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We study amplified spontaneous emission (ASE) from wavelength-scale composite bodies—complicated ar-
rangements of active and passive media—demonstrating highly directional and tunable radiation patterns, de-
pending strongly on pump conditions, materials, and object shapes. For instance, we show that under large
enough gain, PT symmetric dielectric spheres radiate mostly along either active or passive regions, depending
on the gain distribution. Our predictions are based on a recently proposed fluctuating volume–current (FVC) for-
mulation of electromagnetic radiation that can handle inhomogeneities in the dielectric and fluctuation statistics
of active media, e.g. arising from the presence of non-uniform pump or material properties, which we exploit
to demonstrate an approach to modelling ASE in regimes where Purcell effect (PE) has a significant impact on
the gain, leading to spatial dispersion and/or changes in power requirements. The nonlinear feedback of PE on
the active medium, captured by the Maxwell–Bloch equations but often ignored in linear formulations of ASE,
is introduced into our linear framework by a self-consistent renormalization of the (dressed) gain parameters,
requiring the solution of a large system of nonlinear equations involving many linear scattering calculations.

Noise in structures comprising passive and active materi-
als can lead to important radiative effects,1 e.g. spontaneous
emission (SE),2 superluminescence,3 and fluorescence.4 Al-
though large-etalon gain amplifiers and related devices have
been studied for decades,5–8 there is increased interest in the
design of wavelength-scale composites for tunable sources of
scattering and incoherent emission,9,10 or for realizing perfect
absorbers11 at mid-infrared and visible wavelengths.

In this paper, we extend a recently developed fluctuating–
volume current (FVC) formulation of electromagnetic (EM)
fluctuations12–15 to the problem of modeling spontaneous
emission and scattering from composite, wavelength-scale
structures, e.g. metal–dielectric spasers,16–18 subject to in-
homogeneities in both material and noise properties. We
begin by studying amplified spontaneous emission (ASE)
from piecewise-constant composite bodies, showing that their
emissivity can exhibit a high degree of directionality, depend-
ing sensitively on the gain profile and shape of the objects. For
instance, we find that under large enough gain, the directivity
of parity-time (PT ) symmetric spheres can be designed to lie
primarily along active or passive regions, depending on the
presence or absence of centrosymmetry, respectively. Such
composite micron-scale emitters act as tunable sources of in-
coherent radiation, forming a special class of infrared/visible
antennas exhibiting polarization- and direction-sensitive ab-
sorption and emission properties. An important ingredient for
the design of directional emission is the ability to tune the gain
profile of the objects, which can be far from homogeneous in
realistic settings. Here, we consider two important sources of
inhomogeneities affecting population inversion of atomically
doped media: inhomogeneous pump profiles and modifica-
tions stemming from changes to the emitters’ local radiative
environment. Below threshold, the latter stems primarily from
changes to atomic decay rates, which can be either enhanced
or suppressed through the Purcell effect (PE).19 Because PE
is sensitive to the gain and geometry of the objects, such a
dependence manifests as a nonlinear and nonlocal interac-
tion (or feedback) between the atomic medium and the optical

environment,20 which we model within the stationary–phase
approximation21 via a self-consistent renormalization of the
(dressed) atomic parameters. We show that this leads to a sys-
tem of nonlinear equations, involving as many degrees of free-
dom as there are volumetric unknowns, which in principle re-
quire many scattering problems (radiation from dipoles) to be
solved simultaneously, but which thanks to the low-rank na-
ture of volume–integral equation (VIE) scattering operators14

can be accurately obtained with far fewer scattering calcula-
tions than there are unknowns. Our predictions indicate that
under significant PE, composite objects can exhibit a high de-
gree of dielectric gain enhancement/suppression and inhomo-
geneity, affecting power requirements and emission patterns.

Gain–composite structures are the subject of recent theo-
retical and experimental work,1 and have been studied in a
variety of different contexts, including spasers (combinations
of metallic and gain media) with low-threshold characteris-
tics,16–18,22,23 random structures with special absorption prop-
erties,24–28 and nano-scale particles with highly tunable emis-
sion and scattering properties.29,30 PT –symmetric structures
have received special attention recently as they shed insights
into important non-Hermitian physics, such as design crite-
ria for realizing exceptional points,31 symmetry–breaking,31

uni-directional scattering,32–34 and lasing thresholds.35 Until
recently, most studies of radiation/scattering from PT struc-
tures remained confined to 1d and 2d geometries.9,33,34,36–40

In such low-dimensional systems, it is common to employ
scattering matrix formulations33,36,37 to solve for the complex
eigenmodes and scattering properties of bodies, leading to
many analytical insights. For instance, while the introduc-
tion of gain violates energy conservation, a generalized opti-
cal theorem can be obtained in 1d, establishing conditions for
unidirectional transmission of light.32–34 Other studies focus
on 2d high–symmetry objects such as cylindrical or spherical
bodies38,39 or particle lattices,40 demonstrating strong asym-
metric and gain-dependent scattering cross-sections, while 3d
structures such as ring resonators have been studied within
the framework of coupled-mode theory.41,42 With few excep-
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tions,9 however, most studies of gain–composite bodies have
focused on their scattering rather than emission properties.

Furthermore, while these systems are typically studied un-
der the assumption of piecewise-constant9,33,36 or linearly
varying10 gain profiles, in realistic situations, inhomogeneities
in the pump or material parameters (e.g. arising from PE,20

hole burning,43,44 and gain saturation44) result in spatially
varying dielectric profiles which alter SE. For example, the
highly-localized nature of plasmonic resonances in spasers re-
sult in strongly inhomogeneous pumping rates17 and orders-
of-magnitude enhancements in atomic radiative decay rates.45

In random lasers,24 partial pumping plays an important role
in determining the lasing threshold26,46 and directionality.27,28

Rigorous descriptions of lasing effects in these systems com-
monly resort to solution of the full Maxwell–Bloch (MB)
equations, in which the electric field E and induced (atomic)
polarization field P couple to affect the atomic popula-
tion decay rates.47 However, the MB equations are a set of
coupled, time-dependent, nonlinear partial differential equa-
tions48 which, not surprisingly, prove challenging to solve
except in simple situations involving high–symmetry45,49 or
low-dimensional structures.1 Despite their overhead, brute-
force FDTD methods have been employed to study the tran-
sition from ASE to lasing in 1d random media,25,50 2d meta-
materials,49,51 photonic crystals,52 and more recently, nano-
spasers.45

A more recent, general-purpose method that is applica-
ble to arbitrary structures is the steady-state ab-initio laser
theory (SALT), an eigenmode formulation that exploits the
stationary-inversion approximation to remove the time de-
pendence and internal atomic dynamics of the MB equa-
tions,21,53,54 yet captures important nonlinear effects such as
hole burning and gain saturation21 through effective two-level
polarization and population equations.55 The resulting nonlin-
ear eigenvalue equation can be solved via a combination of
Newton-Raphson,48,56 sparse-matrix solver,57 and nonlinear
eigenproblem58 techniques, exploiting either spectral “CF”
basis expansions (especially suited for structures with spe-
cial symmetries)59 or brute-force methods60 that can handle
a wider range of shapes and conditions. Although this for-
mulation can describe many situations of interest, it never-
theless poses computational challenges in 3d or when applied
to structures supporting a large number of modes.48 Further-
more, the impact of noise below or near threshold has yet to be
addressed, though recent progress is being made along these
directions.48,56

Below and near the lasing threshold, stimulated emission is
often negligible, enabling linearized descriptions of the gain
medium.44,47,61,62 Such approximations, however, ignore non-
linearities stemming from the induced radiation rate ∼ E · P
present in the MB equations, which captures feedback on
the atomic medium due to amplification or suppression of
noise from changes in the local density of states (also known
as Purcell effect).45,63,64 Here, we show that PE can be in-
troduced into the linearized framework via a self-consistent
renormalization or dressing of the gain parameters, an ap-
proach that was recently suggested20 but which has yet to
be demonstrated. In particular, working within the scope
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Figure 1. Schematic of a gain–loss composite body consisting of
a dense (active) collection of 4-level atoms (left inset) optically
pumped via monochromatic light at frequency ω30 and pump rate
P , resulting in population inversion and spontaneous emission (SE)
at ω21. The nonlinear feedback of Purcell effect on the SE rate of the
object is captured via a system of nonlinear equations illustrated on
the right schematic, in which: (a) the dielectric constant at the loca-
tion of the nth emitter depends on the corresponding atomic decay
rate γ21,n through (1); (b) the radiative emission Φn of a classical
dipole at the location of the nth emitter, described by (7), is altered,
e.g. enhanced or suppressed, by the surrounding ε(x); and (c) the ra-
diative decay rate γr

21,n of the emitter is dressed by the Purcell effect
through (8), which in turn affects the dielectric response in (1).

,

of the linearized MB equations and stationary-inversion ap-
proximation, we capture the nonlinear feedback of ASE on
gain, i.e. the steady-state enhancement/suppresion of gain
and atomic decay rates due to PE, via a series of nonlinear
equations involving many coupled, linear, classical scatter-
ing calculations—local density of states or far-field emission
due to electric dipole currents. Since the gain profile can be-
come highly spatially inhomogeneous, it is advantageous to
tackle this problem using brute-force methods, e.g. finite dif-
ferences,65 finite elements,66 or via the scattering VIE frame-
work described below. Our FVC method is particularly advan-
tageous in that it is general and especially suited for handling
scattering problems with large numbers of degrees of freedom
(defined only within the volumes of the objects), in contrast
to eigenmode expansions59 which become inefficient in situa-
tions involving many resonances48,59 or near-field effects.67,68

I. THEORY

Active medium.— To begin with, we review the linearized
description of a gain medium consisting of optically pumped
4-level atoms, as shown in Fig. 1: a dense collection of active
emitters (e.g. dye molecules44 or quantum dots69,70) embed-
ded in a passive (background) dielectric medium ǫr. (Note
that our choice of 4-level system here is merely illustrative
since the same approach described below also applies to other
active media.) Below threshold where stimulated emission
(and effects such as hole burning) can be safely ignored,44 the
effective permittivity of such a medium can be well approxi-
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mated by a simple 2-level Lorentzian gain profile,44,61,62

ǫ(ω,x) = ǫr(ω) +
4πg(x)2

~γ⊥

γ⊥D0(x)

ω − ω21 + iγ⊥
︸ ︷︷ ︸

ǫg(x,ω)

, (1)

where ǫg depends explicitly on the frequency ω12, polariza-
tion decay rate γ⊥ (or gain bandwidth), coupling strength

g2 = 3~c3

2
√
ǫrω3

21

γr
21,61,62 and inversion factor D0 = n2 − n1

associated with the 2 → 1 transition. Under the adiabatic
or stationary-inversion approximation21 and assuming that the
system is pumped at ω30, the steady-state population inversion
is given by:

D0 =

(

1− γ21

γ10

)

P/γ21

1 +
(

Aγ21

γ32
+ γ21

γ10
+ 1

)

P/γ21
n. (2)

(Note that in a dense medium, γ⊥ ≫ γ21 is dominated by
collisional and dephasing effects.44) Here, A = 1(2) for inco-
herent (coherent) pump source; c denotes the speed of light,
ni the population (per unit volume) of level i, n =

∑

i ni

the overall atomic population, γij = γr
ij + γnr

ij the decay rate
from level i → j, consisting of radiative and non-radiative
terms, respectively, and P(x) = σc√

ǫr(ω30)~ω30

|E(x, ω30)|2 is

the position-dependent pump rate from 0 → 3, which is often
the main source of spatial dispersion.

The SE properties of such a medium are described by the
fluctuation–dissipation theorem (FDT).71–73 In particular, lo-
cal thermodynamic considerations imply that the presence of
absorption or amplification must be accompanied by fluc-
tuating polarization currents σ whose correlation functions,
〈σi(x, ω)σ

∗
j (y, ω)〉 = 4

π Im ǫg(x, ω)n2/(n1−n2)δ(x−y)δij ,
depend on the corresponding macroscopic gain profile Im ǫg
and population inversion, n2/(n1 − n2).74 The latter is often
described in terms of an effective (local) temperature T de-
fined with respect to the Planck spectrum,71 (e~ω/kBT −1)−1,
whose value turns negative75 for systems undergoing popu-
lation inversion, n2 > n1, where T → 0− in the limit
of complete inversion and T → −∞ when the system is
in the ground state.72 In the particular case of a steady-
state four-level system, the relative populations n2/n1 de-
pend only on the relative decay rates and one finds that
kBT = ~ω ln(n1

n2

) = ~ω ln(γ10

γ21

) depends only implicitly on
the pumping rate only through changes in the atomic decay
rates (Purcell effect); in contrast, the effective temperature of
three-level systems depends explicitly on the pumping rate.
The presence of inhomogeneities in the dielectric function and
fluctuation statistics can be a hurdle for calculations of SE
that rely on scattering-matrix formulations,76,77 but here we
exploit a recently developed FVC formulation based on the
VIE method which captures all of the relevant physics.

FVC formulation.— In order to obtain the individual and/or
cummulative radiation from all dipoles within a given ob-
ject, we exploit the FVC formulation introduced in Ref. 14
and summarized here. The starting point of FVC is the VIE
formulation of EM scattering,66 describing scattering of an
incident, 6-component electric (E) and magnetic (M) field

φinc = (E;H) from a body described by a spatially vary-
ing 6 × 6 susceptibility tensor χ(x). Given a 6-component
electric (J) and magnetic (M) dipole source σ = (J;M),
the incident field is obtained via a convolution (⋆) with the
6 × 6 homogeneous electric and magnetic Green’s function
(GF) of the ambient medium Γ(x,y), such that φinc = Γ ⋆
σ =

´

d3 yΓ(x,y)σ(y). Exploiting the volume equivalence
principle,66 the unknown scattered fields φsca = Γ ⋆ ξ can
also be expressed via convolutions with Γ, except that here
ξ = −iωχφ are the (unknown) bound currents in the body, re-
lated to the total field inside the body φ = φinc+φsca through
χ. Writing Maxwell’s equations in terms of the bound cur-
rents, we arrive at the so-called JM–VIE equation:12

[
Γ ⋆+(iωχ)−1

]

︸ ︷︷ ︸

Z

ξ = −(Γ ⋆ σ), (3)

whose solution can be obtained by a Galerkin discretization of
the currents σ(x) =

∑

n snbn(x) and ξ(x) =
∑

n xnbn(x) in
a convenient, orthonormal basis {bn} of N 6-component vec-
tors, with vector coefficients s and x, respectively. The result-
ing matrix expression can be written in the form x+ s = Ws,
defining the VIE matrix (W−1)m,n = 〈bm, bn+ iωχ(Γ⋆bn)〉
with 〈, 〉 denoting the standard conjugated inner product. Di-
rect application of Poynting’s theoremΦ = 1

2 Re
´

d3x (E∗×
H) yields the following expression for the far-field radiation
flux from σ (here, a single dipole source embedded within the
volume):78

Φσ = −1

2
Re ξ∗φ = −1

2
Re(ξ + σ)∗Γ ⋆ (ξ + σ) (4)

= −1

2
(x+ s)∗ symG(x+ s) (5)

= −1

2
s∗W ∗ symGWs (6)

= −1

2
Tr [DW ∗ symGW ] (7)

where D = s∗s and G are N × N matrices, with Gmn =
〈bm,Γ ⋆ bn 〉.

If {bn} is chosen to be a localized basis of unit-amplitude,
i.e. 〈bm, bn〉 = δnm, volume elements, then the flux con-
tribution from a given dipole source in the volume (includ-
ing different polarizations) bn is precisely the diagonal el-
ement − 1

2 (W
∗ symGW )n,n. In contrast, the overall ASE

is given by an ensemble-average over all such fluctuating
dipole sources Φ = 〈Φσ〉, in which case the elements of
the matrix D, which encodes information about the cur-
rent amplitudes, are given by the current–current correlations
〈D〉mn =

´ ´

d3xd3y b∗m(x)〈σ(x)σ∗(y)〉bn(y), determined
by the FDT above. Direct computation of (7) is expensive
due to the large dimensionality N of the problem, but it turns
out that the Hermitian, negative-semidefinite, and low-rank
nature of symG (since it is associated with the smooth, imag-
inary part of the Green’s functions) enables re-expressing the
trace as the Frobenius norm of a low-rank matrix. Specifi-
cally, decomposing symG = −UrSrU

∗
r via a fast approx-

imate SVD,79 where r ≪ N ,80 and further decomposing
Sr = LSL

∗
S , we find that the product W ∗ symGW can be
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written in the form QQ∗, with Q = W ∗UrLS , reducing the
calculation of the diagonal elements to a small series r ≪ N
of scattering calculations (matrix-inverse operations).12 Sim-
ilarly, as shown in Ref. 14, the same follows for the overall
ASE which is just a weighted sum of the diagonal elements.
For example, while the calculations below require N ≥ 403

basis functions to obtain accurate spatial resolution, we find
that generally r . 20.

Purcell effect.— Although often assumed to be uniform be-
low threshold, the atomic radiative decay rates γr

ij entering

(1) are in fact position dependent due to PE,45,63 leading to
changes in the dipole coupling g and population inversion fac-
tor D0, either enhancing or suppressing (quenching) gain.63 In
what follows, we only consider modifications to the radiative
decay rate at the lasing transition γr

21; unlike the pump which
is incident at a non-resonant frequency, changes in γr

21 can
have a significant impact on SE and must therefore be treated
self-consistently.

The impact of PE on the radiative decay rate γr
21 of an atom

at some position bn is captured by the coupling of the atomic
polarization and electric fields ∼ P · E, or the induced radi-
ation term in the MB equations, in the presence of the noise
and surrounding dielectric environment.81 While technically
this requires abandoning the linear model above, the weak na-
ture of noise (ignoring stimulated emission) implies that the
latter can also be obtained (perturbatively) from a linear, clas-
sical calculation: the radiative flux Φbn from a classical dipole
at bn. Specifically, the renormalized or dressed decay rate of
an atom at position x can be expressed as:63

γr
21(x) = F(x)γr,0

21 , (8)

where F(x) denotes the Purcell factor of a dipole at x, and the
supper-script “0” denotes the decay rate of the atomic popu-
lation in the lossy (background) medium. It follows that the
decay rate associated with a given bn and entering (1) is given
by γ21(bn) = γnr

21 + Fbnγ
r,0
21 , where the Purcell factor,

Fbn = Φbn/Φ
0. (9)

(Note that all Φbn ∼ (W ∗ symGW )n,n can be computed
very fast, as explained above, and that Fbn does not depend on
the amplitude of the fluctuations since it is measuring the rela-
tive radiation rate of a classical emitter at this position.) Here,
we assume that the bulk (background) medium ǫr only has
a significant impact on γnr,0

21 (obtained either experimentally
or theoretically by accounting for atomic interactions within
the bulk)44 but not on the radiative decay rate γr,0

21 , in which
case Φ0 = ω4/12πǫ0c

3 is the emission rate of the atom in
vacuum (assuming a unit-amplitude dipole). Note that in a
lossy medium, e.g. in metals, the bare γ0

21 will be domi-
nated by non-radiative processes,82,83 leading to small quan-
tum yields (QY) γr,0

21 /γ
0
21 ≪ 1. Technically, the calculation

of the Purcell factor requires integration over the gain band-

width, Fbn =
´

dω γ⊥/π
γ2

⊥
+(ω−ω21)2

Φbn (ω)
Φ0(ω) , but here we make the

often-employed and simplifying assumption that γ⊥ ≫ γ21
and γ⊥ . spectral radiative features,84,85 so as to only con-
sider radiation at ω21.

The gain profile of a body subject to an incident pump rate
P can be obtained by enforcing that (1) and (8) be satisfied si-
multaneously. Such systems of nonlinear equations are most
often solved iteratively using one or a combination of algo-
rithms, ranging from simple fixed-point iteration86 to more
sophisticated approaches like Newton–Raphson and nonlin-
ear Arnoldi methods.48,87 Essentially, as illustrated in Fig. 1,
starting with the bare parameters, dressed decay rates are com-
puted via (8) from the radiation equation (7) after which, hav-
ing updated the gain–medium equation (1), the entire process
is repeated until one arrives at a fixed-point of the system. In
principle, this requires hundreds of thousands N of scattering
calculations (flux from each dipole source in the active region)
to be solved per iteration, which becomes prohibitive in large
systems, but the key here is that the entire spatially varying
flux {Φbn} throughout the body can be computed extremely
fast, requiring far fewer (≪ N ) scattering calculations (as de-
scribed above). Note that these large systems of nonlinear
equations have many fixed points and hence convergence to
the correct solution is never guaranteed, depending largely on
the inital guess and algorithm employed.88 However, a con-
venient and effective approach is to begin by first solving the
system in the fast-converging (passive) regime Pn/γ12 ≪ 1,
and then employing this solution as an initial guess at larger
pumps.

II. RESULTS

We begin this section by showing that wavelength-scale
composite bodies can exhibit highly complex, tunable, and
directional radiation patterns. Although it is not surpris-
ing that objects undergoing ASE (once known as “mirrorless
lasers”) exhibit highly directed radiation patterns,89 few stud-
ies have gone beyond large-etalon Fabry-Perot cavities90 or
fiber waveguides,91 often modelled via ray-optical or scalar-
wave equations,1 which miss important effects present in
wavelength-scale systems.48 Further below, we show that di-
electric inhomogeneities arising from the pump and/or radia-
tion process can also introduce important changes to the ASE
patterns. In particular, we apply the renormalization approach
described above to consider the nonlinear impact of Purcell
effect on the gain medium, and show that while in many cases
a homogeneous approximation leads to accurate results, there
are situations where these can fail dramatically. Our calcu-
lations are only meant to serve as proof of principle and re-
volve around highly doped (Er3+ and Rhodamine) but simple
dielectric objects, allowing faster computations but requiring
very large values of Im ǫg to achieve significant gain. Sim-
ilar results follow, however, in systems subject to smaller ǫg
or smaller doping densities, at the expense larger pump pow-
ers or by exploiting resonances with greater confinement or
smaller radiative loss rates (e.g. compact bodies of larger di-
mensions and/or refractive indices, or more complex struc-
tures such as photonic-crystal resonators).

Tunable radiation patterns.— We begin by exploring SE
from piecewise-constant PT –symmetric spheres [Fig. 2 in-
sets] consisting of a background dielectric medium, e.g. nano-
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Figure 2. (a) SE flux Φ from PT –symmetric spheres consisting of N = {1, 2, 3, 4} (black, green, blue, and red lines) regions of equal gain
(orange) and loss (gray), with permittivities ǫ = 4 ± i and gain temperature T → 0− K (corresponding to complete population inversion),
as a function of sphere radius R (for a fixed vacuum wavelength 2πc/ω). Φ(ω) is normalized by the flux |ΦBB(ω)| = R2(ω/c)2~ω from
a “blackbody” of the same surface area and temperature. Insets show angular radiation intensities Φ(θ, φ) for different N at selective radii
R = {2.6, 3, 2.7, 2.1}(c/ω) (corresponding to increasing N ), with orange/gray colormaps denoting regions of gain/loss. (b) Selected Φ(θ, φ)
of various PT –symmetric shapes, including “beach balls”, “magic” cubes, and cylinders, showing complex directivity patterns that depend
strongly on the centro-symmetry of the objects. Here the color white (black) refers to the maximum (minimum) flux value. (c) Peak SE flux
Φ (right axis, dashed lines) and directivity ΦG/Φ (left axis, solid lines), or the ratio of the flux emitted along gain direction ΦG (see text) to
the total flux Φ, near the third resonance of the N = 1 sphere, as a function of the gain/loss tangent δ = | Im ǫ|/Re ǫ and for multiple values
of Re ǫ = {2, 4, 12} (red, black, and blue lines), where the vertical dashed black line denotes δ for (a). The plots show increased directivity
attained as the system approaches the lasing threshold (marked in the case of Re ǫ = 12, where Φ diverges ).

composite polymers92,93 or semiconductors,41,94 doped with
active materials to realize different (N ) regions of equal gain
(orange) or loss (gray). Figure 2(a) shows the SE flux Φ from
spheres of varying N = {1, 2, 3, 4} (black, green, blue, red
lines) and gain/loss permittivities ǫ = 4 ± i, at a fixed fre-
quency ω and gain temperature T → 0− K (corresponding
to complete inversion), as a function of radius R (in units of
the vacuum wavelength c/ω). Φ(ω) is normalized by the flux
|ΦBB(ω)| = R2(ω/c)2~ω from a “blackbody” of the same
surface area and temperature. As expected, Φ exhibits peaks
at selected R & (c/ω) corresponding to enhanced emission at
Mie resonances. (Note that peaks in Φ continue to increase
in amplitude with increasing R, due to decreased radiative
losses, with the bandwidth of the resonances narrowing as the
system reaches the lasing transition, at which point our lin-
ear approach breaks down.) Associated with increased ASE
is increased directivity, illustrated by the radiation patterns
Φ(θ, φ) shown on the insets of Fig. 2(a) at selected R, whose
high directionality contrast sharply with the emission profile
of passive particles. (With few exceptions,15 the latter tend to
emit quasi-isotropically, as can be verified by decreasing the
gain of the spheres.) We find that the direction of largest ASE
changes drastically with respect to N , with radiation coming
primarily from either active or passive regions depending on
whether the spheres exhibit or lack centrosymmetry, respec-
tively (insets). In particular, the ratio ΦG/Φ of the flux emit-
ted from the gain surfaces,

ΦG =

N−1∑

k=0

ˆ

dθ sin2(θ)

ˆ π(2k+1)/N

2πk/N

dφΦ(θ, φ),

to the total flux Φ, is generally . 0.5 for odd N (centrosym-
metric) and & 0.5 otherwise. For instance, N = 1 spheres ex-
hibit ΦG/Φ ≈ 0.1 at R ≈ 3.3(c/ω) whereas N = 2 spheres

exhibit ΦG/Φ ≈ 0.75 at R ≈ 3(c/ω). The sensitive depen-
dence of emission pattern on geometry and gain profile is not
unique to spherical structures, as illustrated in Fig. 2(b), which
shows Φ(θ, φ) for various shapes, including “magic” cubes,
“beach balls”, and cylinders—as before, the presence/absence
of centro-symmetry results in high/low gain directivity.

To understand the features and origin of these emission
patterns, Fig. 2(c) explores the dependence of the peak Φ
(dashed lines) and ΦG/Φ (solid lines) on the gain/loss tan-
gent δ = | Im ǫ|/Re ǫ of the N = 1 sphere, near the third
resonance and for multiple values of Re ǫ = {2, 4, 12}. As
shown, there is negligible ASE in the limit Im ǫ → 0, yet the
localization of fluctuating dipoles to the gain-half of the (in-
creasingly uniform) sphere leads to a small (though observ-
able) amount of directionality, favoring emission toward the
loss direction. The tendency of dipoles within a sphere to
emit in a preferred direction has been studied in the context
of fluorescence95 in the ray-optical limit R ≫ c/ω, which
as shown here is exacerbated in the presence of gain:96 es-
sentially, dipoles within a sphere tend to emit in the direc-
tion opposite the nearest surface, which explains why spheres
having/lacking centro-symmetry tend to emit along directions
of gain/loss. Moreover, in order to achieve large directivity,
there needs to be a significant amount of mode confinement
and gain, as illustrated by the negligible ASE and directivity
of the Re ǫ = 2 sphere. Finally, we find that for large enough
Re ǫ, the directivity increases with increasing Im ǫ, peaking
at a critical δ, corresponding to the onset of lasing. Such a
transition is marked by a diverging Φ near the threshold along
with a corresponding narrowing of the resonance linewidth
(not shown). (Note that our predictions close to and above
this critical gain are no longer accurate since they neglect im-
portant effects stemming from stimulated emission.97 For in-
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Figure 3. (a) SE flux Φ and (b) gain directivity ΦG/Φ, or the ratio
of the flux emitted along the gain directions ΦG (see text) to the total
flux Φ, from the N = 2 sphere (inset) of Fig. 2 at frequency ω21,
corresponding to the transition frequency of an active region consist-
ing of Rhodamine 800 dye molecules. The gain medium is excited
by planewaves propagating in opposite directions, x cos φ+ y sinφ
and −x cos φ−y sinφ, for three different orientations, φ = 0 (black
line), π/4 (blue line), and −π/4 (red line), leading to significant spa-
tial inhomogeneities. Φ is normalized by ΦBB as in Fig. 2 and plotted
as a function of radius R, in units of the dye 2 → 1 transition wave-
length c/ω21 (see text). Insets in (a) show z = 0 cross-sections of
the resulting gain profiles −Imǫg at R = 3.4(c/ω21) while those
in (b) show angular radiation intensities Φ(θ, φ) normalized by the
maximum intensity Φmax at R = 4(c/ω21) for the different pump
orientations.

stance, at and above the critical gain, the resonance linewidth
goes to zero and then broadens with increasing Im ǫ, while it
is well known that nonlinear gain saturation results in a finite
laser linewidth53,54) Nevertheless, our results demonstrate that
a significant amount of directivity can be obtained below the
onset of lasing, where the linear approximation is still valid.

Pump inhomogeneity.— Next, we employ the 4-level gain
model of (1) to illustrate the impact of gain inhomogeneities
on ASE. While both P and PE are simultaneous sources of
spatial dispersion, for the sake of comparison we consider

each independently of one another. We begin by studying the
impact of pump on the N = 2 sphere (above) for an active re-
gion consisting of a background medium ǫr = 4 that is doped
with Rhodamine 800 dye molecules with atomic parameters:
ω21 = 2.65 × 1015s−1 (λ ≈ 711 nm), γ⊥/ω21 = 0.04
, γ21/ω21 = 7.5 × 10−7, γ32/ω21 = γ10/ω21 = 10−3,
QY of 20%, and concentration n = 40 mM (2.4 × 1019

cm−3).61 Note that since ω30 ≫ ω21, it is safe to neglect
feedback due to PE and hence P is determined from a sin-
gle scattering calculation.14 For these parameters,61 a pump
rate P/γ21 ≈ 3 results in − Im ǫg(ω21) ≈ 1. We consider
illumination with z-polarized planewaves incident from two
opposite directions along the x–y plane, shown schematically
in Fig. 3. The insets depict z = 0 cross-sections of the re-
sulting ǫg profile [Fig. 3(a)] at R = 3.4(c/ω21) along with
emission patterns Φ(θ, φ) [Fig. 3(b)] at R = 4(c/ω21), un-
der three incident conditions, corresponding to different direc-
tions of incidence, x̂ cosφ + ŷ sinφ and −x̂ cosφ − ŷ sinφ,
with φ = {0,±π/4}; in each case, the incident power is
chosen such that max{−Im[ǫg]} = 1. As shown, the gain
profiles vary dramatically with respect to position and inci-
dent angle, with Im ǫg changing from 0 → 1 on the scale of
the wavelength. These spatial variations lead to correspond-
ingly large changes in the overall ASE [Fig. 3(a)] and directiv-
ity [Fig. 3(b)]. More importantly, we find that these features
cannot be explained by naive, uniform–medium approxima-
tions (UMA). For instance, replacing ǫg with the average gain
〈ǫg〉 = 1

V

´

V ǫg in the case φ = −π/4, we find that UMA
predicts an emission rate Φ/ΦBB ≈ 30 that is three times
larger than that predicted by exact calculations. Differences
in illumination angle also result in different angular radiation
patterns Φ(θ, φ). For instance, we find that φ = −π/4 leads
to much more isotropic radiation than φ = {0, π/4}, a conse-
quence of the larger Im ǫg near the center of the sphere and the
fact that dipoles near the center tend to radiate more isotropi-
cally and efficiently than those which are farther laying farther
away.

Purcell effect.— We now consider inhomogeneities arising
from PE, assuming a uniform pump and doping concentra-
tion. In particular, we apply the self-consistent framework de-
scribed in Sec. I to study ASE from the N = 1 sphere above,
but with an active region consisting of a background medium
ǫr = 4 that is doped with Er3+ atoms,47,98 with parameters:
ω21 = 6.28 × 1014s−1 (λ ≈ 2.8µm), γ⊥/ω21 = 0.03,
γ21/ω21 = 5 × 10−5, γ32/ω21 = γ10/ω21 = 1, bare QY
of 50%, and concentration n = 1019 cm−3. (Further be-
low we also consider a different geometry, a metal-dielectric
spaser consisting of similar gain parameters but passive metal-
lic regions.) Here, a pump rate P/γ21 = 10−4 results in
− Im ǫg(ω21) ≈ 1 in the absence of PE. As discussed above,
we employ fixed-point iteration to solve (7) and (8) and hence
obtain consistent values of ǫg and Φ, starting with the bare
(F = 1) atomic parameters and iterating until the gain param-
eters converge to the nearest fixed point. Generally, the con-
vergence rate of the fixed-point algorithm depends sensitively
on the chosen parameter regime, requiring larger number of it-
erations with decreasing ∂ǫg

∂γr
21

(decreasing local slope).86 The

convergence also depends on the degree of nonlinearity in the
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active medium consisting of Er3+ atoms and subject to a uniform pump rate P/γ0

21 = 10−4, where ω21 and γ0
21 denote the bulk (bare) 2 → 1

transition frequency and decay rate of the atoms, respectively. Top/bottom insets in (a) show z = 0 cross-sections (contour plots) of the gain
profiles −Imǫg obtained during the first and final (fixed-point) iteration of the algorithm at two separate radii R = {2, 2.5}(c/ω21), with
black/white denoting min,max−[Im ǫg] ≈ {1.9, 1.3} and {1.9, 1.5}, respectively. Insets in (b) show the angular radiation intensities Φ(θ)
at selected radii (black dots), normalized by the maximum intensity Φmax. (c) Φ at a fixed radius R = 2(c/ω21) as a function of P/γ0

21, with
insets illustrating the evolution of Φ as a function of iteration at a fixed P/γ0

21 = 10−4 and for two different values of quantum yields (QY)
[see text]. All plots compare quantities in the presence (solid blue lines) or absence (dashed black lines) of PE, and under a uniform–medium
approximation (UMA) (solid red lines) described in the text; the solid green line in (a) denotes the average Purcell factor 〈F〉 = 1

V

´

V
F at

each radius.

system, which in the case of our 4-level system can be signifi-
cant under small QY (γr

21/γ21 ≪ 1), large P , or γ21/γ10 . 1
(in which case there is significant gain saturation). Neverthe-
less, in practice we find that for a wide range of parameters,
a judicious combination of fixed-point iteration and Ander-
son acceleration88 ensures convergence within dozens of iter-
ations. The bottom/top insets of Fig. 4(c) demonstrate the it-
erative process at a fixed R = 2(c/ω21) and for two different
sets of concentrations n = {1, 5} × 1019 cm−3 and quantum
yields ≈ {10, 50}%.

Figure 4 illustrates the impact of PE on the emission of the
sphere, showing variation in (a) SE flux Φ(ω21) and (b) gain
directivity ΦG/Φ of the sphere with respect to radius R at a
fixed P/γ0

21 = 10−4, or with respect to (c) pump rate P at a
fixed R = 2(c/ω21), both including (solid blue lines) and ex-
cluding (dashed black lines) PE. As before, Φ is normalized
by ΦBB. Shown as insets in Fig. 4(a) are z = 0 cross sections
of Im ǫg for the first and final (fixed-point) iteration of the al-
gorithm, at two different radii R = {2, 2.5}(c/ω21) (black
dots), demonstrating large gain enhancement and spatial vari-
ations. As expected, Φ is either enhanced or suppressed de-
pending on the average PE (green line) which we have defined
as 〈F〉 6= 1, where for convenience we have defined:

〈F〉 = 1

V

ˆ

V

F =
1

N

∑

n

Φbn/Φ
0 = − 1

2NΦ0
Tr W ∗ symGW.

(As discussed above, 〈F〉 ∼ Φ turns out to be the Frobe-
nius norm of a low-rank matrix and is therefore susceptible
to fast computations.) As shown, at small R . 1.2(c/ω21),
or in the absence of resonances, 〈F〉 < 1 and hence Φ is sup-
pressed with respect to the predictions of the bare. Conversely,
〈F〉 > 1 near resonances and hence Φ is enhances. Note that
for our choice of parameters, the gain profile scales linearly

with the quantum yield, i.e. ǫg ∝ QY = γr
21/γ21, such that

in the limit as 〈F〉 → ∞ (ignoring quenching occurring as
γr
21 → γ10), − Im ǫg → 2. (For smaller QY ≪ 1, ǫg can

be many times larger than the bare permittivity with increas-
ing 〈F〉, saturating at much larger values of PE.) In addition
to changing the overall SE rate, PE also modifies the sphere’s
directivity. This is illustrated in Fig. 4(b), which shows en-
hancements in ΦG/Φ and correspondingly changes in emis-
sion patterns (insets) at selective R = {2, 2.5}(c/ω21).

Figure 4(c) also explores the dependence of Φ on P at a
fixed R = 2(c/ω21), showing that Φ peaks at a finite value
of P/γ0

12 & 10−4 and then decreases with increasing P ;
the same is true for 〈F〉 and 〈ǫg〉 (not shown). Such a non-
monotonicity stems from the fact that near the critical pump
rate, Im ǫg ≈ Re ǫg, causing the resonance frequency to shift
to smaller radii, a trend that is observed both in the pres-
ence and absence of PE. Surprisingly, however, we find that
while PE causes large inhomogeneities in ǫg, in both scenar-
ios the peak emission is approximately the same, suggesting
the possibility that one could explain the impact of PE by a
simple UMA. In what follows, we exploit a UMA that not
only greatly simplifies the calculation of PE but also leads
to accurate results over a wider range of parameters. In par-
ticular, we consider a UMA in which the otherwise inhomo-
geneous gain profile of the object is replaced with that of a
uniform medium ǫg(x) → 〈ǫg〉 (assuming a uniform pump
rate) given by (1) but with γr

21 → 〈γr
21〉 = 〈F〉γr,0

21 , corre-
sponding to a homogeneous broadening/narrowing of the gain
atoms throughout the sphere. Within this approximation, the
system of nonlinear equations above is described by a single
(as opposed to N ≫ 1) degree of freedom 〈γr

21〉, enabling
faster convergence along with application of algorithms that
are especially suited for handling low-dimensional systems of
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lution of (1) and (8) (solid blue lines) or via the uniform-medium
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−Imǫg (top) and active temperature (right), along with the angular
radiation intensity Φ(θ, φ) (bottom) at a selected R = 0.95(c/ω21),
normalized by the maximum intensity Φmax.

equations.99 Ignoring other sources of inhomogeneity (e.g. in-
duced by density or pump variations), such an approximation
allows calculation of Φ via scattering formulations best-suited
for handling piecewise-constant dielectrics, including SIE100

and related scattering matrix76 methods. The solid red lines
in Fig. 4 are obtained by employing the UMA, demonstrat-
ing its validity over a wide range of parameters. Surprisingly,
we find that this holds even in regimes marked by strong gain
saturation (e.g. γ10 . γ21). It follows that in this geometry,
the effect of PE on radiation can be attributed primarily to the
presence of a larger average gain or pump rate in the sphere,
whereas the actual spatial variation in ǫg is largely unimpor-
tant.

There are geometries and situations where such a UMA
is expected to fail, e.g. structures subject to even large di-
electric inhomogeneities (as in Fig. 3). Such conditions arise
in large objects (supporting higher-order resonances) or in
metal–dielectric composites (supporting highly localized sur-
face waves). Figure 5 shows Φ for one such structure [bottom
inset]: a dielectric sphere with the same gain medium (or-
ange) of Fig. 4 but partitioned into three metallic (red) regions
along the azithmutal direction, given by ǫ(φ) = −2 + i for
φ ∈ [2nπ/3, 2nπ/3 + π/8], where n = 0, 1, 2. (Note that
our choice of ǫ for the metal does not lead to a strong plas-
monic resonance, but still yields significant sub-wavelength
confinement.) A z = 0 cross-section of the steady-state ǫg and
temperature distributions at a fixed R = 0.95c/ω21 is shown
on the top inset, demonstrating significant and complex varia-

tions in both quantities. In particular, while population inver-
sion is suppressed near the metal (black regions), εg attains
its maximum value (white regions) close to the metal surface,
decaying rapidly within the dielectric. Comparing the exact
(solid blue lines) and UMA (dashed red line) predictions, one
finds that the presence of multiple nodes in ǫg leads to a dra-
matic failure for UMA (with a peak error of ≈ 50%). Despite
the different radiation rates, however, we find that UMA ef-
fectively captures the main features of the far-field radiation
pattern (inset).

III. CONCLUDING REMARKS

We have shown that wavelength-scale, active–composite
bodies can lead to complex radiative effects, depending sen-
sitively on the arrangement of gain and loss. By exploiting
a general–purpose formulation of EM fluctuations, we quan-
tified the non-negligible impact that dielectric and noise in-
homogeneities can have on emission in these systems. Fur-
thermore, we introduced an approach that captures feedback
from Purcell effect (i.e. the optical environment) on the gain
medium. We note that in situations where ASE is dominated
by relatively few leaky resonances, it is possible and practi-
cal to perform a similar procedure by expanding the fields in
terms of eigenmodes, in which case the problem boils down
to solution of a linear generalized eigenvalue problem for the
leaky modes. (In VIE as in FDFD or related brute-force meth-
ods, leaky modes can be computed via the solution of a gener-
alized eigenvalue problem of the form Z(ω)ξ = 0, for a com-
plex frequency.101) However, the FVC approach above is ad-
vantageous in that it casts the problem in the context of solu-
tions of relatively few (≪ degrees of freedom) scattering cal-
culations. More importantly, FVC can handle structures sup-
porting many modes or situations where near-field effects are
of interest and contribute to PE.68 The latter is especially im-
portant when the relevant quantity is the energy exchange be-
tween two nearby objects, a regime that motivated initial de-
velopment of these and related scattering methods.67 Note that
above we mainly explored structures with small Re ǫ ≈ 4 and
large gain concentration n, leading to large Im ǫg . Re ǫ even
for relatively weakly confined resonances. However, similar
effects can be obtained with smaller n and Im ǫg in structures
with larger Re ǫ and dimensions, or supporting highly local-
ized fields (e.g. spacers), where there exist larger Purcell en-
hancement. Finally, we note that micron-scale particles like
the spheres explored above lie within the reach of current ex-
periments.102
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