κ/2)

(
∇2f

)2 − κG det(∂i∂jf)

+σij(∂if)(∂jf) + (Y/8)
(
PTij (∂if)(∂jf)

)2]
,(6)

where the transverse projection operator reads PTij =

δij − ∂i∂j/∇2. In the effective free energy description
above we see that external tension suppresses out-of-
plane fluctuations in f as

Gff (q) ≡ kBT

A (κR(q)q4 + σijqiqj)
, (7)

and that there are long range anharmonic interactions
between transverse tilt deformations of the membrane
normals. The effects of the anharmonic term at a given
scale `∗ ≡ π/q∗ can be obtained by integrating out all
degrees of freedom on smaller scales. Formally this is
done by splitting all fields g(r) ∈ {ui(r), f(r)} into slow
modes g<(r) =

∑
|q|<q∗ e

iq·rg(q) and fast modes g>(r) =∑
|q|>q∗ e

iq·rg(q), which are then integrated out as

E(`∗) = −kBT ln

(∫
D[ui>, f>] e−E/kBT

)
. (8)

The functional integrals following from standard
perturbative renormalization group calculations16,17,20

lead to a free energy with the same form as in
Eq. (1) except that renormalized elastic constants
λR(`∗), µR(`∗), κR(`∗), κGR(`∗) become scale dependent,
while the external tension σij remains intact (see also
Appendix A for details).

External tension becomes relevant on large length
scales, where the σij term in Eq. (7) becomes dominant.
For a small isotropic external tension σij ≡ σδij , or for
a small uniaxial tension in the x-direction σij ≡ σδixδjx,
the tension becomes relevant on scales larger than21

`σ ∼
(

κ

σ`ηth

)1/(2−η)

= `th

(
3kBTY

16π3σκ

)1/(2−η)

, (9)

where exponent η ≈ 0.82 and thermal length scale `th [see
Eq. (5)] have been defined above for membranes without
external tension. As shown in the Appendix A, external
tension then produces the renormalized elastic constants

κR(`)

κ
,
κGR(`)

κG
∼





1, ` < `th
c(`/`th)η, `th < ` < `σ

d
(
`σ
`th

)η
ln
(
`
`σ

)
, `σ < `

,

λR(`)

Y
,
µR(`)

Y
,
YR(`)

Y
∼





b, ` < `th
c(`/`th)−ηu , `th < ` < `σ
d(`σ/`th)−ηu , `σ < `

,

(10)

where we introduced a renormalized Young’s modulus
YR ≡ 4µR(µR + λR)/(2µR + λR). For isotropic external
tension the numerical prefactors b, c and d are reported in
Table I and Fig. 1 displays the scale dependent renormal-
ized elastic constants, where the three regimes presented
in Eq. (10) become evident. The uniaxial external ten-
sion produces similar renormalized elastic constants, but
with slightly different numerical prefactors d, while pref-
actors b and c remain the same (see Appendix A).
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TABLE I: Values of numerical prefactors b, c and d for renor-
malized elastic constants of membranes with Poisson’s ratio
ν under isotropic external tension [see Eq. (10)]. (We use pe-
riodic boundary conditions, so it is not possible to estimate
the renormalized Gaussian bending rigidity κGR using this
technique.)

b c d

κR 1.1 1.3

YR 1 1.0 1.0

λR
ν

1−ν2 -0.36 -0.38

µR
1

2(1+ν)
0.72 0.76

The renormalized elastic constants can also be used to
define the renormalized Poisson’s ratio

νR(`) ≡ λR(`)

2µR(`) + λR(`)
=

{
λ

2µ+λ , ` < `th
− 1

3 , `th < `
. (11)

At short length scales (` < `th) there is no renormaliza-
tion and the Poisson’s ratio is set by the material, while
at large length scales (` > `th) the renormalized Pois-
son’s ratio approaches the universal value of −1/3 (see
Fig. 1). The universal negative Poisson’s ratio was first
predicted by the self consistent scaling analysis18, which
was confirmed by Monte Carlo simulations22 of mem-
branes without external tension (σij ≡ 0).

For sufficiently large external tension σ & kBTY/κ ≡
σ∗,21 which corresponds to `th & `σ, thermal fluctuations
become irrelevant and the renormalized elastic constants
are approximately equal to the microscopic ones. Re-
markably, for graphene membranes with κ = 1.1eV23

and Y = 340N/m24, the thermal length at room tem-
perature is of order several graphene lattice constants,
`th ∼ 2nm!5,13 Therefore thermal fluctuations are impor-
tant for essentially all room temperature graphene exper-
iments, provided only that the external membrane ten-
sion is smaller than σ∗ ∼ 10N/m.

Note that the out of plane correlation function becomes
G−1
ff (q) = A

kBT

[
κR(q) q4 + σijqiqj

]
, where the renormal-

ized bending rigidity is set by Eq. (10). For isotropic
external tensions this result agrees with Roldan et al.,21

but the results for uniaxial external tension appear to
be new. With a uniaxial tension, the long wave length
f(q) fluctuations behave like the layer displacements of a
defect-free two dimensional smectic liquid crystal,25 with
fluctuations along the direction x̂ of the pulling force hav-
ing a reduced amplitude

G−1
ff

(
|q| < `−1

σ

)
∼ A

kBT

[
σq2
x + κqy

4(`σ/`th)η
]
. (12)

The cutoff of renormalized elastic constants due to
external tension is also responsible for the non-linear
stretching of large membranes of size L as we demon-
strate below. In the absence of external tension the pro-
jected membrane area shrinks due to thermal fluctuations
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FIG. 1: (Color online) Renormalization of elastic constants
(a) and the Poisson’s ratio (b) for membranes under small
isotropic tension. We chose parameters suitable for the
graphene membrane at room temperature: κ = 1.1eV, Y =
340N/m, ν = λ/(2µ+ λ) = 0.156, σ = 10−7N/m, `th ≈ 2nm,
`σ/`th ≈ 3× 105.

as

〈
δA

A

〉

0

≈ −1

2

∑

q

q2Gff (q),

〈
δA

A

〉

0

≈ −kBT
4πκ

[
1

η
+ ln

(
`th
a0

)]
, (13)

where a0 is a microscopic cut-off (e.g. the graphene lat-
tice constant), and this reflects a negative coefficient of
thermal expansion

α =
1

A

dA

dT
≈ − kB

4πκ

[
1

η
− 1

2
+ ln

(
`th
a0

)]
. (14)

In the presence of isotropic external tension the change
in projected membrane area is expressed as

〈
δA

A

〉
≈ σ

(µ+ λ)
− 1

2

∑

q

q2Gff (q), (15)
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FIG. 2: (Color online) Response of membranes to isotropic
external tension σ. We chose parameters suitable for the
graphene membrane of size L = 200µm at room tempera-
ture: κ = 1.1eV, Y = 340N/m, ν = λ/(2µ + λ) = 0.156,
`th ≈ 2nm.

where the first term describes stretching of material and
the second term describes shrinking due to thermal fluc-
tuations. For infinitesimally small isotropic external ten-
sion (σ � κR(L)/L2) there is no cutoff for the renormal-
ization of elastic constants (L � `σ) and the projected
area increases as

〈
δA

A

〉
≈
〈
δA

A

〉

0

+ B σ
Y

(
L

`th

)ηu
, (16)

where B ≈ 2.3. Due to the renormalization the effec-
tive bulk modulus (≈ YR(L)) is much smaller then the
material bulk modulus (µ+λ). For larger isotropic exter-
nal tension (σ � κR(L)/L2) the cutoff of renormalized
elastic constants (`σ � L) produces

〈
δA

A

〉
≈
〈
δA

A

〉

0

+C kBT
κ

(
κσ

kBTY

)η/(2−η)

+
σ

(µ+ λ)
,

(17)
where C ≈ 1.2. The second term describes the nonlinear
stretching for small uniform tension σ in the presence of
thermal fluctuations17. The last term is the conventional
linear response result, describing membrane stretching
in the absence of thermal fluctuations. This last term
only dominates for large tensions, σ & kBTY/κ, which
corresponds to `th & `σ. The three different regimes
presented above can be clearly seen in Fig. 2.

Similarly, we can analyze the membrane response to
uniaxial external tension σij = σδixδjx in x direction

〈
δLx
Lx

〉
≈ σ

Y
− 1

2

∑

q

q2
xGff (q),

〈
δLy
Ly

〉
≈ −νσ

Y
− 1

2

∑

q

q2
yGff (q), (18)

where we would again find three different regimes that
correspond to the ordering of length scales `σ, `th and L.

One can also define a renormalized Poisson’s ratio as

νR(σ) ≡ −〈δLx/Lx〉 − 〈δLx/Lx〉0〈δLy/Ly〉 − 〈δLy/Ly〉0
, (19)

where the subscript 0 corresponds to the shrinking
of membrane in the absence of external tension with
〈δLx/Lx〉0 = 〈δLy/Ly〉0 = 〈δA/A〉0 /2 [see Eq. (13)]. We
expect potentially two different universal Poisson’s ratios
for σ � κR(L)/L2 and for κR(L)/L2 � σ � kBTY/κ,
while the material Poisson’s ratio should be recovered
for large tension σ � kBTY/κ. Recent numerical simu-
lations26 suggest that the universal Poisson’s ratio could
be positive, which is in contrast to the universal nega-
tive Poisson’s ratio of −1/3 expected in the absence of
external tension [see Eq. (11)]. This discrepancy is likely
to be related to the breakdown of linear response theory
embodied in formulas such as Eq. (15).

III. THERMALIZED RIBBONS

We now study ribbons of width W and length L that
lie on average in the X-Y plane with long axis in x̂ in
direction and with a pulling force F = Wσxx on the
ribbon end. Once we integrate out all degrees of freedom
on scales smaller than W , the resulting strain tensors
uij and Kij depend only on the x coordinate, and the
renormalized elastic constants in Eq. (10) are evaluated
at ` = W . This results in an effectively one dimensional
free energy model for the ribbon

E=

∫ L

0

dx
W

2

[
λRu

2
ii + 2µRu

2
ij + κRK

2
ii − 2κGR det(Kij)

]

−Fux(L). (20)

If we then continue integrating out degrees of freedom
on scales larger than W in this effective one dimensional
problem (see Appendix A 3), the renormalized bend-
ing moduli κR, κGR and the renormalized shear mod-
ulus µR remain constant. However, the in-plane elas-
tic modulus 2µR + λR, which is related to the defor-
mations ux(x, y) averaged over the y-direction, becomes
smaller and smaller, a sign that the ribbon does not re-
main straight. In this regime the free energy description
of small deformations around the flat state in Eq. (20)
breaks down for small F . However, the results for mem-
branes under tension discussed above can help us under-
stand the subtle effects of thermal fluctuations within
ribbon.

For long ribbons L�W , we exploit a complementary
description that allows for large deformations in three
dimensional space, provided that local strains remain
small. We attach a material frame {e1(s), e2(s), e3(s)} to
the ribbon (see Fig. 3), where s ∈ [0, L] is the coordinate
along the center of the ribbon backbone. The orientation
of material frame relative to the fixed laboratory frame
{x̂, ŷ, ẑ} can be described with Euler angles Θ(s) ≡
{φ(s), θ(s), ψ(s)}.27 The laboratory frame can be rotated
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FIG. 3: (Color online) (a) Ribbon configuration with unde-
formed length L > W can be described with orientations of
material frame {e1, e2, e3} attached to the ribbon relative to
the fixed laboratory frame {x̂, ŷ, ẑ}. (b-c) Initial ribbon ori-
entations for studying the response 〈z〉 to external bending
and pulling forces F .

to the local material frame with three successive three-
dimensional rotations R(Θ) ≡ Rz(−ψ)Ry(−θ)Rz(−φ),
such that28,29

{e1, e2, e3} = {R(Θ)x̂,R(Θ)ŷ,R(Θ)ẑ}. (21)

Ribbon bending and twisting deformations are then
described by the rate of rotation of the material frame
along the ribbon backbone28,30

deα
ds

=
dR

ds
R−1eα ≡ Ω× eα, (22)

with Ω(s) = Ωαeα. Here Ω−1
1 (s) and Ω−1

2 (s) are the radii
of curvatures for bending of ribbon around axes e1(s)
and e2(s), and 2πΩ−1

3 (s) describes the pitch for ribbon
twisting. The free energy cost of a ribbon deformation is
then28–30

E =

∫ L

0

ds
1

2

[
A1Ω2

1 +A2Ω2
2 + CΩ2

3 + ku2
33

]
− F · r(L),

(23)
where A1, A2 are bending rigidities, C is torsional rigid-
ity, k is stiffness, u33 is local strain along the ribbon
tangent and F is the applied force on a ribbon end at
r(L), which can represent either bending or pulling (see
Fig. 3).From comparison with the effective one dimen-
sional ribbon model in Eq. (20) we find

A1 = WκR(W ), C = 2WκGR(W ), k = WYR(W ), (24)

where renormalized constants are defined in Eq. (10).
The second bending rigidity for splay around axis e2(s),
involves ribbon stretching and is much larger; in fact,
A2’s bare value exceeds A1 and C by a large factor of
order YW 2/κ. We expect κG ∼ κ for graphene both mi-
croscopically15 and when thermal renormalizations are
accounted for. By mapping onto classical zero temper-
ature solid mechanics we find A2 ∼ W 3YR(W ).15 For
ribbons whose width is much larger than it’s thickness
we thus have A2 � A1, C and we can set Ω2 ≈ 0. We
also neglect the stretching of ribbon backbone (u33 ≈ 0),
as is appropriate when the pulling force resisting entropic

contraction is not too large.31 The effective one dimen-
sional free energy model presented above corresponds to
the highly asymmetric 1d polymer,28–30 with anomalous
W -dependent elastic parameters.

The response 〈z〉 of the ribbon to external force F in
the ẑ direction can be evaluated from the relation31

〈z〉 = kBT (∂ lnZ/∂F ), (25)

where the partition function reads Z =∫
D[Θ(s)]e−E/kBT . Note that we can study both

pulling and bending forces, where the only difference is
the Euler angles embodied in the initial orientation of
ribbon (see Fig. 3). If we clamp the ribbon at the origin
(s = 0) and apply force on the ribbon end (s = L),
then for pulling the initial condition is Θi = {0, 0, 0}.
To treat bending, we consider a ribbon initially aligned
with the x̂-axis and take Θi = {π/2, π/2, 0}.

To evaluate the partition function Z, it is convenient to
define the unnormalized probability distribution ρ(Θ, s)
of Euler angles Θ at a contour length s along the ribbon
midline as

ρ(Θf , sf ) =

∫ Θ(s=sf )=Θf

Θ(s=0)=Θi

D[Θ(s)]e−E/kBT , (26)

where the path integral above is restricted to s ∈
[0, sf ] and the partition function is given by Z =∫
dΘρ(Θ, L) with the Euler-angle measure

∫
dΘ ≡∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ 2π

0
dψ. The evolution of this probabil-

ity distribution along the ribbon backbone is described
with differential equation28,32

(
∂

∂s
+ Ĥ

)
ρ(Θ, s) = 0, (27)

where the Hamiltonian operator is

Ĥ =
kBT

2

(
Ĵ2

1

A1
+
Ĵ2

2

A2
+
Ĵ2

3

C

)
− F (e3 · ẑ)

kBT
. (28)

Here the {Ĵα} are angular momentum operators around
axes eα, which can be expressed in terms of derivatives
with respect to Euler angles.27,32 As shown in the Ap-
pendix B the evolution of ρ(Θ, s) with s maps the physics
of thermalized ribbons onto the Schrödinger equation of
the asymmetric rotating top in an external gravitational
field.27, where the ribbon backbone coordinate s plays
a role of imaginary time and the bending and twisting
rigidities A1, A2 and C correspond to moments of in-
ertia. The evolution of the material frame orientation
distribution can be evaluated by expanding the initial
condition in eigen-distributions,

ρ(Θ, 0) = δ(Θ−Θi) =
∑

a

Caρa(Θ), (29)

where Ĥρa(Θ) = λaρa(Θ). In this decomposition the
partition function becomes

Z =
∑

a

Cae
−λaL

∫
dΘρa(Θ) (30)
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FIG. 4: (Color online) Pulling and bending deflections 〈z/L〉
of ribbons with bending rigidities A2/A1 → ∞ and twisting
rigidity C/A1 = 1 in response to a fixed small external force
FA1/(kBT )2 = 0.01. The slope of +2 for bending when L�
`p agrees with expectations for stiff cantilevers with, however,
a bending rigidity greatly enhanced by a factor (W/`th)η �
1. The responses to pulling and bending forces agree when
L� `p.

and the response 〈z〉 to an external force can be evaluated
from Z as described above [see Eq. (25)]. To treat ribbons
in both the semiflexible and highly crumpled regimes, we
must find all eigenvalues of the Hamiltonian operator λa
and eigen-distributions ρa(Θ). From quantum mechanics
we know that this is done efficiently in the basis of Wigner
D functions27 Dj

mk(Θ), which have well defined quantum

numbers j, k,m for the total angular momentum Ĵ2 =
Ĵ2

1 + Ĵ2
2 + Ĵ2

3 , the angular momentum around the ribbon

tangent Ĵ3 and for the angular momentum around the
laboratory axis Ĵz. For details see Refs. 28,32 and the
Appendix B.

With the help of this machinery we first studied the
response of ribbons of various lengths to small exter-
nal pulling and bending forces at fixed temperature (see
Fig. 4). Here, since C and A1 have a similar order of mag-
nitude, we take C = A1, for simplicity. Similar to single
molecule polymer physics,33,34 we find two regimes. For
ribbons much shorter than a persistence length29

`p =
2

kBT (A−1
1 +A−1

2 )
≈ 2WκR(W )

kBT
. (31)

ribbons behave like stiff “classical rods”,15 where for
pulling 〈z〉 ≈ L and for the bending (cantilever) mode
〈z〉 = FL3/3A1. Note that A−1

2 is negligible and that
thermal fluctuations on scales less than W lead to a
renormalized bending rigidity A1 [see Eq. (24)], orders of
magnitude larger than for rod-like polymers at room tem-
perature, as found by the Cornell experiments.13 For rib-
bons much longer than the persistence length (L � `p),
pulling and bending become equivalent. In this semi-
flexible regime ribbon forgets its initial orientation af-
ter a persistence length, and for small pulling forces
the response to either bending or pulling is 〈z/L〉 =
2F`p/(3kBT ).2 Eventually, at much larger ribbon lengths
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10 11
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/
L

〉

kBT/κ
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∼ T−1.6

W � �th(T )W � �th(T )

L � �p(T ) L � �p(T )

�z
/L

�

FIG. 5: (Color online) Response of ribbons (neglecting quan-
tum fluctuations) to a small bending force at various temper-
atures for fixed W , L, F , κ and Y . Three regimes appear
for the parameter choices, FL2/3Wκ = 0.01, YW 2/κ = 105,
L/W = 102.

than those considered here, ribbon self-avoidance will be-
come important.31

To highlight the difference between conventional poly-
mers and thermalized ribbons with W � `th, con-
sider the response of ribbons to a small bending force,
FL2/Wκ � 1. Fig. 5 shows results for a wide vari-
ety of temperatures, obtained by inserting temperature
dependences hidden in A1 and `p. We find three dis-
tinct regimes: At low temperatures, where W � `th ∼
κ/
√
kBTY , thermal fluctuations are negligible and rib-

bon behaves like a classic cantilever with bare elastic
parameters, 〈z〉 = FL3/(3κW ). As the temperature in-
creases, the thermal length scale drops and eventually
becomes smaller than the ribbon width (`th � W ). In
this regime the renormalized bending rigidity is increased
due to thermal fluctuations and the cantilever deflection
is smaller 〈z〉 ≈ FL3`ηth/(3κW

1+η) ∼ T−η/2. As tem-
perature increases even further, eventually the persis-
tence length `p becomes smaller than the ribbon length
L. As noted above in this semi-flexible regime the de-
flection now becomes 〈z〉 ≈ 4κFLW 1+η/(3(kBT )2`ηth) ∼
T−(2−η/2) and drops even faster with temperature, as
the ribbon transforms from a cantilever into a random
coil. Note that with rising temperatures the cutoff length
scale `σ associated with ribbon tension [see Eq. (9)] also
increases, but never becomes relevant.

However, ribbons with large pulling forces nevertheless
show a non-trivial response due to the cutoff `σ. For large
pulling forces, F`p � kBT , we also need to include the
stretching of the ribbon backbone, with the result similar
to Ref. 28 (see also Appendix B)

〈 z
L

〉
≈ −kBT

8πκ

[
1

η
+ ln

(
`th
a0

)]
+
F

k
− kBT

4
√
FA1

, (32)

where a0 is a microscopic cut-off (e.g. the graphene lat-
tice constant) and k = WYR(W ) is the effective one
dimensional ribbon stiffness. The first term describes
shrinking due to thermal fluctuations within the ribbon,
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FIG. 6: (Color online) Contributions of backbone stretching
(blue line) and entropic elasticity (dashed black line) to 〈z/L〉,
describing the response to large ribbon pulling forces. We
chose parameters kBT/κ = 1/40 (suitable for graphene at
room temperature), and W/`th = 104 (20 µm width ribbon
at room temperature).

the middle term describes stretching of the ribbon back-
bone, and the final correction corresponds to the entropic
contribution from ribbon fluctuations. As F = σW in-
creases the cutoff length scale `σ [Eq. (9)] drops and we
find two crossovers, first when this length scale crosses
the ribbon width W and finally when it drops below the
thermal length scale `th (see Fig. 6). Especially inter-
esting is the nonlinear intermediate force regime with
`th � `σ � W , where we find that the ribbon back-
bone stretches as F/k ∼ F η/(2−η), which generalizes to
ribbons the nonlinear stretching result [Eq. (17)] to uni-
axial pulling.

IV. CONCLUSIONS

For graphene ribbons, where `th ≈ 2nm at room tem-
perature, the experiments of Blees et al.13 on ribbons
of width W = 10µm, confirmed a renormalized bend-
ing rigidity κR(W )/κ ∼ 4000, consistent with Eq. (10).
The corresponding persistence length is of order of me-
ters. Thus `p � L for graphene ribbons of lengths
L ∼ 10 − 100µm, which should behave like conventional
cantilevers with, however, a strongly renormalized L in-
dependent bending rigidity. Probing the semi-flexible
regime requires narrower ribbons of order 10 nanome-
ters width, so that the persistence length should be in
the experimentally accessible regime of 1-10 microme-
ters. Although the value of the critical pulling ten-
sion, beyond which thermal fluctuations become irrele-
vant, is F/W = σ∗ ∼ 10N/m for graphene, one could
observe interesting behavior for smaller tensions where
`th < `σ < W .

Additional novel behavior can arise for free-standing
sheets at sufficiently high temperatures even when
L ≈ W . To see this, consider the correla-
tion function of the membrane normals n̂(x, y) =

(−∂xf,−∂yf, 1)/
√

1 + |∇f |2 that defines the flat phase.3

There is a power law approach to long range or-
der, 〈n̂(ra) · n̂(rb)〉 = 1 − kBT

2πκ

[
η−1 + ln(`th/a0)

]
+

C kBTκ
(

`th
|ra−rb|

)η
, where C is a positive constant of order

unity and a0 is microscopic cutoff, of order the graphene
lattice spacing (see Appendix A 1, which includes the ef-
fect of an isotropic external stress). The second term
represents the reduction in the long range order due to
thermal fluctuations. When this term becomes the same
size as the first (i.e. for kBT & 2πκη), the low temper-
ature flat phase can transform into a entropically domi-
nated crumpled ball, with a size limited by self-avoidance,
provided monolayer sheets such as graphene maintain
their integrity19. The transition temperature to isotropic
crumpling could be lowered by creating a graphene sheet
with a periodic array of holes or cuts. (Although cuts
could be deployed with equal numbers at 120 degree an-
gles, an array of parallel cuts could lead to a system that
is crumpled in one direction, but tube-like in another, a
situation studied theoretically in Ref.35.) While we have
some understanding of force-free conformations36, little is
known about the mechanical properties of free-standing
membranes at or above this crumpling transition. There
is evidence from computer simulations of a high tem-
perature compact phase, where attractive van der Waals
interactions are balanced by self-avoidance37. We hope
this paper will stimulate further investigations on these
problems in the spirit of single-molecule experiments on
linear polymers33,34.
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Appendix A: Renormalization group treatment of
membranes under tension

Our goal is to analyze properties of fluctuating mem-
branes under external tension σij with the renormaliza-
tion group approach. The free energy cost of membrane
deformations under tension is

E =

∫
d2x

1

2

[
λu2

ii + 2µu2
ij + κK2

ii − 2κG det(Kij)
]

−
∮
ds m̂iσijuj , (A1)

where uij = (∂iuj + ∂jui + ∂if∂jf)/2 is the nonlinear
strain tensor, Kij = ∂i∂jf is the bending strain tensor,
the ui are in-plane deformations, f is the out-of-plane
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deformation, and m̂i describes a normal vector to the
membrane boundary. Using the divergence theorem we
can convert the boundary work term to the area integral,
such that the free energy becomes

E =

∫
d2x

(
1

2

[
λu2

ii + 2µu2
ij + κK2

ii − 2κG det(Kij)
]

−σiju0
ij

)
, (A2)

where u0
ij = (∂iuj+∂jui)/2 is the linear part of the strain

tensor. Since the in-plane deformations ui only appears
quadratically in [Eq. (A2)], we can integrate them out
to derive the effective free energy for the out-of-plane
deformations,4

Eeff

A
=
∑

q

1

2

[
κq4 + σijqiqj

]
f(q)f(−q)

+
∑

q1+q2=q6=0
q3+q4=−q6=0

Y

8

[
q1iP

T
ij (q)q2j

] [
q3iP

T
ij (q)q4j

]

×f(q1)f(q2)f(q3)f(q4), (A3)

where the Young’s modulus is Y = 4µ(µ + λ)/(2µ + λ),
the projection operator PTij (q) = δij − qiqj/q

2, A is
the membrane area and the Fourier modes are f(q) =∫

(d2r/A)e−iq·rf(r). From the expression above we can
clearly see that positive components of the membrane
tension σij constrain the out-of-plane fluctuations f .

To implement a momentum shell renormalization
group, we first integrate out all Fourier modes in a thin
momentum shell Λ/b < q < Λ, where Λ is microscopic
cutoff and b ≡ `Λ = es with s � 1. Next we rescale
lengths and fields16,38

x = bx′,

f(x) = bζf f ′(x′). (A4)

We find it convenient to work directly with a D = 2 di-
mensional membrane embedded in d = 3 space, rather
than introducing an expansion in ε = 4 − D.16 Finally,
we define new elastic constants κ′, Y ′, and external ten-
sion σ′ij , such that the free energy functional in Eq. (A3)
retains the same form after the first two renormalization
group steps. It is common to introduce β functions20,
which define the flow of elastic constants

βκ =
∂κ′

∂ ln b
= 2(ζf − 1)κ+ Zκ ≡

∂κ′

∂s
,

βY =
∂Y ′

∂ ln b
= 2(2ζf − 1)Y + ZY ≡

∂Y ′

∂s
,

βij =
∂σ′ij
∂ ln b

= 2ζfσij ≡
∂σ′ij
∂s

. (A5)

Above we introduced Z functions, which result from the
integrals of modes over the momentum shell. To one loop

q q

p

(a) (b)

q q

p

q − p
q − p

FIG. 7: One loop corrections to the renormalization of (a)
κ and (b) Y . Solid lines represent propagators for the out-
of-plane displacements f(q) and dashed lines represent the
momentum carried by the vertex Y .

order (see Fig. 7), the Z functions read

Zκ= +
∂

∂ ln b


Y

∑

Λ
b <p<Λ

(
1− (q̂ · p̂)2

)2 〈f(p)f(−p)〉


 ,

ZY = − ∂

∂ ln b


 Y 2A

2kBT

∑

Λ
b <p<Λ

(
1− (q̂ · p̂)2

)2
p4 〈f(p)f(−p)〉2


,

(A6)

where Λ is the microscopic momentum cutoff and A is
the undeformed membrane area. Note that the only
change in the stress tensor σij to this order arises from
the rescaling factor ζf . Upon assuming that the initial
membrane tension σij is small, such that σij � κΛ2,
then 〈f(p)f(−p)〉 ≈ kBT/(Aκp4) in equations above and
the β functions in one loop approximation become

βκ = 2(ζf − 1)κ+
3Y kBT

16πκΛ2
,

βY = 2(2ζf − 1)Y − 3Y 2kBT

32πκ2Λ2
,

βij = 2ζfσij . (A7)

It is convenient to chose ζf such that βκ = 0, which

results in ζf = 1− 3Y kBT
32πκ2Λ2 , and

βY = 2Y − 15Y 2kBT

32πκ2Λ2
,

βij = 2

(
1− 3Y kBT

32πκ2Λ2

)
σij . (A8)

By repeating the renormalization group procedure, we in-
tegrate out modes at the smallest length scale and evolve
the Young’s modulus Y and external tension σij . Ini-
tially, they both grow rapidly

Y (`) ≈ Y × (`Λ)2,

σij(`) ≈ σij × (`Λ)2, (A9)

where we integrated out all modes on scales smaller than
`. Once we integrate out all modes up to the scale `th ∼
κ/
√
kBTY Young’s modulus reaches a fixed point

Y ∗ =
64πκ2Λ2

15kBT
∼ Y × (`thΛ)2. (A10)
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At the fixed point we introduce the exponent η, such that
ζf = 1− η/2. Note that ζf ≈ 1 initially, before we reach
the fixed point. In the one loop approximation we find
η = 4/5, which approximates the value of η ≈ 0.82 ob-
tained by the self-consistent screening approximation18

and η ≈ 0.85 obtained by the non-perturbative renor-
malization group calculations39. This result differs from
a formal one loop ε = 4−D expansion, which results in
η = 12ε/25,16 because we have performed the one loop
calculations directly for D = 2 dimensional membranes,
rather than calculating them for small ε, i.e. for D ≈ 4
dimensional membranes.

By continuing with the renormalization group proce-
dure and integrating out modes beyond the scale `th, we
find that the initially small membrane tension now grows
as

σij(` > `th) = σij × (`/`th)2−η × (`thΛ)2. (A11)

Eventually, the membrane tension becomes large enough
that it becomes important. This happens at the scale

`σ ∼
(

κ

σ`ηth

)1/(2−η)

, (A12)

when σij(`σ) ∼ κΛ2. At this stage, we have to take into
account the membrane tension, when evaluating the Z
functions in Eq. (A6). In next subsections, we describe
what happens for membranes under various external ten-
sion conditions. We first discuss membranes withW ∼ L,
and then move on to discuss ribbons with L�W .

1. Membranes under uniform tension

We first consider membranes under uniform tension
σij = σδij . After integrating modes on scales smaller
than `σ, the membrane tension becomes relevant and
beyond this point we can approximate 〈f(p)f(−p)〉 ≈
kBT/(Aσp

2) in Eqs. (A6). With this change, the β func-
tions become

βκ = 2(ζf − 1)κ+
3Y kBT

16πσ
,

βY = 2(2ζf − 1)Y − 3Y 2kBTΛ2

32πσ2
,

βij = 2ζfσij . (A13)

It is now convenient to set ζf = 0 so that the uniform
tension remains unchanged. We then find that both the
bending rigidity κ and the Young’s modulus Y flow to 0
at large length scales,

κ(` > `σ) ∼ κ× (`/`σ)−2,

Y (` > `σ) ∼ Y ∗ × (`/`σ)−2. (A14)

In this regime the external tension dominates and ther-
mal fluctuations are unimportant. After rescaling lengths
and fields back to the initial units we find the renormal-
ized elastic constants

κR(`)

κ
∼





1, ` < `th
(`/`th)η, `th < ` < `σ(
`σ
`th

)η
ln
(
`
`σ

)
, `σ < `

,

YR(`)

Y
∼





1, ` < `th
(`/`th)−ηu , `th < ` < `σ
(`σ/`th)−ηu , `σ < `

,

(A15)

and the height correlation function for out-of-plane flex-
ural phonons is

〈f(q)f(−q)〉 ≡ kBT

A(σq2 + κR(q)q4)
, (A16)

where q = π/`.

By performing similar analysis with the initial free en-
ergy model [see Eq. (A2)] we can also analyze the flow of
elastic constants λ and µ as

βκ = 2(ζf − 1)κ+
3Y kBT

16π (σ + κΛ2)
,

βY = 2(2ζf − 1)Y − 3Y 2kBTΛ2

32π (σ + κΛ2)
2 ,

βµ = 2(2ζf − 1)µ− µ2kBTΛ2

8π (σ + κΛ2)
2 ,

βλ = 2(2ζf − 1)λ−
[
µ2 + 4µλ+ 2λ2

]
kBTΛ2

8π (σ + κΛ2)
2 ,

βij = 2ζfσij , (A17)

and we find that the renormalized constants λR(`) and
µR(`) behave similarly as the renormalized Young’s mod-
ulus YR(`) in Eq. (A15). This set of differential equations
was also used to produce Fig. (1).

Finally, we present the correlation func-
tion of the membrane normals n̂(x, y) =

(−∂xf,−∂yf, 1)/
√

1 + |∇f |2 that defines the flat
phase3. When deformations are small the correlation
function of the membrane normals is approximately

〈n̂(ra) · n̂(rb)〉 ≈ 1−
∑

q

q2
[
1− eiq·(ra−rb)

] 〈
|f(q)|2

〉
.

(A18)
For small tension σ . kBTY/κ this correlation function
evaluates to



10

〈n̂(ra) · n̂(rb)〉 ≈ 1− kBT

(2πκ)

[
η−1 + ln(`thΛ)

]
+

kBT

(2πκ)
(η−1 − 2−1)

(
κσ

kBTY

)η/(2−η)

+
kBT

κ




C
(

`th
|ra−rb|

)η
, `th � |ra − rb| � `σ

D
(
`th
`σ

)η
e−|ra−rb|/`σ , `σ � |ra − rb|

, (A19)

where C = 1
2π

∫∞
0

dx
x1−η J0(x) ≈ 0.2, D is another con-

stant of order unity and J0(x) is the Bessel function of
the first kind. The second term in the equation above
represents the reduction in the long range order between
normals due to thermal fluctuations and the third term
shows how this long range order is restored with external
tension. For large tension σ & kBTY/κ, where the effects
of thermal fluctuations are suppressed, we find

〈n̂(ra) · n̂(rb)〉 ≈ 1− kBT

(4πκ)
ln

[
1 +

κΛ2

σ

]

+
kBT

(2πκ)
K0

(
|ra − rb|

√
σ/κ

)
,(A20)

where K0(x) is the modified Bessel function of the
second kind, which asymptotically scales as K0(x) �√
π/(2x)e−x.

Note that the nonlinear dependence of the membrane
extension

〈
u0
ii

〉
= 〈δA/A〉 on the external tension σ pre-

sented in Eq. (17) can be obtained simply from the scal-
ing arguments. Since the external tension σ is a con-
jugate variable to ∂jui, their rescalings are connected.
Once we rescale lengths as x = bx′ and in-plane defor-
mations ui = bζuu′i, then the external tension rescales as
σ = bζσσ′ with ζσ = 1 − D − ζu, where D = 2 is the
membrane dimensionality. We also know that the Ward
identities associated with rotational symmetry connect
rescaling of the in-plane and out-of-plane deformations
such that ζu = 2ζf − 1 and therefore ζσ = −2ζf

17.
As mentioned above we can extract exponent η from
ζf = 1− η/2, which leads to ζu = 1− η and ζσ = −2 + η.
Now we have all necessary ingredients to calculate the
scaling of membrane extension as

〈
δu0
ii(σ)

〉
=
〈
δu0
ii
′
(σ′)

〉
bζu−1 =

〈
δu0
ii(σb

−ζσ )
〉
bζu−1.(A21)

Since the rescaling factor b is arbitrary, we can pick b =
σ1/ζσ to find

〈
δu0
ii(σ)

〉
=
〈
δu0
ii(1)

〉
σ(ζu−1)/ζσ = const.× ση/(2−η).

(A22)
Thus we found the same nonlinear scaling between the
membrane stretching and the uniform tension as in
Eq. (17), which holds for small uniform tension.

2. Membranes under uniaxial tension

In this section we consider membranes under uniaxial
tension σxx > 0, while σyy = σxy = 0. Upon again inte-
grating out modes on scales smaller than `σ, the mem-
brane tension becomes important and beyond this point
we have to take 〈f(p)f(−p)〉 ≈ kBT/[A(σxxp

2
x + κp4

y)] in

Eqs. (A6). Although we can ignore a term κ(p4
x + 2p2

xp
2
y)

compared to σxxp
2
x, we have to keep the term with

κp4
y. Once we integrate out modes from a thin shell

Λ/b < p < Λ, we find that the quadratic term in the
free energy becomes

1

2

∑

q

f(q)f(−q)

{
σxxq

2
x + κq4

y

+
Y kBT ln b

4π

[
2q4
x

Λ
√
κσxx

+
1

σxx

(
−3q4

x + 6q2
xq

2
y + q4

y

)]}
.

(A23)

All new generated terms that involve qx are negligible
compared to the σxxq

2
x. Therefore we can keep only the

last term with q4
y to calculate the βκ function that renor-

malizes the bending rigidity,

βκ = 2(ζf − 1)κ+
Y kBT

4πσxx
. (A24)

For the quartic term with momentum-dependent Young’s
modulus Y we find that after the momentum shell inte-
gration there are again anisotropic contributions in terms
of qx and qy. Significantly, all renormalizations of Y are
negative and β functions now take the form

βκ = 2(ζf − 1)κ+
Y kBT

4πσxx
,

βY = 2(2ζf − 1)Y − Y 2kBTΛ2

4πσ2
xx

,

βij = 2ζfσij . (A25)

As for the uniform tension case, we choose ζf = 0 to
fix the uniaxial tension, and find that both the bending
rigidity κ and the Young’s modulus Y again flow to 0 as

κ(` > `σ) ∼ κ× (`/`σ)−2,

Y (` > `σ) ∼ Y ∗ × (`/`σ)−2. (A26)

After rescaling lengths and fields back to the initial units
we find that the renormalized elastic constants scale sim-
ilarly as for the uniform external tension [see Eq. (A15)]
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and the correlation function for the out-of-plane defor-
mations becomes highly anisotropic

〈f(q)f(−q)〉 =
kBT

A[σxxq2
x + κR(q)q4]

, (A27)

where q = π/`. We can now use this result to calculate
the membrane strains associated with uniaxial stretching

〈δLx/Lx〉 =
σxx
Y
− 1

2

∑

q

q2
x 〈f(q)f(−q)〉 ,

〈δLx/Lx〉 ≈ −
kBT

8πκ

[
η−1 + ln(`thΛ)

]
+
kBT

8πκ

[
η−1 − 1 +

√
2− sinh−1(1)

]( κσxx
kBTY

)η/(2−η)

+
σxx
Y
,

〈δLy/Ly〉 = −νσxx
Y
− 1

2

∑

q

q2
y 〈f(q)f(−q)〉 ,

〈δLy/Ly〉 ≈ −
kBT

8πκ

[
η−1 + ln(`thΛ)

]
+
kBT

8πκ

[
η−1 + 1−

√
2− sinh−1(1)

]( κσxx
kBTY

)η/(2−η)

− νσxx
Y

,

(A28)

where ν = λ/(2µ + λ) is the two-dimensional Poisson
ratio. The first terms in the second and fourth lines
describe membrane shrinkage due to thermal fluctua-
tions, the second terms correspond to nonlinear mem-
brane stretching in the presence of thermal fluctuations,
and the last terms correspond to the zero temperature re-
sponse, which becomes relevant for σxx & kBTY/κ. The
power law scalings above are accurate, but the numerical
prefactors are approximate. In order to calculate numer-
ical prefactors exactly, we would need to know how the
correlation function in Eq. (A27) behaves in transition
regions. In principle, the renormalized Poisson’s ratio is
calculated as

νR = −〈δLy/Ly〉 − 〈δLy/Ly〉0〈δLx/Lx〉 − 〈δLx/Lx〉0
, (A29)

where the subscript 0 describes the membrane shrinking
in the absence of external tension (σxx ≡ 0). Because our
numerical prefactors in Eqs. (A28) are just approximate
we cannot determine the precise value of the renormal-
ized Poisson’s ratio νR in the regime dominated by ther-
mal fluctuations, but we know that the νR transitions to
the zero temperature value ν for large pulling tension,

i.e. σxx & kBTY/κ.

3. Pulling of ribbons

Finally, we comment on pulling on large aspect ratio
ribbons of length L and width W � L. After integrat-
ing out all degrees of freedom on scales smaller than the
width W , the resulting strain tensors uij and Kij depend
only on the x coordinate and the renormalized elastic
constants are evaluated at q = 2π/W . This results in
an effectively one dimensional free energy model for the
ribbon

E =

∫ L

0

dxW

(
1

2
λRu

2
ii + µRu

2
ij +

1

2
κRK

2
ii

−κGR det(Kij)− σxxu0
xx

)
. (A30)

It is convenient to rewrite the effective free energy above
in terms of one-dimensional Fourier variables s(q) ≡∫

(dx/L)e−iqxs(x) and to separate out the uniform strain
u0
ij .

4 The resulting free energy reads

E

WL
=

1

2

[
λR
(
u0
ii

)2
+ 2µR

(
u0
ij

)2]
+

1

2

∑

q

[
κRq

4|f(q)|2 + (2µR + λR)q2|ux(q)|2 + µRq
2|uy(q)|2

]
− σxxu0

xx

+
1

2

∑

q

[
λRu

0
ii + 2µRu

0
xx

]
q2|f(q)|2 +

i

2

∑

q1,q2

(2µR + λR)q1q2(q1 + q2)ux(q1)f(q2)f(−q1 − q2)

− (2µR + λR)

8

∑

q1,q2,q3

q1q2q3(q1 + q2 + q3)f(q1)f(q2)f(q3)f(−q1 − q2 − q3). (A31)
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q q

p

q − p

FIG. 8: One loop corrections to the renormalization of 2µ+λ.
Here, the solid and wiggly lines represent propagators for the
out-of-plane displacement f(q) and for the in-plane displace-
ment ux(q), respectively.

Because the in-plane deformations uy(q) decouple, the
shear modulus µR does not get further renormalized.
Similarly, we find that the bending rigidity κR does not
get further renormalized. To see this, we integrate out
the in-plane modes {u0

ij , ui(q)} to derive the effective free
energy

F

LW
=

1

2

∑

q

[
κRq

4 + σxxq
2
]
|f(q)|2. (A32)

However, the in-plane modulus 2µR+λR associated with
the in-plane deformation ux(q) suffers significant renor-
malizations. This can be shown with the momentum
shell renormalization group by integrating out all Fourier
modes in a thin momentum shell Λ/b < q < Λ and rescal-
ing lengths and fields as

x = bx′,

ui(x) = bζuu′i(x
′),

f(x) = bζf f ′(x′),

σxx = bζσσ′xx. (A33)

Note that the momentum cutoff is now Λ = 2π/W , be-
cause we already integrated out all degrees of freedom on
scales smaller than W . As in previous sections we define
β functions that dictate the flow of elastic constants

βκ =
∂κ′

∂ ln b
= 2(ζf − 1)κ,

βµ =
∂µ′

∂ ln b
= 2ζuµ,

β2µ+λ =
∂(2µ+ λ)′

∂ ln b
= 2ζu(2µ+ λ)− Z2µ+λ,

βσ =
∂σ′xx
∂ ln b

= −ζσσxx. (A34)

The Ward identities associated with rotational symmetry
connect rescaling of the in-plane and out-of-plane defor-
mations such that ζu = 2ζf − 117 and ζσ = −1 − ζu,
because σxx and ∂xux are conjugate variables. The inte-
grals of modes over the momentum shell now only affect
the in-plane modulus 2µ + λ and to one loop order (see

Fig. 8) we find

Z2µ+λ =
∂

∂ ln b


A(2µ+ λ)2

2kBT

∑

Λ
b <p<Λ

p4〈f(p)f(−p)〉2

 .

(A35)
Upon assuming that the external tension is small, i.e.
σxx � κRΛ2, and choosing ζf = 1 to fix the bending
rigidity κ, the flow of elastic constants is described by
the β-functions,

β2µ+λ = 2(2µ+ λ)− (2µ+ λ)2kBT

2πκ2Λ3W
, (A36a)

βσ = 2σxx. (A36b)

Note that in the equations above the width W also gets
rescaled according to W →W/(`Λ). If the in-plane mod-
ulus 2µ + λ was small, then we would expect it to grow
as

2µ(`) + λ(`) ∼ (2µR + λR)× (`Λ)2. (A37)

This modulus would keep growing until we integrate out
all degrees of freedom up to the scale

`∗ ∼
(

κ2
RW

kBT (2µR + λR)

)1/3

, (A38)

where the second term in the β2µ+λ function in
Eq. (A36a) becomes relevant. However, for small ten-
sion σxx � κR/W

2, we find `∗ ∼ W , because the elastic
moduli above have already suffered large renormaliza-
tions out to the scale W . Therefore the second term in
Eq. (A36a) has to be taken into account immediately and
the in-plane modulus flows as

2µ(`) + λ(`) ∼ (2µR + λR)× (W/`) (A39)

for `�W . This modulus keeps dropping until the exter-
nal tension becomes relevant at scale `σ ∼

√
κR/σxx. As

in previous subsections the external tension introduces a
cut-off length scale for the renormalization of the elas-
tic modulus. By rescaling lengths and fields back to the
original units we find the in-plane correlation function of
displacements along the ribbon axis,

〈ux(q)ux(−q)〉 =

{
kBT

LW (2µR+λR)q5W 3 , W � q−1 � `σ
kBT`

3
σ

LW (2µR+λR)q2W 3 , `σ � q−1
.

(A40)
Note that for small external tension the renormalization
produces large in-plane fluctuations ux, suggesting that
the description for the effective one dimensional free en-
ergy in Eq. (A30), which assumes small deformations
about an approximately flat ribbon geometry, must even-
tually break down. In the next section we discuss how to
treat ribbons with large deformations.
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Appendix B: Force-extension curve of ribbons due
to thermal fluctuations

Consider a long thin ribbon of length L, thickness h
(atomically thin for graphene!) and width W in which
we embed a position-dependent orthonormal triad frame
{e1(s), e2(s), e3(s)}. Here s ∈ [0, L] is an arclength co-
ordinate along the ribbon midline, e3 is a unit tangent
vector along this backbone, and e1 and e2 are unit nor-
mal vectors to the backbone as sketched below.

h
L

W
e3

e1

e2

ŷ
x̂

ẑ

One way to express the rotation matrix R, which ro-
tates the fixed laboratory frame {x̂, ŷ, ẑ} to the ribbon
frame is to use Euler angles Θ = {φ, θ, ψ},27 via the de-
composition R(Θ) ≡ Rz(−ψ)Ry(−θ)Rz(−φ), such that
{e1, e2, e3} = {R(Θ)x̂, R(Θ)ŷ, R(Θ)ẑ}. Here

Ry(α) =




cosα 0 − sinα

0 1 0

sinα 0 cosα


 ,

Rz(α) =




cosα sinα 0

− sinα cosα 0

0 0 1


 (B1)

matrices correspond to rotations around the fixed labo-
ratory axes ŷ and ẑ.

Because of the rotational and translational invariance,
the free energy cost of ribbon deformations only de-
pends on derivatives of the attached frame, which can
be expressed as the rate of rotation Ω(s) of the ribbon
frame28,29

dei
ds

=
dR

ds
R−1ei ≡ Ω× ei, i = 1, 2, 3. (B2)

Here, deviation from flatness is measured by the com-
ponents of Ω = Ωiei, where Ω1(s) and Ω2(s) are the
ribbon bending curvatures around axes e1(s) and e2(s),
and Ω3(s) is a twisting strain of the ribbon around the
e3(s) axis. Alternatively we can view Ωi(s) as the rates
of rotation of the ribbon about the axis ei as a function
of the arclength s. In terms of the Euler angles, the rates
of rotation are

Ω1 = sinψ
dθ

ds
− cosψ sin θ

dφ

ds
,

Ω2 = − cosψ
dθ

ds
− sinψ sin θ

dφ

ds
,

Ω3 = −dψ
ds
− cos θ

dφ

ds
. (B3)

To the lowest order in Ω(s), the energy cost of ribbon
deformations can be expressed as15

E =

∫
ds

2

[
A1Ω2

1 +A2Ω2
2 + CΩ2

3

]
. (B4)

If ribbon is constructed from a 3-dimensional isotropic
elastic material of Young’s modulus E and Poisson’s ra-
tion ν, then the parameters Ai are15

A1 = EWh3/12, A2 = EW 3h/12, C = µ3Wh3/3,
(B5)

where µ3 = E/2(1 + ν) is the 3-dimensional shear mod-
ulus and ν is the Poisson’s ratio. In terms of the two-
dimensional graphene elastic parameters κ, Y and ν in
the main text, we have

A1 = κW (1− ν2), A2 = YW 3/12, C = 2κW (1− ν).
(B6)

In the limit of large Föppl-von Karman number
YW 2/κ � 1, we find that A2 � A1, C.41 For ribbons
whose width W is larger than the thermal length scale
`th ∼ κ/

√
kBTY the internal thermal fluctuations of the

ribbon renormalize bending and twisting rigidities to

A1 = WκR(W ), A2 ≈W 3YR(W ), C = 2WκGR(W ),
(B7)

which can be obtained by comparison with the effective
one dimensional model in Eq. (A30).

In the presence of an external edge force F along the
laboratory z-axis, the total free energy becomes

E =

∫
ds

2

[
A1Ω2

1 +A2Ω2
2 + CΩ3

3

]
− Fz, (B8)

where z =
∫
ds (e3 · ẑ) is the ribbon end-to-end separation

in the ẑ direction. In the presence of thermal fluctua-
tions, the expected value of z is

〈z〉 = kBT
∂ lnZ

∂F
, (B9)

where we introduced the partition function

Z =

∫
D[Θ(s)]e−E/kBT . (B10)

1. Schrödinger like equation

By the usual transfer matrix/path integral arguments
for statistical mechanics in one dimension, the parti-
tion function Z is closely related to the propagator for
the probability distribution of ribbon frame orientation,
where the unnormalized propagator is defined as

G(Θf , sf |Θi) =

∫ Θ(sf )=Θf

Θ(0)=Θi

D[Θ(s)]e−E/kBT . (B11)

The function above propagates the initial distribution of
Euler angles ρ(Θ0, 0) to

ρ(Θ, s) =

∫
G(Θ, s|Θ0)ρ(Θ0, 0)dΘ0, (B12)



14

where ρ(Θ, s) is unnormalized and the partition function
is expressed as

Z =

∫
dΘρ(Θ, L), (B13)

with the Euler-angle measure
∫
dΘ ≡∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ 2π

0
dψ. In order to derive a dif-

ferential equation for the propagator, we consider its
evolution over a short ribbon segment δs:

G(Θf , sf + δs|Θi) =

∫
dΘ e−δE/kBTG(Θ, sf |Θi)

(B14)
From the equation above we follow Ref.28 to derive an
imaginary time Schrödinger equation for the propagator

(
∂

∂s
+H

)
G = δ(s)δ(Θ−Θ0). (B15)

where H is the Hamiltonian defined as

H =
kBT

2

(
Ĵ2

1

A1
+
Ĵ2

2

A2
+
Ĵ2

3

A3

)
− F (e3 · ẑ)

kBT
. (B16)

Here the {Ĵi} are the angular momentum operators
around the ribbon frame axes ei, which can be expressed
in terms of derivatives with respect to Euler angles27,32.
The distribution of ribbon frame orientations obeys a
similar differential equation

(
∂

∂s
+H

)
ρ = 0, for s > 0. (B17)

By expanding the distribution of initial ribbon frame
orientation in eigen-distributions ρa(Θ), where Hρa =
λaρa, the ribbon frame orientation distribution and the
partition function can be expressed as

ρ(Θ, s) =
∑

a

αae
−λasρa(Θ),

Z =
∑

a

αae
−λaL

∫
dΘρa(Θ). (B18)

In the thermodynamic limit of very long ribbons (L →
∞) the term with the smallest eigenvalue λa dominates in
the partition function and the expected value for the end-
to-end separation of the ribbon in ẑ direction becomes

〈 z
L

〉
= −kBT

∂

∂F
(min
a
λa) (B19)

2. Analogy with the rotating top in quantum
mechanics

To proceed further (and to derive results valid for fi-
nite L ad well as L → ∞), we note that the differen-
tial equation (B17) looks like a quantum Schrödinger

equation for a rotating top in gravitational field propor-
tional to F , where the coordinate s acts like imaginary
time28,40. Hence, we can borrow methods from quan-
tum mechanics to find eigen-distributions ρa and eigen-
values λa. For a rotating top it is convenient to expand
eigen-distributions in the basis of Wigner D functions
DJ
MK(Θ)27 with a well defined total angular momentum

Ĵ2DJ
MK(Θ) = J(J + 1)DJ

MK(Θ) and angular momen-

tum projections along the ribbon tangent Ĵ3D
J
MK(Θ) =

KDJ
MK(Θ) and the z axis ĴzD

J
MK(Θ) = MDJ

MK(Θ),
i.e.

ρa(Θ) =

∞∑

J=0

J∑

K=−J

J∑

M=−J
CJa,K,MD

J
MK(Θ). (B20)

In order to evaluate the partition function Z in Eq. (B18),
we need to evaluate integrals like

∫
dΘρa(Θ) =

∞∑

J=0

J∑

K=−J

J∑

M=−J
CJa,K,M

∫
dΘDJ

MK(Θ)

= 8π2C0
a,0,0. (B21)

Note that only those eigen-distributions ρa(Θ), which
have non-zero component C0

a,0,0, contribute to the parti-
tion function Z. Since the Hamiltonian H in Eq. (B16)
does not mix Wigner D functions with different M quan-
tum numbers27, we can restrict the search for eigen-
distributions ρa(Θ) to the subspace with M = 0, where
Wigner D matrices can be expressed in terms of the
spherical harmonics

DJ
0K(ψ, θ, φ) =

√
4π

2J + 1
Y K∗J (θ, φ), (B22)

where ∗ denotes the complex conjugate. In order to avoid
additional normalization factors, it is convenient to ex-
pand eigen-distributions in the basis of spherical harmon-
ics

ρa(ψ, θ, φ) =

∞∑

J=0

J∑

K=−J
CKa,JY

K
J (θ, φ). (B23)

Then the eigenvalues λa and corresponding eigen-
distributions ρa(ψ, θ, φ) can be found from the matrix
equation

∑

J,K

(〈J ′,K ′|H|J,K〉 − λδJ,J ′δK,K′)CKJ = 0, (B24)

where
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〈J ′,K ′|H|J,K〉 =

∫ π

0

sin θdθ

∫ 2π

0

dφ Y K
′∗

J′ (θ, φ) H Y KJ (θ, φ),

〈J ′,K ′|H|J,K〉 =
kBT

2
δJ,J ′

[
δK,K′

(J(J + 1)−K2)

2

(
1

A1
+

1

A2

)
+ δK,K′

K2

C

+δK−2,K′

√
(J +K)(J +K − 1)(J −K + 1)(J −K + 2)

4

(
1

A1
− 1

A2

)

+δK+2,K′

√
(J +K ′)(J +K ′ − 1)(J −K ′ + 1)(J −K ′ + 2)

4

(
1

A1
− 1

A2

)]

− F

kBT

δK,K′√
(2J + 1)(2J ′ + 1)

[
δJ−1,J′

√
J2 −K2 + δJ+1,J′

√
J ′2 −K2

]
. (B25)

We have solved the above matrix equation numerically
to find the whole spectrum of eigenvalues λa and eigen-
distributions ρa(ψ, θ, φ).

In order to evaluate the partition function Z, we need
to expand the initial ribbon orientation in terms of the
eigen-distributions

P̂ ρ(ψ, θ, φ, s = 0) =

∫ 2π

0

dψ ρ(ψ, θ, φ, s = 0)

=
∑

a

αaρa(ψ, θ, φ), (B26)

where P̂ denotes projection to the M = 0 subspace and

αa =

∫ 2π

0

dψ

∫ π

0

sin θdθ

∫ 2π

0

dφ ρ∗a(ψ, θ, φ)ρ(ψ, θ, φ, s = 0),

αa =

∞∑

J=0

J∑

K=−J
CK∗a,J c

K
J ,

cKJ =

∫ 2π

0

dψ

∫ π

0

sin θdθ

∫ 2π

0

dφ Y K∗J (θ, φ) ρ(ψ, θ, φ, s = 0).

(B27)

The partition function is then

Z =
∑

a

αae
−λaL

∫ 2π

0

dψ

∫ π

0

sin θdθ

∫ 2π

0

dφ ρa(ψ, θ, φ),

Z =
∑

a

αae
−λaL4π3/2C0

a,0. (B28)

Finally, the average ribbon end-to-end distance 〈z〉 is ob-
tained by taking derivative of this partition function Z
with respect to force, see Eq. (B9).

As was mentioned in the main text, this same formal-
ism can be used to study both the pulling and bending
of ribbons. For pulling we orient the ribbon along the
ẑ axis with the initial ribbon orientation Θi = {0, 0, 0},
which results in

cKJ = Y K∗J (θ = 0, φ = 0) = δK,0

√
2J + 1

4π
. (B29)

For bending around axis ê1 we orient the ribbon along
the x̂ axis with the initial ribbon orientation Θi =
{π/2, π/2, 0}, which results in

cKJ = Y K∗J

(
θ =

π

2
, φ =

π

2

)

cKJ = (−1)(K+|K|)/2 2|K|(−i)K
2π

cos

[
π(J + |K|)

2

]

×
√

(2J + 1)(J − |K|)!
(J + |K|)!

Γ[(J + |K|+ 1)/2]

Γ[(J − |K|+ 2)/2]
.

(B30)

For bending around axis ê2, which is harder because it
involves the ribbon stretching, we orient the ribbon with
the initial orientation Θi = {0, π/2, 0}, which results in

cKJ = Y K∗J

(
θ =

π

2
, φ = 0

)

cKJ = (−1)(K+|K|)/2 2|K|

2π
cos

[
π(J + |K|)

2

]

×
√

(2J + 1)(J − |K|)!
(J + |K|)!

Γ[(J + |K|+ 1)/2]

Γ[(J − |K|+ 2)/2]
.

(B31)

3. Large force limit

For large pulling forces, we have to take into account
both the ribbon stretching and the deformation energies
that appear in

E =

∫
ds

2

[
A1Ω2

1 +A2Ω2
2 + CΩ3

3 + ku2
33

]

−
∫
ds F (ẑ · e3) [1 + u33] , (B32)

where u33 corresponds to the stretching strain along the
ribbon backbone, and the one dimensional stiffness is
k = YR(W )W . Here, YR(W ) is the renormalized 2-
dimensional Young’s modulus evaluated at the scale of
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the ribbon width. For large pulling forces the ribbon is
nearly straight and the tangent e3 can be approximated
as

e3 = txx̂ + tyŷ +

[
1− (t2x + t2y)

2

]
ẑ, (B33)

where tx, ty � 1. To quadratic order in tx and ty, the
free energy becomes

E =

∫
ds

[
A1

2

(
∂ty
∂s

+ txΩ3

)2

+
A2

2

(
∂tx
∂s
− tyΩ3

)2

+
C

2
Ω2

3 +
k

2
u2

33 +
F

2

(
t2x + t2y

)
− Fu33

]
.(B34)

After integrating out the Ω3 and u33 the effective free
energy becomes

Eeff =

∫
ds

2

[
A1

(
∂ty
∂s

)2

+A2

(
∂tx
∂s

)2

+ F
(
t2x + t2y

)

− [A1tx(∂ty/∂s)−A2ty(∂tx/∂s)]
2

(C +A1t2x +A2t2y)

]
. (B35)

For C > 0 the last term is 4-th order in tx and ty and
can thus be neglected for large forces. Upon rewriting
the effective free energy in Fourier space

Eeff =
L

2

∑

q

[
(F +A2q

2)|tx(q)|2 + (F +A1q
2)|ty(q)|2

]
,

(B36)

we find

〈|tx(q)|2〉 =
kBT

L(F +A2q2)
, 〈|ty(q)|2〉 =

kBT

L(F +A1q2)
.

(B37)
Using the results above we can find the ribbon extension

〈z〉 =

〈∫
ds (ẑ · e3) [1 + u33]

〉

〈z〉 ≈
〈∫

ds

[
1 + u33 −

(t2x + t2y)

2

]〉
,

〈 z
L

〉
≈ 1 + 〈u33〉 −

1

2

∑

q

(
〈|tx(q)|2〉+ 〈|ty(q)|2〉

)
,

〈 z
L

〉
≈ 1 +

F

k
− kBT

4
√
F

(
1√
A1

+
1√
A2

)
. (B38)

The middle term describes stretching of the ribbon back-
bone, and the final correction corresponds to the en-
tropic contribution from ribbon fluctuations. As dis-
cussed above A2 � A1 for ribbons.
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