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This paper is focused on the the variable-range hopping of electrons in semiconductor nanocrystal
(NC) films below the critical doping concentration nc at which it becomes metallic. The hopping
conductivity is described by the Efros-Shklovskii law which depends on the localization length of
electrons. We study how the localization length grows with the doping concentration n in the film of
touching NCs. For that we calculate the electron transfer matrix element t(n) between neighboring
NCs for two models when NCs touch by small facets or just one point. We study two sources
of disorder: variations of NC diameters and random Coulomb potentials originating from random
numbers of donors in NCs. We use the ratio of t(n) to the disorder-induced NC level dispersion to
find the localization length of electrons due to the multi-step elastic co-tunneling process. We found
three different phases at n < nc depending on the strength of disorder, the material, sizes of NCs
and their facets: 1) “insulator” where the localization length of electrons increases monotonically
with n and 2) “oscillating insulator” when the localization length (and the conductivity) oscillates
with n from the insulator base and 3) “blinking metal” where the localization length periodically
diverges. The first two phases were seen experimentally and we discuss how one can see the more
exotic third one. In all three the localization length diverges at n = nc. This allows us to find nc.

I. INTRODUCTION

Semiconductor nanocrystals (NCs) have a great
potential for optoelectronics applications such as
solar cells1, light emitting diodes2 and field effect
transistors3,4. Their advantage is size-tunable optical
and electrical properties5 and low-cost solution-based
processing techniques6,7. These applications require
conducting NC films and several ways of introducing
carriers via doping are being explored3,8–15. At a given
concentration of carriers one tries to improve the mobility
by moving NCs closer to each other and reducing their
contact resistance.

In many studies8,9,11,15 the low temperature
conductivity of doped films was found to obey
Efros-Shklovskii (ES) variable range hopping law16:

σ(T ) = σ0 exp

[
−
(
TES
T

)1/2
]
. (1)

Here σ0 is a conductivity prefactor, T is the temperature,
and

TES =
Ce2

εfkBξ
, (2)

in Gaussian units. Here e is the electron charge, ξ is the
localization length, εf is the effective dielectric constant
of the film, kB is the Boltzmann constant, C ' 9.617.
Typically, ξ grows with the concentration of electrons n
in a NC and with the improvement of contacts between
NCs. Therefore, TES becomes smaller and the film
becomes more conducting15.

In this paper we concentrate on doping of NC films
by chemical donors or acceptors18 which was recently
achieved in InAs12, CdSe13, HgS14 and Si15 NCs. While

many experimental studies have been directed towards
increasing the conductivity of NC films with increased n,
it was not clear when ξ diverges and TES vanishes so that
the NC film becomes metallic19–21. In other words, what
is the critical concentration nc of electrons (or donors) in
a NC necessary for the insulator-metal transition (IMT)?
Recently15 nc was estimated for the case favorable for
the IMT , where close-to-spherical NCs touch each other
by small facets of radius ρ� d without any ligands that
impede the conduction by creating a barrier between NCs
(see Fig. 1a). The result is very simple

nc ' 0.3ρ−3. (3)

The IMT is illustrated in Fig. 1a where we show how an
electron wave packet of the minimum available size for a
given n quasiclassically passes between two touching NCs
at n > nc, but has to tunnel at n < nc and, therefore,
becomes more vulnerable to disorder.

Contacts between NCs may have different origins. For
example, a close-to-spherical NC has small facets due to
the discreteness of the crystal lattice. Their radius can be
estimated as ρa =

√
da/2, where a is the lattice constant

and d is the NC diameter. For CdSe NCs with a = 0.6
nm and d = 5 nm, ρa ∼ 1.2 nm and Eq. (3) gives
nc = 2× 1020 cm−3. For the case in which NCs shown in
Fig. 1a touch each other away from these facets, a finite
tunneling distance b ∼ 0.1 nm in the medium between
NCs should be taken into account. This leads to Eq.
(3) where ρ = ρb =

√
db/2 � ρa is the radius of an

effective “b-contact” and the critical concentration nc is
much larger.

On the other hand, at very light doping when the
average number of electrons per NC, N = πnd3/6, is less
than unity one should see the nearest-neighbor hopping
between NCs with the activation energy equal to the
charging energy of a NC17,22. Thus, the ES hopping



2

FIG. 1. (Color online) The cross-section of two NCs in
contact by their facets with radius ρ � d each. Here a is
the lattice constant, d is the NC diameter. The blue cloud
depicts the smallest available electron wave packet with the
size k−1

F ∼ n−1/3, where kF is the Fermi wavenumber and
n is the doping concentration of electrons in each NC. (a)
Electron transport at n > nc. The smallest electron packet
fits in the touching facets and moves through the contact.
(b) At n < nc, the smallest wave packet gets stuck near the
contact and the electron tunneling between NCs is depleted
so much that it cannot overcome the disorder to delocalize
electrons.

should be observed in a large range of the concentrations
1/d3 < n < nc. To calculate TES given by Eq. (2),
we need to know how the localization length ξ(n) grows
in this range, before reaching the NC diameter d and
diverging in a critical vicinity of nc.

The localization length of electrons is determined by
the competition of the disorder energy δE and the
tunneling matrix element t between neighboring NCs.
We study two main sources of disorder: the dispersion
of NC diameters, which changes the quantization kinetic
energy, and the variation of the number of donors in
a NC, which leads to charging of NCs and random
Coulomb potentials shifting electron levels. We also
calculate t(n, ρ) for two mentioned above models of
small-ρ contacts. We arrive to the conclusion that
typically the combination of both sources of disorder is so
strong that one needs N � 1 electrons per NC to make
large enough t in order to get appreciable ξ and approach

the IMT.
In this paper we deal with the generic case for small

semiconductor NCs when electron energy shells of the
spherical NCs are weakly split and separated by the
quantization gap ∆ . We show that when the disorder
energy γ becomes larger than ∆ and NCs touch by
contact facets of small radius ρ, the localization length ξ
is

ξ(n) ≈ d

ln(2/nρ3)
. (4)

This result is obtained at low temperatures when
electrons hop via the elastic multi-step co-tunneling
between distant NCs. The effective dielectric constant
εf is not affected by the electron polarization in NCs far
from the IMT. Thus, Eq. (4) together with Eq. (2)
can be used to predict the dependence TES(n). The
localization length ξ becomes comparable to d when n
gets close to the critical concentration nc of the IMT.
Using this criterion, we arrive from the insulating side at
the estimate Eq. (3) which was obtained in Ref. 15 from
the metallic side.

Both Eq. (4) and Eq. (3) do not depend on the
disorder strength. This happens because when γ exceeds
∆ the energy difference between neighboring NCs δE
saturates at ∆ due to the periodicity of the quantized
spectrum (see Fig. 4). Remarkably both Eq. (4) and Eq.
(3) continue to play an important role when γ becomes
smaller than ∆ and well defined peaks of the density
of states appear (see Fig. 2). With decreasing width
of these peaks the localization length starts to oscillate
at small N while keeping its minima close to the base
line Eq. (4) (see Fig. 3, we call this phase oscillating
insulator (OI)). By further decreasing the disorder the
oscillations can take over all range of concentrations
n < nc and eventually ξ diverges at series of maximum
points adjacent to nc (see Fig. 5, we call this phase
blinking metal (BM)). New phases OI and BM are shown
together with the large-disorder phase called here the
usual insulator (I) where the localization length obeys
Eq. (4) and the metallic phase (M) in two phase diagrams
in the plane (N,∆/Ec) (see Figs. 7 and 8). Note that
the border of M is always given by Eq. (3).

We used our phase diagrams to address the situation in
several widely used semiconductor NCs, i.e., CdSe, InAs
and ZnO, with d = 5 nm, ρ = ρa = 1.2 nm and 7%
dispersion of NC diameters. We show that in CdSe and
InAs the Coulomb interaction can ignored (marginally
in CdSe) and with the growing N one can see only two
phases OI and M. A substantially broad BM phase which,
of course, would improve the NC film conductivity at
smaller N requires even smaller dispersion of diameters,
say 3%. However, for ρ ≤ ρa the highly desirable metallic
state for N ∼ 1 when only the 1S shell is filled can be
achieved only with unrealistic less-than-1% dispersion of
NC diameters. Of course, one can always increase ρ to
achieve BM and extend it all the way till N = 1 (on
the way to the bulk semiconductor). In ZnO Coulomb
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disorder effects play an important role leading to the
expansion of the I phase between OI and M ones.

The paper is organized as follows. In Sec. II,
we dwell upon the main energies of a single NC, i.e.,
the quantization energy gap ∆ separating consecutive
degenerate shells of the electron spectrum and the
charging energy Ec of a NC. In Sec. III we start from
very large ratios of ∆/Ec where the dispersion of NC
diameters dominates over the Coulomb disorder. We
use values of t(n, ρ) calculated later in Sec. VI to find
ξ(n) and nc. For the case of relatively large diameter
dispersion and very small ρ at large n, the localization
length ξ(n) follows Eq. (4) and nc is given by Eq. (3).
We also study the case of a very weak diameter dispersion
and arrive at BM. In Sec. IV we study the charging of
NCs and the resulting Coulomb disorder and get ξ(n) for
any ∆/Ec. We show that at ∆/Ec < 5 the Coulomb
disorder eliminates the BM phase and extends the range
of validity of Eq. (4). In Sec. V we discuss examples of
widely used semiconductor CdSe, InAs and ZnO NCs. In
Sec. VI we calculate the tunneling matrix element t(n, ρ)
for NCs touching by contact facets (see Fig. 1b). In Sec.
VII, we study the case when NCs touch each other away
from prominent facets or are separated by short ligands
and derive the corresponding expressions for ξ. In Sec.
VIII we deal with large NCs where the random electric
field of donors split and mix degenerate shell levels so
that semiconductor NCs acquire random spectra similar
to that of metallic granules. We conclude in Sec. IX.

II. NC ELECTRONIC SPECTRUM AND
CHARGING ENERGY

We assume that close-to-spherical NCs have diameter
d and touch each other by facets with radius ρ. At
small enough ρ electrons are localized inside NCs. We
suppose that the electron wave function is close to zero
at the NC surface, due to the large confining potential
barrier created by the insulator matrix surrounding the
NC. Under these conditions, electrons occupy states
with different radial and angular momentum quantum
numbers, i.e., (n, l)-shells, each being degenerate with
respect to the azimuthal quantum number m = −l, . . . , l
where the polar axis (z axis) is defined in the direction of
electron tunneling connecting centers of two neighboring
NCs (we talk more about this in Sec. VI). As we
explained in Introduction we are interested in NCs with
the average electron number N � 1. Therefore several
(n, l)-shells are occupied. The quantum energy gap
between two consecutive (n, l)-shells typically is

∆ ' 20~2

m∗d2
(5)

where m∗ is the effective electron mass inside NCs.
Also, when the quantum numbers are large,

Bohr’s correspondence principle allows us to consider
quasiclassically the average density of states of electrons

and introduce the Fermi wave number kF

kF =
(
3π2
)1/3

n1/3. (6)

Here n = 6N/πd3 is the density of electrons in a NC.
Below, kF serves as a measure of the concentration n.

The kinetic energy of electrons is only a part of
the total energy of the NC. One should add to it
the total Coulomb interaction energy of all electrons
and donors. In general, calculating the total Coulomb
energy (self-energy) of the system is a difficult problem
because of the random position of donors. For our case,
however, a significant simplification is available because
the semiconductor dielectric constant ε is typically much
larger than the dielectric constant εm of the medium in
which the NC is embedded. This allows us to ignore
in the first approximation the energy dependence on
positions of donors and electrons and instead concentrate
on only the dependence on the total charge Qe of the NC.

The energy of a NC with charge Qe surrounded by
neutral NCs (the self-energy) is equal to Q2Ec, where
the charging energy is

Ec =
e2

εfd
. (7)

For non-touching NCs where the volume fraction of
semiconductor NCs is f ≤ 0.52, one can use the
Maxwell-Garnet formula23

εf = εm
ε+ 2εm + 2f(ε− εm)

ε+ 2εm − f(ε− εm)
(8)

to calculate the effective dielectric constant εf . This gives
εf ' 3 at f = 0.52 corresponding to the very moment of
NC touching (we take εm = 1, ε = 10 as in the case of
CdSe NCs). For these εm and ε, the effective dielectric
constant εf was calculated numerically for all range of
f24 including f > 0.52 obtained for faceted NCs touching
by facets. One can check25 that Eq. (8) works well even
for f as large as 0.7. This means that for NCs touching
by small facets or separated by short ligands, ε/εf ' 3
is a good estimate for CdSe and other semiconductors
with ε . 15 that we are dealing with in this paper. For
semiconductors with much larger ε one may use results
of Ref. 25.

The ratio ∆/Ec is an important parameter of our
theory. In n-type semiconductors we address here, for
NCs with d = 5 nm, ∆/Ec =2, 3, 5, 27 for Si, ZnO,
CdSe, and InAs, respectively.

III. LOCALIZATION LENGTH AND IMT
DETERMINED BY DISPERSION OF NC

DIAMETERS

There are two important sources of disorder for
electrons in a NC film. The first one is the variation
of NC diameters. Since the energy gap ∆ ∝ 1/d2, each
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energy level gets a shift α∆, where α = 2δd/d and δd is
the variation of the diameter d (experimentally, δd/d is as
large as 5−15%15,26 so α = 0.1−0.3). The second source
of disorder is the fluctuations of the donor number in a
NC, which result in the charging of NCs and subsequent
random potentials. We study this phenomenon in Sec.
IV. In this section we deal with the case of large enough
∆/Ec when charging can be ignored.

The dispersion of NC diameters creates the energy shift
of the electron levels close to the Fermi level

γ1 = N2/3α∆, (9)

where N2/3 gives the number of filled shells. When N
is small, γ1 � ∆. The energy levels of NCs are then
quite aligned and the density of states has periodically
alternating maxima and minima (see Fig. 2). In this
case, the transport mechanism depends on the position
of the Fermi level or in other words on the average
electron number N11,17,27. When the Fermi level is in
the middle of each degenerate shell, i.e., the local density
of states is very large, Coulomb correlations “dig” the
Coulomb gap in this density of states16, which in turn
leads to low-temperature ES conductivity law Eq. (1).
When the Fermi level is close to the middle of the gap
∆ where a small density of states may be present due
to overlapping tails of neighboring shells, the Coulomb
effects are not important since the density of states is
already very small. Such a constant density of states
leads to the Mott variable range hopping11,27.

i t E

EF

FIG. 2. Energy spectrum of the linear chain of touching
spherical NCs at small N in the vicinity of the Fermi level.
The degenerate electron levels are aligned with small energy
shifts created by the NC diameter variations. The density of
states g(E) as a function of the energy E has periodic maxima
separated by the energy gap ∆. Peaks of the density of
states have width γ1. The electron tunnels with the tunneling
matrix element t from the initial NC i through the m = 0
levels (red) in the shell closest to the Fermi level in each
intermediate NC. Virtually visited levels are shown by arrows.
The dashed line represents the Fermi level.

However, for both ES and Mott variable range
hopping, one should use the concept of the localization
length which determines the exponential decay of the
electron wave function with the distance x from the NC
where the localized electron resides in. The localization
length ξ is determined by the co-tunneling between
two distant NCs with energies close to the Fermi
level27–30. In the co-tunneling process, an electron
tunnels between neighboring NCs of the chain of M

intermediate NCs connecting the initial and final NCs.
If after the tunneling all intermediate NCs remain in
the ground state, the co-tunneling process is called
elastic. Alternatively, an intermediate NC can acquire an
electron-hole excitation. Such process is called inelastic.
At low temperatures the elastic process dominates.

We show in Sec. VI that in the chain of NCs extended
along the z direction, inside each intermediate NC only
the m = 0 state in the highly degenerate (n, l)-shell
contributes to the tunneling process with a dominant
matrix element t. Thus, along the chain of co-tunneling,
there is only one possible series of intermediate energy
states closest to the energy of the tunneling electron and
no summation over different states of a given shell is
needed for calculating the total amplitude. We can say
that we deal with non-degenerate levels (red as shown
in Figs. 2 and 4) with the energy spacing ∆. This
allows us to write estimates for the tunneling amplitude

as ∝ (t/δE)
M ' e−x/ξ where M = x/d is the number

of intermediate NCs in the tunneling path and ξ is the
localization length

ξ ≈ d

ln(δE/t)
. (10)

Here δE is the energy difference between the tunneling
electron and the state in the intermediate NC. Eq. (10)
is valid when ln(δE/t) > 1 or ξ < d and the film is far
from the critical vicinity of the IMT.

So once the matrix element t is known, we can get
the localization length. For different types of contacts
between NCs, the value of t is different. The largest ξ is
obtained in the case when NCs touch by facets of finite
radius ρ. The corresponding tunneling matrix is derived
in Sec. VI as

t ' 9~2nρ3

m∗d2
. (11)

The energy difference δE oscillates with the density
of states, which is followed by the oscillation of the
localization length (see Fig. 3). At small N and when
the Fermi level is inside a degenerate shell where the
density of states is large, one arrives at the ES law (1)
and gets δE = γ1 � ∆. The localization length reaches
a maximum at such N

ξ ' d

ln(αd2/n1/3ρ3)
. (12)

When the Fermi level resides in the middle of the gap
∆ between shells where the Mott variable range hopping
takes over, the energy difference δE ' ∆. Therefore,
the localization length reaches its periodic minima which
are given by Eq. (4). The local period is ∼ N1/3 and
slowly changes with N . Eqs. (12) and (4) together
give the envelope of the oscillating localization length
as shown in Fig. 3 by the dotted line and the dashed
line, respectively. We denote this phase as “oscillating
insulator” (OI). Periodic oscillations of the hopping
conductivity with N were observed in CdSe11.
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According to Eq. (9) γ1 grows with N and reaches
∆ at N = α−3/2. At larger N the energy difference
δE saturates at ∆ because of the spectrum periodicity.
The corresponding system of electron energy levels with
a smooth density of states is shown in Fig. 4. Thus,
oscillations of ξ(N) stop at N = α−3/2. We arrive at the
usual insulator (I) where ξ obeys Eq. (4) which follows
from δE = ∆ and Eqs. (5), (10) and (11). This gives
Eq. (3) for the critical concentration nc. This sequence
of changes of ξ(N) is shown schematically in Fig. 3.
Apparently it requires that

α−3/2 � d3/ρ3. (13)

In this section, we focus on the case of relatively
small ρ when the inequality (13) holds. In this case,
every maximum of ξ is finite because the argument of
the logarithmic function in Eq. (12) αd2/n1/3ρ3 =
(αd2/ρ2)3/2/(Nα3/2)1/3 � 1 at N < α−3/2. The case
opposite to the inequality (13) corresponding to a smaller
α and a larger ρ is studied in the next section.

N

1

0

FIG. 3. (Color online) Schematic plot of the localization
length ξ (in units of the NC diameter d) as a function of
the average number of donors N in a NC at αd2/ρ2 � 1. The
thick solid line (red) is the localization length. The dotted
line represents the maximum value of ξ given by Eq. (12)
which corresponds to the Fermi level position in the middle
of the degenerate shell (the line of maxima). The dashed
line goes through the minima of ξ which are somewhat lower
than values given by Eq. (4) and happen when the Fermi

level is near the middle of the gap ∆. When N = α−3/2,
the energy shift due to NC diameter variations γ1 reaches ∆,
the oscillations of ξ stop and ξ obeys Eq. (4). At N close
to d3/ρ3, the film approaches the IMT and its localization
length diverges.

One should note that our result for ξ is obtained
away from the critical vicinity of nc. So our estimate
of nc obtained from the condition ξ = d needs a
correction. Indeed we estimated the probability of the
electron hopping between two distant NCs via the elastic
co-tunneling along a single typical chain of M NCs. Near

the IMT one should add probability amplitudes of many
such chains. Then the sum of all amplitudes gives a
total probability ∝ (tK/∆)M . Here K is the connective
constant of the NC lattice. According to Anderson31, the
IMT happens when tK/∆ = 1. Using Eqs. (5) and (11),
for the simple cubic lattice (where according to Ref. 32
K = 4.7) we arrive at the estimate nc ≈ 0.5ρ−3 while for
the face-centered cubic lattice (where K = 10 as given in
Ref. 33) we get nc ≈ 0.2ρ−3. This result found from the
insulating side of the IMT is reasonably close to Eq. (3)
obtained from the metallic side.

i t

FIG. 4. (Color online) Energy spectrum of a chain of NCs at
large average electron number N . An electron tunnels from
an initial NC i through intermediate NCs. Virtually visited
levels are shown by arrows. The dashed line shows the energy
of the tunneling electron close to the Fermi level. Each NC
has a ladder of (2l + 1)-degenerate (n, l)-shells with the gap
∆ between them. Due to variations of diameters, the whole
ladder of energy levels is shifted up and down by an energy
larger than ∆. Here we show only two shells closest to the
Fermi level. Only one level (red) of each shell contributes to
the tunneling with the matrix element t.

So far, we have studied the case where the inequality
(13) holds. Now we turn to the opposite situation
αd2/ρ2 � 1 of relatively large ρ and small α. In this
case Eq. (12) indicates that the localization length
periodically diverges at α3d9/ρ9 < N < d3/ρ3. This
means that electrons whose energy levels are in the
middle of the shell are delocalized while those who are
located in the tails of the density of states are still
localized and have a localization length described by Eq.
(4). We call this phase “blinking metal” (BM) since its
metallicity occurs only at certain positions of the Fermi
level (a good example of such metal is the quantum hall
effect). However, at N = d3/ρ3, the system enters the
usual metal (M) phase where electrons are delocalized
regardless of the Fermi level position. The corresponding
behavior of the localization length at N ≤ d3/ρ3 is shown
in Fig. 5. In this case, γ1 � ∆ at the IMT point since
d3/ρ3 � α−3/2.

IV. ROLE OF NC CHARGING DUE TO DONOR
NUMBER FLUCTUATIONS

Let us now discuss another type of disorder present
in the film, i.e., the fluctuations of the donor number
δN around the average number N from NC to NC. At
large N , δN is Gaussian-distributed, i.e., δN ∼

√
N .
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1

0

FIG. 5. (Color online) The localization length ξ (in units of
the NC diameter d as a function of the average donor number
N in a NC for αd2/ρ2 � 1. The thick solid line (red) is the
localization length. The dashed line represents the minima
of ξ somewhat lower than values given by Eq. (4) occurring
when the Fermi level is in the middle of the gap ∆. The film
first becomes a “blinking metal” (BM) atN = α3d9/ρ9, where
ξ starts to periodically diverge and return to finite values. At
N = d3/ρ3, the film enters the usual metal (M) domain.

If each NC is neutral, δN would lead to substantial
fluctuations δEF = EF /

√
N ∼ N1/6∆ of the Fermi

energy EF from one NC to another. To establish the
unique chemical potential of electrons (the Fermi level),
electrons move from NCs with larger-than-average n to
ones with smaller-than-average n and NCs get charged
creating the Coulomb potential in space. Below we argue
that the typical number of charges Q in NCs depends on
the ratio ∆/Ec as shown in Fig. 6.

FIG. 6. Schematic log-log plot of the typical number of
charges Q in a NC as a function of the ratio ∆/Ec.

When Ec is very small, the final chemical potential is
established when NCs have almost the same number of

electrons. Accordingly, most NCs obtain a net charge Qe
where Q ∼

√
N . However, at larger Ec when ∆/Ec �

N1/3, the price of charging gets so large that the number
of transferred electrons Q ∼ N1/6(∆/Ec) is much smaller

than
√
N (see Fig. 6). One arrives to this result by

equating the initial fluctuation of the Fermi energy δEF
to the growth of the Coulomb potential of a NC QEc.
At ∆/Ec = N−1/6, charging becomes so costly that the
charge number Q = 1. Beyond this point, all NCs are
neutral (see Fig. 6).

One can understand the importance of the parameter
∆/N1/3Ec by calculating the electronic screening radius
of the film. Since the screening radius r0 can be estimated
as
√
εf/4πe2g(E) where g(E) ' N1/3/∆d3 is the average

density of states, one gets r0/d '
√

∆/N1/3Ec � 1 at

∆/N1/3Ec � 1. We see that in agreement with Fig. 6,
when ∆/N1/3Ec � 1 and r0 � d electrons do not screen
donor charges, while in the opposite case ∆/N1/3Ec � 1
the electron screening becomes important.

Due to charging of NCs, each NC finds itself in the
environment of charged neighbors and gets a random
potential energy shift up or down. Apparently the energy
shift created by a single NC at the distance r where
d � r � r0 is QEcd/r and the typical shift created
collectively by all NCs in the sphere of radius r0 is

γ2 =
QEcd

r0

(r0
d

)3/2
= N5/12Ec

(
∆

Ec

)1/4

. (14)

Note that γ2 does not depend on d. This is not
surprising because one can arrive to the same result for
potential energy fluctuations thinking about our film as
a bulk heavily doped semiconductor with concentration
n ' N/d3 of randomly positioned donors screened by
degenerate electron gas34.

Let us find what happens when the charging effect
outweighs the diameter variation. We start from the
case αd2/ρ2 � 1 and use that for Fig. 7 which in the
(N,∆/Ec) plane shows phases with different behaviors
of the localization length. The upper part of Fig. 7
summarizes results obtained for diameter variations in
Sec. III.

We see how with growing N the film goes through an
oscilating insulator (OI), an insulator (I) and a metal
(M). Coulomb effects become important when γ2 > γ1
or according to Eqs. (9) and (14) ∆/Ec < 1/N1/3α4/3.
At the upper OI-I border N = α−3/2 where γ1 = ∆, this
happens at ∆/Ec = α−5/6. Let us explore now what
happens at ∆/Ec < α−5/6 where the energy difference
δE = γ2. When N is small, γ2 is small too so that the
density of states has periodic peaks and the localization
length oscillates. The system is again an oscillating
insulator (OI) (see the narrower part of the blue domain
in Fig. 7). At larger N when ∆/Ec < N5/9, the energy
shift γ2 exceeds ∆ so that away from the left blue domain
shown in Fig. 7 we arrive at the spacial distribution of
levels shown in Fig. 4. δE then saturates at ∆ and one
again obtains the result (4) for the localization length ξ.
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The system becomes a usual insulator (I). Thus in the
case of relatively small ρ and large α when αd2/ρ2 � 1,
the localization length first stops oscillating and then
diverges (the system enters first the domain I and then
the domain M as shown in Fig. 7).

N

1

 I

 I'

 MOI

1

FIG. 7. (Color online) A log-log map of different domains in
the (N , ∆/Ec) plane at αd2/ρ2 � 1. The light grey domain
(blue online) corresponds to the regime where δE < ∆ and the
localization length oscillates with N . We call it an oscillating
insulator (OI). Away from the left blue domain, the energy
difference δE saturates at ∆ and the localization length does
not oscillate and obeys Eq. (4). This is the usual insulator
(I). The darker grey domain (pink online) corresponds to the
metallic phase (M). The solid border lines (from left to right)

correspond to equations ∆/Ec = N5/9, N = α−3/2 and N =
d3/ρ3, respectively. The dashed line corresponds to ∆/Ec =

N1/3. In the domain below the dashed line (I’), (n, l)-shells
get split and mixed with each other (see Sec. VIII). In this
domain, the localization length is given by Eq. (46).

In the opposite case of relatively large ρ and very small
α where αd2/ρ2 � 1 we analyze the role of Coulomb
effects in Fig. 8. The upper part of this phase diagram
∆/Ec > α−7/3(d/ρ)−3 is again dominated by diameter
variations. As shown in Sec. III in this case with growing
N the film goes through an oscillating insulator (OI), a
blinking metal (BM) and a metal (M). When we include
Coulomb effects the vertical OI-BM border marked as the
line 2) in Fig. 8 at which γ1 = t cannot continue below
the point ∆/Ec = α−7/3(d/ρ)−3 where γ1 = γ2. Now the
OI-BM border in Fig. 8 turns and goes along the line 3)
at which γ2 = t or ∆/Ec = (d/ρ)4/N7/9. The line 3)
ends at ∆/Ec = (d/ρ)5/3 when γ2 = ∆ at the crossing
with the generic metal border given by the line 4) where
∆ = t and N = d3/ρ3 and with the OI-I border given by
the line 1) where γ2 = ∆ and ∆/Ec = N5/9. This is a
remarkable quadruple point where γ1 = γ2 = ∆ = t and
all four phases OI, BM, I and M meet.

N

1
1

I
I'

BM MOI

1)

2)

3)
4)

FIG. 8. (Color online) A log-log map of different domains in
the (N , ∆/Ec) plane at αd2/ρ2 � 1. The light grey domain
(blue online) corresponds to the regime where δE < ∆ and
the localization length oscillates with N (OI). The shaded
domain belongs to the blinking metal (BM). In the white
domain of the usual insulator (I) the localization length does
not oscillate and obeys Eq. (4). The darker grey domain
(pink online) corresponds to the metallic phase (M). The solid
border lines 1)–4) correspond to conditions 1) γ2 = ∆, 2)
γ1 = t, 3) γ2 = t, and 4) ∆ = t. The dashed line corresponds

to ∆/Ec = N1/3. In the domain I’ below the dashed line NC
spectra become random (see Sec. VIII). In this domain, the
localization length is given by Eq. (46).

V. EXPERIMENTAL IMPLICATIONS FOR
CdSe, InAs AND ZnO NC

In previous section, we have studied theoretically
possible situations for NC films as shown by phase
diagrams in Figs. 7 and 8. Now we focus on several
commonly used semiconductor NCs trying to put them
on these diagrams. We choose the same geometrical
parameters α = 0.15, d = 5 nm, ρ = ρa = 1.2 nm for
all of them. Then, we get α−3/2 . d3/ρ3 and use the
phase diagram Fig. 7. The upper part of the diagram
where the NC diameter variation is the major source of
disorder is separated from the lower one where Coulomb
disorder dominates by ∆/Ec = α−5/6 ' 5. For CdSe
NCs since ∆/Ec = 5, the Coulomb effects are marginal
so that we can think about the NC diameter variation
only. When N increases, the film moves from OI to M
as depicted by the upper part of the phase diagram in
Fig. 7 with the intermediate region I being narrow and
neglected since α−3/2 and d3/ρ3 are quite close. For
InAs, since ∆/Ec = 27 � 5, the Coulomb effects are
completely negligible and again the system experiences
the OI-I-M phase changes. For ZnO, however, the ratio
∆/Ec = 3 < 5 and the random Coulomb potential is the
leading disorder in the film. One should then use the
lower part of Fig. 7 for the phase change process with
increasing N . In this case we have the same sequence
of phases OI-I-M but with now the phase I appreciably
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expanded by the Coulomb random potential. Si NC films
are similar to that of ZnO as its ∆/Ec = 2 is also very
small.

One should note that there is no BM phase for the
chosen parameters. To get this phase, one has to tune
α down by making the NCs more monodisperse. For
d = 5 nm and ρ = ρa = 1.2 nm, one needs α < 0.06 to
open the BM phase. This is probably the state-of-the-art
monodispersity. To go even further, one may wonder
whether the BM phase can be expanded all the way
till N = 1. The inequality αd3/ρ3 ≤ 1 guarantees
that the line 2) of Fig. 8 reaches the N = 1 line and
simultaneously the condition ∆/Ec ≥ (d/ρ)4 is required
for the film to be above the point where line 3) crosses
N = 1. If both inequalities are satisfied one can expect a
desirable20,35,36 band-like transport behavior of electrons
when they populate only the 1S-level. However, for NCs
with d = 5 nm and ρ = ρa ' 1.2 nm, the necessary
α = ρ3/d3 ' 0.01 is unrealistically small while necessary
∆/Ec ≥ (d/ρ)4 ∼ 200 is too large. Even increasing ρ to
2ρa brings us only to criteria α ≤ 0.1 and ∆/Ec ≥ 16.
Of course, our estimates are good only for ρ � d/2 so
these numbers should not be taken too seriously. For
ZnO (or Si), since ∆/Ec < (d/ρ)5/3 even at ρ = 2 nm,
the system can never see a BM phase due to the large
Coulomb disorder as shown by Fig. 8.

There is an important case where additional Coulomb
fluctuations may be ignored. We are talking about
NC films gated by an ionic liquid or an electrolyte10,11.
Anions which enter spaces between NCs and attract
electrons in this case play the role of chemical donors
we studied above. However, contrary to immobile
dopants inside a NC anions remain mobile in the process
of adjustment of the gate voltage and tend to screen
electron charges17. Thus, in this case disorder effects
due to fluctuations of NC diameters discussed in Sec. III
should dominate. The ZnO (or Si) NC films then become
similar to CdSe or InAs. At αd2/ρ2 � 1 the OI domain
expands while the I domain shrinks and at αd2/ρ2 � 1,
the OI and I regions are consumed by the BM phase.

VI. TUNNELING MATRIX ELEMENT FOR
NANOCRYSTALS TOUCHING BY FACETS

Beyond the surface of a single NC in the surrounding
medium, the wave function of an electron at the Fermi
level decays with the distance s from the surface as ∝
e−s/b where b = ~/

√
2mU0. Here m is the electron mass

in the medium and U0 is the workfunction of NCs. For
U0 ' 4 eV and m = me, where me is the electron mass
in vacuum, one gets b ' 1Å, which is smaller than the
lattice constant. So, approximately, the electron wave
function is zero on the surface of NCs. When two NCs
touch by contact facets, the electron wave function of the
left NC is strongly modified inside the dashed sphere of
radius ρ containing the facets. Namely, due to the right
NC, the wave function acquires a tail leaking into the

right NC (see Fig. 9a). The wave function inside the
right NC is deformed in the same way. The overall wave
function is split into two

Ψs,a(r) =
1√
2

[ψ(r − rL)± ψ(r − rR)] , (15)

which are symmetric and asymmetric combinations of the
modified wave function ψ inside each NC (see Fig. 9b).
The origin is set at the center of the contact and the polar
axis is pointed towards the center of the right NC. The
coordinates of the centers of left and right NCs are rL and
rR, respectively. ψ(r − rL) refers to the wave function
in the left NC and ψ(r − rR) is that of the right one.
Below, we just use the left wave function for discussion
and simply denote it as ψ. The tunneling matrix element
t between two NCs can be estimated by calculating the
energy splitting between the symmetric and asymmetric
wave functions Ψs,a of Eq. (15). As in the problem of
calculating the electron terms of the molecular ion H+

2 in
§ 81 of Ref. 37, the energy splitting can be calculated as

t =

∫
~2

m∗
ψ
dψ

dz
dx dy (16)

where the integral is taken over the contact boundary
plane z = 0 (see the vertical dashed line in Fig. 9b). In
the case we are discussing now, the contact is made of
the touching facets. In this contact plane, ψ vanishes at
(x, y) outside the facets in the surrounding medium.

z

(b)(a)

z0 0

FIG. 9. (Color online) Electron wave functions near the
contact facet. The vertical dashed line indicates the facet
boundary plane. (a) Electron wave function ψ of the left
NC modified by the right one. It acquires a tail penetrating
into the right NC mainly in the region of the dashed sphere.
(b) Overall wave function as symmetric (blue) or asymmetric
(red) combinations of each NC wave function given by Eq.
(15). The energy difference between these two states is twice
the tunneling matrix element t given by Eq. (16).

Let us deal with EF belonging to a degenerate
(n, l)-shell. Then, the unperturbed wave function of

the left NC is ψ0(r − rL) ' jl(knr
′)Y ml (θ′, φ′)/

√
d/k2n

where jl is the spherical Bessel function, Y ml are spherical
harmonics, knd/2 is the nth zero point of the Bessel
function and kn ≈ 2πn/d ∼ kF , (r′, θ′, φ′) are the
coordinates of r′ = r − rL in the spherical coordinate
system. Y ml (θ′, φ′) → 0 at θ′ → 0 for all m 6= 0, and

for m = 0 Y 0
l (0, φ′) =

√
(2l + 1)/4π > 0. Thus among
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the 2l + 1 degenerate levels of the (n, l)-shell only one
state (m = 0) oriented along the z axis contributes to
the tunneling between neighboring NCs (marked red in
Fig. 4). So we just need to calculate the tunneling matrix
element t of the m = 0 state. When the number N of
electrons inside each NC is large, for the (n, l)-shell at
the Fermi level, we have n ∼ l ∼ N1/3 ' kF d since
the radial and angular kinetic energies should be of the
same order. So for the m = 0 state, the wave function
is highly concentrated near the z axis spreading mainly
within the polar angle ' 1/

√
kF d. More accurately, since

each (n, l)-shell has 2l + 1 degeneracy, we get

N ≈ 2n(l + 1)2 ∼ 2l3, (17)

where the factor 2 comes from the spin degeneracy.
As N = 4πn(d/2)3/3 = k3F d

3/18π, we get n ∼ l ∼(
k3F d

3/36π
)1/3

. The radial distribution is described by
jl(knr

′) ' sin[kn(r′ − d/2)]/knr
′ at large r′. Therefore,

we get approximately the normalized unperturbed wave
function

ψ0 ≈
2 sin [kn(r′ − d/2)]√

dr′
Y 0
l (θ′, φ′) (18)

at large distance from the left NC center. So near the
facet, the original unperturbed wave function ψ0 can
locally be regarded as an incident plane wave superposed
by its completely reflected wave from the surface, i.e.,
ψ0 ≈ 2

√
2l/π sin[kn(z′ − d/2)]/d3/2, where z′ ≈ r′ is the

z-component of r′.
As a result, the problem of an electron tunneling

through a facet is analogous to the one of a plane
wave with the wavenumber kF diffracting on a circular
aperture with radius ρ in z = 0 plane screen. In the
regime where kF ρ � 1, Bethe38 solved this diffraction
problem for microwaves, while Levine and Schwinger39

and Bouwkamp40 solved it for a scalar plane wave.
Here we use the simple solution in the first-order
approximation in kF ρ� 1 given by Rayleigh41.

One can write the Schrodinger equation for the
function ψ as

∇2ψ + k2Fψ = 0. (19)

Boundary conditions on the z = 0 plane are ψ = 0 on
the screen and dψ/dz is continuous at the aperture. We
write the solution ψ as the sum of ψ0 and δψ, where δψ
is the correction due to the aperture opening and the
unperturbed wave function ψ0 of the left NC is zero on
the right side of the boundary plane (z > 0). We denote
δψL, δψR as the left (z < 0) and right (z > 0) part of
the correction function δψ respectively. So in the z = 0
boundary plane, δψL = δψR and outside the aperture
δψL = δψR = 0. The continuity of the derivative dψ/dz
leads to a jump of d (δψ) /dz, i.e., dψ0/dz+d(δψL)/dz =
d(δψR)/dz. The symmetry between δψL and δψR gives
d(δψL)/dz = −d(δψR)/dz in the aperture (the proof

can be found in Refs. 38 and 41. For a possible
interpretation of this result, see the footnote42) and

therefore d(δψR)/dz = (dψ0/dz)/2 ≈
√

2l/πkn/d
3/2.

Now one can rewrite the integral for t in terms of the
correction to the wave function on the right side which
is δψR

t =
~2

m∗

∫
δψR

dδψR
dz

dxdy, (20)

where δψR satisfies the Schrodinger equation (19). At the
aperture ∇2(δψR) ∼ δψR/ρ

2 � k2F δψR because kF ρ �
1. In the first approximation we can neglect the latter
term and thus deal with the Laplace’s equation

∇2(δψR) = 0 (21)

with the boundary conditions δψR = 0 on the screen and
d(δψR)/dz ≈

√
2l/πkn/d

3/2 at the aperture.
Mathematically, an identical problem was exactly

solved in hydrodynamics (see § 108 in Ref. 43). Indeed,
the Laplace’s equation ∇2ϕ = 0 can be used to describe
the motion of a rigid disk of radius ρ moving with velocity
u along its axis (defined as the z axis with the origin at
the disk center) through unlimited incompressible liquid
if ϕ denotes the velocity potential. Boundary conditions
for ϕ are that ∇ϕ = u on the disk and ϕ = 0 at z = 0
outside the disk. The kinetic energy of the liquid in the
z > 0 space is

K =
1

2
g

∫
(∇ϕ)

2
dV, (22)

where g is the density of the liquid. Using Green’s
theorem and the Laplace’s equation for the right half
space (z > 0), we get

K =
1

2
g

∫
ϕ
dϕ

dz
dxdy (23)

where the integral is taken over the whole z = 0 plane.
The potential ϕ is zero outside the disk. Therefore, the
integration is over the disk only, as in Eq. (20). Knowing
the exact solution for ϕ one can arrive at K = (2/3)gρ3u2

(see § 108 in Ref. 43). Thus∫
ϕ
dϕ

dz
dxdy =

4

3
ρ3u2. (24)

In our diffraction problem, δψR plays the role of ϕ
and d(δψR)/dz ≈

√
2l/πkn/d

3/2 plays the role of u.
Therefore, using Eq. (6), we get the tunneling matrix
element t in Eq. (20)

t =
9~2nρ3

m∗d2
=

0.3~2k3F ρ3

m∗d2
. (25)

At kF d ∼ 1, one gets the tunneling matrix element for
the 1s band

t ' ~2ρ3

m∗d5
. (26)
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In Ref. 44, a solution-based oriented attachment method
was used to prepare fused dimers of two semiconductor
NCs. These dimers can be seen as two NCs touching
by their facets. Eq. (26) for t can then be used to
calculate the splitting of the first exciton absorption line
in the dimer spectrum. One should note that Eq. (26)
is obtained here in the limit of infinitesimal tunneling
distance b (which is further explained in Sec. VII). In
the same limit, the method used in Ref. 44 leads to a
smaller t ' ~2ρ4/m∗d6. The reason for this difference is
that on the facet plane our wave function has a larger
magnitude than the one conjectured in Ref. 44.

One can interpret the result for the tunneling matrix
element Eq. (25) as following. Originally the wave
function ψ0 is zero on the boundary plane and its

derivative along the z axis is ' k
3/2
F /d on the contact

facet. Now due to the existence of the facet, the electron
wave function is modified as ψ which leaks into the right
NC and is nonzero on the facet, while the derivative is
hardly changed by the small perturbations. Because the
wave function substantially changes over a distance ρ, we
can say that ψ ≈ (dψ/dz)ρ. As a result,

ψ '
k
3/2
F ρ

d
,

dψ

dz
'
k
3/2
F

d

(27)

inside the contact facet in the z = 0 plane for the m = 0
state which is highly oriented along the z axis. So we
get the result (25) for t. From this t we arrive at Eq.
(4) for the localization length and Eq. (3) for the critical
concentration nc.

A schematic plot of nc as a function of the facet radius
ρ is presented in Fig. 10. The critical concentration
scales as ' 0.3/ρ3 at all ρ � d/2. In the vicinity of
ρ = d/2, electrons are no longer confined inside each NC
and the film becomes a bulk semiconductor. In this case,
nca

3
B ' 0.02, we return to the Mott criterion for the IMT

and get a drastic drop of the critical concentration from
' 2/d3 to 0.02/a3B .

VII. NANOCRYSTALS TOUCHING AWAY
FROM FACETS

When NCs touch each other away from prominent
facets by an area of the atomic size a� ρ, the electrons
tunnel mainly via the effective “b-contact” of radius
ρb =

√
db/2 � a (see Fig. 11). For electrons tunneling

between NCs outside this contact, the tunneling distance
is larger than b and the probability is negligible due to the
exponentially decaying wave function. Since electrons
have to tunnel through the medium where they have
mass m, when calculating the integral Eq. (16) over
the contact boundary plane here, we need to replace the

n c

0

M

I

FIG. 10. Schematic logarithmic plot of the critical
concentration nc as a function of the facet radius ρ at aB �
d. Both axes use logarithmic scales. Near ρ = d/2, the
critical concentration abruptly drops to its value for the bulk
semiconductor.

b

ρb

0 z

FIG. 11. Two NCs touching away from prominent facets. In
this case, electrons tunnel through the b-contact shown in the
inset.

effective mass m∗ with m

t =

∫
~2

m
ψ
dψ

dz
dx dy. (28)

In this case we can use the LCAO approximation in the
way done for the ground state in Ref. 20. We calculate
ψ = ψ0 as the wave function for a single spherical NC
embedded in the infinite surrounding medium with the
finite decay length b. For simplicity, in this section and
below we do only scaling analysis ignoring numerical
coefficients.

Using the continuity of the wave function on the NC
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surface, we get

ψ0 '
kF√
d
Y ml (θ′, φ′)


jl(kF r

′) r′ < d
2

jl (kF d/2)

h
(1)
l (id/2b)

h
(1)
l (ir′/b) r′ > d

2 ,

(29)

where h
(1)
l is the first-kind spherical Hankel function and

only Y 0
l (θ′, φ′) is nonzero at θ′ = 0 corresponding to the

state participating in the tunneling. The origin is set at
the touching point of NCs with the z axis pointed towards
the center of the right NC and therefore the boundary
plane is at z = 0 (see the vertical dashed line in Fig. 11).
Again (r′, θ′, φ′) are the coordinates of r′ = r−rL in the
spherical coordinate system and rL is the coordinate of
the center of the left NC. For the finite potential barrier
U0 the derivative of the wave function divided by the
effective mass is continuous across the surface, i.e.,

dψ0

dr′
1

m∗

∣∣∣∣
r′−d/2=0−

=
dψ0

dr′
1

m

∣∣∣∣
r′−d/2=0+

. (30)

Using that jl(kF r
′) ' sin [kF r

′ + ϕl] /kF r
′, h

(1)
l (ir′/b) '

be−r
′/b/r′ at large r′ near the surface where ϕl is a

constant, we have

cot

(
kF d

2
+ ϕl

)
'− m∗

mkF b
+

2

kF d
(31)

where d/b � 1, m/m∗ � 1, kF d � 1 at high
doping concentration and kF d ∼ 1 for the ground state.
At 1/kF b � m/m∗, the cotangent function diverges
which means cos (kF d/2 + ϕl) ≈ 1, 1/ sin(kF d/2 + ϕl) ≈
−m∗/mkF b. So on the boundary plane inside the
b-contact (r′ − d/2 = 0+), we have

ψ0 '
−kF√
d

mkF b

kF dm∗

√
l

dψ0

dr
' kF√

d

mkF
kF dm∗

√
l.

(32)

The tunneling matrix element is then

t ' ~2k3F db2(m/m∗)

m∗d2
. (33)

At 1/kF b � m/m∗, the cotangent function either
vanishes or is finite depending on whether d/b� m/m∗

or kF d � 1 is satisfied. This means the sine function is
always finite and of the order 1. So inside the b-contact
we get

ψ0 '
kF√
d

1

kF d

√
l

dψ0

dr
'−kF√

d

1

kF db

√
l,

(34)

and the tunneling matrix element is

t ' ~2kF d(m∗/m)

m∗d2
. (35)

One can check that when we put k−1F ∼ d into Eqs. (33)
and (35), we get the same tunneling matrix elements for
the ground state as derived in Ref. 20 for NCs touching
in one point.

According to Eqs. (33) and (35), the localization
length is then

ξ ≈


d

ln [1/ndb2(m/m∗)]
,

m

m∗
� 1

n1/3b

d

ln
[
1/n1/3d(m∗/m)

] , m

m∗
� 1

n1/3b
.

(36)

This leads to the critical concentration

nc '


1

b2d

m∗

m
,

m

m∗
�
(
d

b

)1/2

1

d3

( m
m∗

)3
,

m

m∗
�
(
d

b

)1/2

,

(37)

which has its minimum value nc ' 1/(db)3/2 = 1/ρ3b at

m/m∗ '
√
d/b. Even this minimum value is much larger

than 1/ρ3a since ρa � ρb. Thus, when NCs touch away
from prominent facets the critical concentration is pushed
much higher. In fact, for CdSe NC films, by using b = 0.1
nm, d = 5 nm, m = me, m

∗ = 0.13me
45 where me is the

free electron mass, we get nc ' 3 × 1021cm−3, which is
difficult to achieve.

When NCs are separated by short ligands46 by a small
distance s, the overlapping wave functions exponentially
decay as ∝ e−s/b between neighboring NCs. Following
a procedure similar to above derivations, we can get the
tunneling matrix element t as

t ' ~2

m∗d2
exp

(
−s
b

)
k3F b

2d
m

m∗
,

m

m∗
� 1

kF b

kF d
m∗

m
,

m

m∗
� 1

kF b
.

(38)
At smallest kF = 1/d, Eq. (38) gives the same results as
in Ref. 20 for NCs separated by short ligands.

Therefore, we get the localization length

ξ ≈


d

s/b+ ln [1/ndb2(m/m∗)]
,

m

m∗
� 1

n1/3b

d

s/b+ ln
[
1/n1/3d(m∗/m)

] , m

m∗
� 1

n1/3b
.

(39)
At large s we can ignore the logarithmic terms originating
from the prefactor of t. But for small s, near the
IMT, the role of these terms becomes important. One
should note that even when NCs touch by short ligands,
the localization length of electrons can be enhanced by
increasing the doping concentration n inside each NC.
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The critical concentration nc is then

nc '



1

b2d

m∗

m
exp

(s
b

)
, s� b ln

[(
m∗

m

)2
d

b

]

1

d3

( m
m∗

)3
exp

(
3s

b

)
, s� b ln

[(
m∗

m

)2
d

b

]
(40)

which can easily become unrealistically large.

VIII. RANDOM-SPECTRUM NC

In previous sections, we have studied the highly
degenerate case assuming that the splitting of (n, l)-shells
is much smaller than the energy gap ∆. In this section,
we discuss limits of applicability of this assumption and
find the localization length for strongly split and mixed
(n, l)−shells which form a random spectrum similar to
the case of metal garnules28–30,47,48. We show below that
this happens at relatively small ∆/Ec < N1/3 or in the
domain below the dashed line on Figs. 7 and 8. So the
theory of this section is applicable for large enough NCs
made from Si or ZnO.

Besides shifting the ladder of degenerate levels up and
down discussed above, the random electric field created
by neighboring charged NCs can split the degenerate
shells of each NC due to the Stark effect. This field
determined by nearest-neighbor NCs is E ∼ e

√
N/εfd

2.
Electrons in the NCs respond to the internal field, which
is smaller than E by the factor 3/(2 + ε/εf ). As we said
in Sec. II, ε/εf is ' 3, so this factor is ' 3/5 and we will
ignore it.

To calculate the Stark splitting we first note that the
matrix element of the electric field potential does not
vanish only between shells with l values differing by unity
and is then of the order of eE d. The typical energy
difference between such shells in the spherical well withN
electrons is N1/3∆. Therefore, the typical Stark energy
shift or the width of the split shell W emerges in the
second-order perturbation theory and is

W ' (eE d)2

N1/3∆
. (41)

(The Stark splitting can also come from random positions
of N donors inside each NC and is comparable to Eq.
(41). This disorder creates an internal dipole moment

∼
√
Ned and an electric field, oriented in a random

direction.)
Comparing Eq. (41) with the energy gap ∆ between

consecutive shells, we see that at

∆/Ec < N1/3 (42)

the levels become random with the spacing δ = ∆/N1/3

as the only characteristic energy49. ∆/Ec = N1/3 is
shown in Figs. 7 and 8 by the dashed lines separating

I and I’ phases. When the inequality (42) holds, the
degeneracy is broken and different (n, l)-shells mix with
each other. Thus inside each NC, the states close to
the Fermi level and, therefore, involved in the electron
tunneling have typically different l numbers so that they
have different parity and their tunneling matrix element
t has random signs. The electron wave functions of
different m hybridize and become chaotic instead of
being confined in certain polar angles. So the typical
magnitude of the wave function on the contact facet is√
kF d times smaller than that of the “red” m=0 state for

the degenerate case. These changes lead to the random
matrix spectrum case which has been studied in previous
work for larger dots28–30,47,48. In this case,

ψ ' kF ρ
d3/2

,

dψ

dz
'kF
d

(43)

where kF is given by Eq. (6). Therefore, the typical
tunneling matrix element is

t ' ~2k2F ρ3

m∗d3
. (44)

At the same time, the energy gap between consecutive
non-degenerate levels is also reduced to δ ' ∆/(2l+1) '
~2/m∗d3kF . Then according to Refs. 28 and 30 the
localization length is

ξ ≈ d

ln
(√
Ecδ/t

) . (45)

So one gets

ξ ≈ d

ln
(
d/a

1/2
b n5/6ρ3

) (46)

where ab = εf~2/m∗e2 and εf is the effective dielectric
constant of the film.

According to Eq. (46), at t ' δ, the localization length
is still much smaller than the NC diameter d, which
seems to indicate a criterion different from t ' δ for
the IMT. However, one should notice that as t → δ,
the charge discreteness is no longer well preserved and
the charging energy vanishes50,51, so δ takes the place of
Ec and changes the expression of ξ to d/ ln(δ/t). Using
Eq. (44) and δ ' ~2/m∗d3kF , we get t ' δ at kF ρ ∼ 1.
The localization length ξ becomes comparable to d at this
point. This again leads to our above criterion Eq. (3), the
same as for the degenerate case. Since this elimination
of charging energy occurs in the vicinity of the IMT,
we should see a steep growth of the localization length,
which is a major feature different from the degenerate
case. According to Eq. (3), nc � nM at ρ � aB . The
critical concentration decreases with ρ and saturates at
nM when ρ ∼ aB .
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IX. CONCLUSION

In this paper we studied theoretically what happens to
the variable range hopping conductivity of semiconductor
NC films when NCs are doped by donors with the
concentration n. Experiments show that the localization
length of electrons ξ(n) grows with n and at some n =
nc becomes larger than the diameter d of NCs, what
signals that the film is approaching the insulator-metal
transition (IMT). We provide theoretical estimates of
ξ(n) and nc. The localization length is determined by
the competition of disorder and transfer matrix element
t(n) between neighboring NCs.

We concentrated on the case of small spherical NCs
in which the electron spectrum consists of degenerate
energy shells separated by the quantization gap ∆. In
such films energy levels of NCs vary due to the dispersion
of NC diameters and variations of the number of donors
from NC to NC which result in random Coulomb
potentials. We showed that for the standard diameter
dispersion it is important for ∆/Ec > 5, where Ec is the
charging energy, while the Coulomb disorder dominates
for the opposite case ∆/Ec < 5.

The matrix element t(n) grows with n and depends on
the geometry of contacts between NCs. We calculated
t(n) for different types of contacts. We showed that for
a finite separation between NCs or even when NCs touch
each other in one point, the IMT may need unrealistically
large n. This is why we focused on the case when
close-to-spherical NCs touch by smallest facets . We
found ξ(n) in this case and our results are in qualitative
agreement with the experimental data for ξ(n) obtained
in Ref. 15. For these facets nc is still relatively high
and for d = 5 nm CdSe NCs it corresponds to N ∼ 20
electrons per NC, which justifies our large-N approach.
To make nc smaller one should deal with small NCs
with ∆/Ec > 5 and use NCs touching by larger facets.
Another route is making much smaller dispersion of
diameters, but this route does not look realistic.
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