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Hydrodynamic flow occurs in an electron liquid when the mean free path for electron-electron
collisions is the shortest length scale in the problem. In this regime, transport is described by the
Navier-Stokes equation, which contains two fundamental parameters, the bulk and shear viscosi-
ties. In this Article we present extensive results for these transport coefficients in the case of the
two-dimensional massless Dirac fermion liquid in a doped graphene sheet. Our approach relies on
microscopic calculations of the viscosities up to second order in the strength of electron-electron
interactions and in the high-frequency limit, where perturbation theory is applicable. We then use
simple interpolation formulae that allow to reach the low-frequency hydrodynamic regime where
perturbation theory is no longer directly applicable. The key ingredient for the interpolation formu-
lae is the “viscosity transport time” τv, which we calculate in this Article. The transverse nature of
the excitations contributing to τv leads to the suppression of scattering events with small momentum
transfer, which are inherently longitudinal. Therefore, contrary to the quasiparticle lifetime, which
goes as −1/[T 2 ln(T/TF)], in the low temperature limit we find τv ∼ 1/T 2.

PACS numbers: 73.20.Mf,71.45.Gm,78.67.Wj

I. INTRODUCTION

Hydrodynamics1–3 is a powerful non-perturbative the-
ory to deal with transport properties of strongly inter-
acting many-particle systems.

In the solid state, interactions need to be sufficiently
strong to ensure that the mean free path `ee = vFτee
for electron-electron (e-e) collisions is the shortest length
scale in the problem, i.e. `ee � `p, L, vF/ω. Here, vF
is the Fermi velocity, τee is the quasiparticle lifetime due
to electron-electron collisions4, `p is the mean free path
for momentum-non-conserving collisions, L is the sample
size, and ω is the frequency of the external perturba-
tion. In Fig. 1 we show the result of microscopic calcu-
lations of the e-e mean free path for the two-dimensional
(2D) massless Dirac fermion (MDF) liquid in a doped
graphene sheet7–9 embedded between two semi-infinite
uniform and isotropic media with dielectric constants ε1
and ε2. The two-dimensional Fourier transform of the
e-e interaction in this case is vq = 2πe2/(εq), where
ε ≡ (ε1 + ε2)/2. Technical details on these many-body
diagrammatic perturbation theory calculations can be
found, e.g., in Refs. 5 and 6. We clearly see that, for
sufficiently large temperatures, there is a wide range of
carrier concentrations in which `ee becomes much shorter
than the typical device size (L ∼ 10 µm).

The regime defined by the above inequalities is named
in what follows “hydrodynamic”, “low-frequency” or
“collisional”. In the range of temperatures and carrier
densities in which this regime is attained, e-e interactions
drive the system towards a local quasi-equilibrium state
characterized by slowly-varying time-dependent density
n(r, t) and drift velocity v(r, t), which obey the conti-
nuity and Navier-Stokes equations. The latter are con-

trolled by two transport coefficients, the shear viscos-
ity, ηω→0, which describes the friction between adja-
cent layers of fluid moving with different velocities, and
the bulk viscosity, ζω→0, which describes the dissipation
arising in the liquid when it undergoes a homogeneous
compression-like deformation1.

When, on the contrary, the frequency ω of the external
perturbation is much larger than the quasiparticle colli-
sion rate (i.e. ωτee � 1)—but still much smaller than the
characteristic free-particle frequencies epitomized by the
Fermi energy—e-e interactions fail to drive the system
towards local quasi-equilibrium4. Nonetheless, it is still
possible to describe the system by hydrodynamic equa-
tions of motion10, provided that the low-frequency bulk
and shear viscosities are replaced by their high-frequency
counterparts4 (ζ∞ and η∞, respectively) and that a finite
value of the shear modulus (S∞) is allowed. This regime
is named in what follows “high-frequency” or “collision-
less”. We emphasize that it is a “high-frequency” regime
only on the scale of e-e collisions, but not at all on the
scale of the Fermi energy.

In this Article we calculate the frequency-dependent
viscosities ζω and ηω for the 2D MDF liquid in a doped
graphene sheet8. Doping, which creates a Fermi liq-
uid of electrons or holes in the upper or lower Dirac
band, is of essence here: we note that the zero-frequency
shear viscosity of thermally excited electron-hole pairs in
an undoped graphene sheet was previously calculated in
Ref. 11. The viscous flow of MDFs was also suggested
as a possible explanation for the linear dependence of
the conductivity and its residual value at the neutrality
point.12 The low-frequency bulk and shear viscosities of
an ordinary three-dimensional (3D) parabolic-band elec-
tron gas in the Fermi liquid regime were calculated long
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ago by Abrikosov and Khalatnikov13. They found that
ηω→0 = S∞τv, where τv is a “viscosity transport time”
of the order of (but not identical to) τee (here all quan-
tities refer to a 3D system). The Abrikosov-Khalatnikov
calculation was extended to the opposite regime of high
frequency in Ref. 10. The main difficulty in connect-
ing these two regimes lies in the fact that e-e interac-
tions play very different roles in the two cases. In the
low-frequency regime their main effect is to cut off an
otherwise diverging shear viscosity: the corrected shear
viscosity is proportional to τv, which is non-perturbative
in the strength of e-e interactions. Conversely, in the
high-frequency regime e-e interactions generate a non-
zero value for the otherwise vanishing shear viscosity:
this finite value can and has been calculated perturba-
tively.

Our theoretical approach is based on ideas first pre-
sented in Ref. 10. We combine the perturbative informa-
tion contained in η∞ and ζ∞ with the calculation of τv
to generate non-perturbative interpolation formulas for
ηω and ζω. The latter are approximately valid at all fre-
quencies and consistently include many-body self-energy
and vertex corrections. The final formulas are10:

ζω = ζ∞
(ωτv)2

1 + (ωτv)2

ηω =
S∞τv + η∞(ωτv)2

1 + (ωτv)2

, (1)

where, in addition to the above-mentioned quantities η∞
and ζ∞, we also see the high-frequency shear modulus
S∞, which is to the shear viscosity what the “Drude
weight” is to the conductivity. We note that the shear
modulus is renormalized by e-e interactions: however,
this effect is relatively small, and it is thus qualitatively
correct to approximate S∞ by its non-interacting value,

which in the case of graphene is S(0)∞ = nεF/4, where εF
is the Fermi energy.

From a mathematical point of view, the viscosities ap-
pear as coefficients in the expansion of the stress tensor
τµν to first order in the spatial derivatives of oscillating
velocity fields, vµν ≡ 1

2 (∂µvν + ∂νvµ). This can also be

viewed14 as the out-of-phase component of the response
of τµν to an oscillating metric field gµν . For a 2D isotropic
fluid the expansion has the form

τµν(ω) = (ζω − ηω)
[
∇ · v(ω)

]
δµν + 2ηωvµν(ω) . (2)

In a parabolic-band electron gas4, and also in graphene
in the Fermi liquid regime8, the response of the stress
tensor to the metric field is connected by equations of
motion to the non-local response of the current to a vec-
tor potential, i.e. the coefficient of q2 in the expansion
of the non-local conductivity for small wave vectors q.
This implies that the high-frequency viscosities can be
extracted from the damping rate of plasmons, the high-
frequency collective excitations of an electron liquid4,15.
On the other hand, no standard protocol exists at present
to measure the low-frequency viscosities of electrons in a

solid-state host. Tomadin et al.16 proposed a Corbino
disk viscometer, which allows a determination of the hy-
drodynamic shear viscosity ηω→0 from the dc potential
difference that arises between the inner and the outer
edge of the disk in response to an oscillating magnetic
flux. More recently, it has been shown17,18 that ηω→0

can also be extracted from purely-dc non-local transport
measurements in ultra-clean multi-terminal Hall bar de-
vices.

Our Article is organized as follows. In Sect. II we in-
troduce the tight-binding model of graphene, which we
use19–21 to avoid broken gauge invariance due to the pres-
ence of a rigid ultraviolet cut-off in the MDF low-energy
theory. The MDF limit is indeed taken only at the very
end of the calculation. In Sect. III we derive the relativis-
tic counterpart of the Navier-Stokes equation1, which de-
scribes the long-wavelength dynamics of quasiparticles in
graphene in both the low- and high-frequency regimes.
In this Section we also show the connection between the
macroscopic bulk and shear viscosities and the longitu-
dinal and transverse current-current response functions,
which can be microscopically calculated from the usual
Kubo formula4. In Sect. IV we use a kinetic equation ap-
proach and the relaxation-time approximation to deter-
mine the interpolation formulas for the viscosities and the
elastic moduli of graphene in terms of the high-frequency
viscosity η∞ and a yet undetermined transport time τ .
These quantities are calculated in the remainder of the
Article. Since the longitudinal current-current response
function of the 2D MDF liquid in a doped graphene sheet
was calculated in Ref. 19, in Sect. IV A we focus on its
transverse counterpart. We calculate it at the lowest non-
vanishing order in the strength of e-e interactions, which
is quantified by the graphene’s fine structure constant8

αee ≡
e2

ε~vF
. (3)

Our results for the high-frequencies bulk and shear vis-
cosities are reported in Sect. IV A. We prove that the
high-frequency bulk viscosity vanishes, while η∞ is finite.
Sect. IV B is devoted to the calculation of the viscosity
transport time τv. The approach we adopt is very similar
to that used in Refs. 22 and 23, where the e-e contribu-
tions to the charge, spin, and thermal conductivities of
the 2D MDF liquid in a doped graphene sheet were cal-
culated. Therefore, only the main steps of the calculation
are surveyed. We refer the reader interested in more de-
tails to Ref. 23. Finally, In Sect. V we show our result
for the shear viscosity at finite frequency ηω. Making
use of Eq. (1), we provide numerical results for the shear
viscosity of the 2D MDF liquid in a doped graphene at
all frequencies. Appendix B presents a self-contained de-
scription of the generalized relaxation time approxima-
tion, leading to the formulas of Eq. (1). Appendix D
contains several technical details of the calculation. In
this Article we set, except when explicitly stated other-
wise, ~ = 1.
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FIG. 1. (Color online) Panel a) The e-e mean free path
`ee (in µm) in a 2D MDF liquid is plotted as a function
of temperature T (in K). Different curves refer to different
values of the excess carrier density, n = 0.5 × 1012 cm−2,
n = 1.0 × 1012 cm−2, and n = 2.0 × 1012 cm−2. Panel b)
The e-e mean free path `ee (in µm) in a 2D MDF liquid is
plotted as a function of the excess carrier density n (in units
of 1012 cm−2), for three values of T , i.e. T = 100, 200, and
300 K. In both panels the e-e dimensionless coupling constant
has been set to αee = 0.5.

II. MODEL AND BASIC DEFINITIONS

Following Refs. 19–21, we describe π-electrons in
graphene by a one-orbital tight-binding (TB) model7. To
keep the model as simple as possible, we set to zero all the
hopping parameters but the nearest-neighbor one. The
low-energy MDF limit will be taken only at the very end
of the calculation, after carrying out all the necessary
algebraic manipulations. By following this procedure we
avoid problems associated with the introduction of a rigid
ultraviolet cut-off, which breaks the gauge invariance24

and is responsible for the appearance of anomalous com-
mutators24,25.

The non-interacting Hamiltonian is

Ĥ0 =
∑

k∈BZ,α,β

ψ̂†k,α(fk · σαβ)ψ̂k,β , (4)

where the operator ψ̂†k,α (ψ̂k,α) creates (annihilates) an
electron with Bloch momentum k, which belongs to the
sublattice7 α = A,B. The vector fk is defined as7

fk = −t
3∑
i=1

(
<e
[
e−ik·δi

]
,−=m

[
e−ik·δi

])
. (5)

Here t ∼ 2.8 eV is the nearest-neighbor tunneling am-
plitude, while δi (i = 1, . . . , 3) are the vectors which

connect an atom to its three nearest neighbors, i.e.
δ1 = a

√
3x̂/2 + aŷ/2, δ2 = −a

√
3x̂/2 + aŷ/2, and

δ3 = −aŷ. Here a ∼ 1.42 Å is the Carbon-Carbon
distance in graphene. The sum over k in Eq. (4) is re-
stricted to the first Brillouin zone (BZ) and the Pauli
matrices σiαβ (i = x, y, z) operate on the sublattice de-
gree of freedom.

The TB problem posed by the Hamiltonian (4) can be
easily solved analytically7. One finds the following eigen-
values εk,λ = λ|fk|, with λ = ±. These two bands touch
at two inequivalent points (K and K ′) in the hexago-
nal BZ. The low-energy MDF model is obtained from
Eq. (4) by taking the limit a → 0, while keeping the
product ta constant. In this limit fK+k → vFk, where
vF = 3ta/2 ∼ 106 m/s is the density-independent Fermi
velocity.

Introducing the field operator ĉ†k,λ (ĉk,λ) as the cre-

ation (annihilation) operator in the eigenstate represen-
tation, Eq. (4) can be rewritten as

Ĥ0 =
∑
k,λ

εk,λĉ
†
k,λĉk,λ . (6)

In the same representation the Hamiltonian describing
e-e interactions reads4

Ĥee =
1

2

∑
q

vqn̂qn̂−q , (7)

where the density operator is

n̂q ≡
∑
k,α

ψ̂†k−q/2,αψ̂k+q/2,α

=
∑
k,λ,λ′

Dλλ′(k − q/2,k + q/2)ĉ†k−q/2,λĉk+q/2,λ′ ,

(8)

and vq is the 2D discrete Fourier transform of the real-
space Coulomb interaction, which is a periodic func-
tion of the reciprocal-lattice vectors, and reduces to
∼ 2πe2/(εq) in the limit of q → 0. Finally, in Eq. (8)
we have introduced the “density vertex”

Dλλ′(k,k′) =
ei(θk−θk′ )/2 + λλ′e−i(θk−θk′ )/2

2
(9)

with θk = Arg[fk,x + ifk,y]. Here {fk,i, i = x, y} denotes
the Cartesian component of the vector fk. In the low-
energy MDF limit, θK+k → ϕk, where ϕk is the angle
between k and the x̂ axis.

Note that in writing Eq. (7) we have neglected the one-
body operator proportional to the total number of parti-
cles, which avoids self-interactions4, since it has no effect
on the calculations we will carry out below. The viscosi-
ties are indeed determined (at the lowest non-vanishing
order in the strength of e-e interactions) by two-particle
excitations only, which are generated by two-body opera-
tors.
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We also introduce the current operator

ĵq,α ≡
∑
k,β

∑
γ,γ′

∂fk,α
∂kβ

σβγγ′ ψ̂
†
k−q/2,γψ̂k+q/2,γ′

=
∑
k,β

∑
λ,λ′

∂fk,α
∂kβ

S(β)λλ′(k − q/2,k + q/2)

× ĉ†k−q/2,λĉk+q/2,λ′ , (10)

where the “pseudospin-density” vertices are

S(x)λλ′(k,k
′) =

λ′ei(θk+θk′ )/2 + λe−i(θk+θk′ )/2

2
(11)

and

S(y)λλ′(k,k
′) =

λ′ei(θk+θk′ )/2 − λe−i(θk+θk′ )/2

2i
. (12)

For the sake of definiteness, we assume the system to
be n-doped, with an excess electron density n. Results
for a p-doped system can be easily obtained by appealing
to the particle-hole symmetry of the MDF model defined
by Eqs. (6)-(7). The Fermi wave vector is defined as

kF =
√

4πn/Nf , while εF = vFkF is the Fermi energy,
and Nf = 4 is the number of fermion flavors in graphene.
For future purposes we also define the matrix element of
the ẑ component of the pseudospin between the states
labeled by k, λ and k′, λ′:

S(z)λλ′(k,k
′) =

ei(θk−θk′ )/2 − λλ′e−i(θk−θk′ )/2

2
. (13)

In the continuum limit and for k+q/2,k−q/2 close to
the K point of the Brillouin zone, projecting Eqs. (11)-
(13) at the Fermi surface in the upper band we get [to
O(q2)]

S(x)++(k − q/2,k + q/2)→ kx
kF

,

S(y)++(k − q/2,k + q/2)→ ky
kF

,

S(z)++(k − q/2,k + q/2)→ i

2

(q × k) · ẑ
k2F

. (14)

From these equations we see that the projected current
operator at the Fermi surface in the upper band takes
the galilean-invariant form

ĵq,α →
∑
k

kα
mc

ĉ†k−q/2,+ĉk+q/2,+ , (15)

with an effective mass mc = kF/vF. We will make re-
peated use of this important result.

III. THE BULK AND SHEAR VISCOSITIES —
GENERAL THEORY

The bulk and shear viscosity are usually introduced1

as phenomenological coefficients to describe the long-
wavelength motion of a viscous fluid close to a quasi-
equilibrium situation. The interactions between the el-
ementary constituent of the fluid, although extremely

complicated at the microscopic level, admit a rather sim-
ple description in terms of macroscopic coefficients. Their
space and time average is in fact responsible for the fric-
tion between (macroscopic) fluid elements having differ-
ent values of the momentum. The two viscosities then
describe the forces between fluid elements that undergo
either a shear or a compression-like long-wavelength de-
formation.

It is therefore possible, starting from a fluid-like de-
scription of the 2D MDF liquid in graphene, to derive
the macroscopic response of currents to external vector
potentials, in the linear response regime and in terms of
hydrodynamic coefficients. Equating the coefficients of
proportionality between currents and vector potentials to
the microscopic current-current linear response functions
of the system, one obtains the microscopic definitions for
the bulk and shear viscosities. It turns out that these can
be calculated from the coefficients of the expansion to or-
der q2/ω2 of the current-current linear response functions
(in the limit q → 0). This approach was used in Ref. 10
for the case of a parabolic-band (i.e. Galilean invariant)
electron gas.

A more fundamental approach26–28 relies on the fact
that it is possible to microscopically define the stress ten-
sor operator τµν(x, t), starting from the equation of mo-
tion of the momentum density, and to calculate the de-
viation of its average from the equilibrium value due to
an applied strain. In the linear regime and at low fre-
quencies, such variation is proportional to the applied
strain. The coefficient of proportionality is the “tensor
of elasticity”, a rank-4 tensor whose imaginary part in a
rotationally and time-reversal invariant system at q = 0
can be characterized by two coefficients, the complex bulk
and shear moduli. Note that in the linear regime the ten-
sor of elasticity is equivalent to the stress-stress response
function. Therefore, the knowledge of the latter response
function constitutes a viable route to the calculation of
the viscosity coefficients26–28.

The connection between the two approaches is rather
trivial in Galilean invariant systems. Indeed in such sys-
tems the current density is proportional to the momen-
tum density, and therefore its time derivative is propor-
tional to the divergence of the stress tensor. It is there-
fore possible to derive an equation of motion that relates
the current-current response functions to the stress-stress
response. From that, it is thus evident that the viscos-
ity, which is proportional to the coefficient of the term
of order q2/ω2 in the expansion of the current-current
response function, can also be calculated from the q = 0
limit of the stress-stress response.

In the 2D MDF liquid, however, the current and the
momentum are not proportional to each other. The cur-
rent is indeed an off-diagonal operator (in pseudospin
space), which represents the hopping between the two
inequivalent Carbon atoms in the unit cell. Conversely,
the momentum operator is a diagonal one (as, e.g., the
density operator). Therefore the two approaches could
give, in principle, different results. Nevertheless, we find
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that in the Fermi liquid regime, i.e. when graphene is
doped and the temperature T � εF/kB is sufficiently
low (kB is the Boltzmann constant), the two agree with
each other. In the following subsections we show in de-
tail how the two approaches reconcile in the Fermi liquid
regime. Here, however, we briefly discuss the problem in
general terms.

It is quite easy to understand what goes wrong in the
general case. While the second approach, i.e. the calcu-
lation from the stress-stress response, is completely gen-
eral, the first one relies on the fact that it is possible to
write a Navier-Stokes equation for the velocity as in the
classical non-relativistic case. This statement is highly
non-trivial. Indeed, in graphene the velocity operator,
being proportional to the unit vector of the momentum,
is not a conserved quantity. Therefore, it is not possi-
ble to write in general a Navier-Stokes equation for the
macroscopic velocity in the same way as it is done in
the Galilean invariant case. Since the quantities that are
conserved by e-e interactions are the density, energy den-
sity, and momentum, one should in principle consider the
Navier-Stokes equations for these three.

However, as it was shown in Ref. 23, in the Fermi liq-
uid regime the velocity is essentially a conserved quantity.
This statement is rationalized as follows. At low temper-
ature and in a doped system, the states that contribute
to transport are those in a narrow region (of size ∼ kBT )
around the Fermi energy. Those states have momentum
nearly identical to the Fermi momentum kF, and the ve-
locity operator evaluated on them is simply proportional
to the momentum (via the constant kF). Since the same
states give the dominant contribution to the total mo-
mentum of the system, and the latter is conserved by e-e
interactions, also the velocity is a conserved quantity29.
This paves the way to a hydrodynamic description of the
velocity, with a Navier-Stokes equation30 that contains
the same viscosities as the momentum one. It is indeed
clear that the two equations must be proportional to each
other via the cyclotron mass mc = kF/vF, as discussed
at the end of Section II.

In passing, we mention that a hydrodynamic descrip-
tion of graphene, valid at all doping concentrations and
in the linear-response regime, has been worked out in
Ref. 32. There, the authors show that it is possible to de-
scribe the hydrodynamic transport in graphene in terms
of three macroscopic currents carrying electric charge, en-
ergy, and quasiparticle imbalance. In the “Fermi-liquid
regime” the three macroscopic currents become equiva-
lent. Therefore, the transport in a doped MDF system in
the hydrodynamic regime can be described by the stan-
dard Navier-Stokes equations.

A. The hydrodynamic approach

Following Refs. 11 and 30, we describe the long-
wavelength dynamics of the 2D MDF liquid in a doped
graphene sheet by the non-relativistic limit of the rela-

tivistic Navier-Stokes equations in 2+1 dimensions. The
derivation of this theory can be found in, e.g., Ref. 1. The
use of the relativistic form of the Navier-Stokes equations
is dictated by the linear-in-momentum band dispersion of
quasiparticles31, which, however, move with a Fermi ve-
locity vF that is roughly 300 times smaller than the speed
of light c. For this reason retardation effects can be safely
neglected.

Moreover, we assume that only the states around the
Fermi surface contribute to transport. This is certainly
a good approximation in the Fermi-liquid regime, and
in the limit in which the wave vector and frequency of
the external perturbation are small. In the Fermi-liquid
regime the fluid velocity can be expressed, in the “non-
relativistic” limit |v(r, t)| � vF, in terms of the macro-
scopic current j(r, t) carried by quasiparticles in conduc-
tion band as v(r, t) ≡ j(r, t)/n(r, t). Here n(r, t) is the
position- and time-dependent excess number density.

The linearized Navier-Stokes equations then read1,11,30

w

v2F
∂tvi +∇iP −∇j

{
η0
[
∇jvi +∇ivj

− (∇ · v)δij
]

+ ζ0(∇ · v)δij

}
= neq

e

c
∂tAi , (16)

where the Latin indices i, j = x, y denote the Cartesian
components of the vectors, w ≡ w(r, t) is the enthalpy
density (which is equivalent to the Drude weight), and
P ≡ P (r, t) is the local pressure. The last term on the
left-hand side of Eq. (16) is the divergence of the stress
tensor τij = τij(r, t), whose most general form, based on
symmetry arguments, is reported in Eq. (2)1. Since we
are interested in deriving the current response of the fluid
to an external perturbation, in Eq. (16) we expressed4 the
driving field as the time derivative of a vector potential
A ≡ A(r, t). Note that we do not introduce any retar-
dation effect in the driving term since the Fermi velocity
is much smaller than the speed of light.

In Eq. (16) we assume the density to be close to its
equilibrium value (which only in this Section we denote as
neq), i.e. n(r, t) = neq + δn(r, t) with |δn(r, t)/neq| � 1.
Moreover, in a linear-response fashion, also the current
density j(r, t) and the vector potential A(r, t) are as-
sumed to be small (note that the current is zero at equi-
librium). Using a well-known thermodynamic relation
we rewrite4

∇P =
∂P

∂n
∇n =

B
neq

∇n , (17)

where B = B(n) is the bulk modulus4 of the 2D
MDF liquid. In Eq. (17) we suppressed the space- and
time-dependences of the various quantities for brevity.
This equation, together with the continuity equation
∂tn(r, t) = −∇ · j(r, t), allows us to rewrite the Fourier
transform of Eq. (16) as

w

v2F
ωji−

B
ω

(q·j)qi+iη0q2ji+iζ0(q·j)qi = n2eq
e

c
ωAi . (18)
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To obtain this equation we used that in the linear regime
∂tv(r, t) = ∂t[j(r, t)/n(r, t)] ' ∂tj(r, t)/neq. A similar
approximation was used for terms which contain spatial
derivatives of v(r, t).

We now observe4 that Eq. (18) is suitable to describe
the long-wavelength dynamics of 2D MDFs in the col-
lisional ωτee � 1 limit. In this regime4 the system
is indeed expected to behave as a liquid, with a finite
shear viscosity and a vanishing shear modulus. However,
in the opposite, collisionless, limit (ωτee � 1) a solid-
like behavior is expected to emerge, characterized by a
small shear viscosity and a finite shear modulus4. The
system may thus be described by the equations of the
elasticity theory33, which are obtained from Eq. (18) by
replacing4 the low-frequency coefficients by their high-
frequency counterparts, and by introducing a finite shear
modulus S∞. Defining the complex bulk and shear mod-
uli, B̃ω = Bω − iωζω and S̃ω = Sω − iωηω, Eq. (18) then
reads

w

v2F
ωji −

B̃ω
ω

(q · j)qi −
S̃ω
ω
q2ji = n2eq

e

c
ωAi , (19)

which is now valid in both the collisionless and collisional
regimes. Note that <e(S̃ω) → 0 in the low-frequency
regime. Separating the longitudinal and transverse com-
ponents of Eq. (19), we finally get

jL(q, ω) =
n2eqω

2

wω2/v2F − (B̃ω + S̃ω)q2
e

c
AL(q, ω)

≡ χL(q, ω)
e

c
AL(q, ω) , (20)

and

jT(q, ω) =
n2eqω

2

wω2/v2F − S̃ωq2
e

c
AT(q, ω)

≡ χT(q, ω)
e

c
AT(q, ω) . (21)

The transverse component of any 2D vector v is defined
as vT = v − q̂(q̂ · v), while its longitudinal component
is vL = (q̂ · v)q̂. Eqs. (20) and (21) provide a macro-
scopic definition of the longitudinal [χL(q, ω)] and trans-
verse [χT(q, ω)] components of the current-current linear
response function. Indeed, in a rotationally-invariant sys-
tem

χj`jk(q, ω) = χL(q, ω)
q`qk
q2

+ χT(q, ω)

(
δ`k −

q`qk
q2

)
, (22)

where `, k = x, y are Cartesian indices. It is easy to show
that, if q = qx̂, χL(q, ω) = χjxjx(q, ω) and χT(q, ω) =
χjyjy (q, ω). These relations will be used in what follows.

Expanding Eqs. (20) and (21) to order q2/ω2 we get

=m[χL(q, ω)] = −
(
v2F
w(0)

neq

)2
q2

ω
(ζω + ηω) , (23)

and

=m[χT(q, ω)] = −
(
v2F
w(0)

neq

)2
q2

ω
ηω , (24)

where we have approximated the enthalpy density by
its non-interacting value w(0) = neqεF. This is justi-
fied because the relations (23)-(24) will be used to esti-
mate the high-frequency bulk and shear viscosities, ζ∞
and η∞, respectively. In the high-frequency regime, the
two viscosities can be calculated perturbatively, the first
non-vanishing contribution being of second order in the
dimensionless strength of e-e interactions, i.e. αee in
Eq. (3). It is therefore legitimate, up to second order,
to neglect interaction corrections to w.

By inverting Eqs. (23) and (24) we can express the
high-frequency bulk and shear viscosities of a 2D MDF
liquid in terms of the current-current response functions.
To second order in the strength of e-e interactions these
hydrodynamic coefficients read4

η∞ = − lim
ω→0

lim
q→0

ωm2
c

q2
=m[χT(q, ω)] ,

ζ∞ = − lim
ω→0

lim
q→0

ωm2
c

q2
{=m[χL(q, ω)]−=m[χT(q, ω)]} .

(25)

Note that in Eq. (25) the limit ω → 0 is taken after the
limit ωτee � 1.

The current-current response functions on the right-
hand side of Eq. (25) have a rigorous microscopic defini-
tion4 in terms of Kubo products, i.e.34

χAB(ω) =
1

S
〈〈Â; B̂〉〉ω , (26)

where S is the 2D electron system area, Â and B̂ are
operators, and

〈〈Â; B̂〉〉ω ≡ −i
∫ ∞
0

dtei(ω+iη)t〈[Â(t), B̂]〉 . (27)

Note that the average 〈. . .〉 in Eq. (27) is taken over the
ground state of the interacting system.

The longitudinal component χL(q, ω) of the current-
current response function of 2D MDFs was calculated
in Ref. 19. In this Article we evaluate the transverse
current-current response function χT(q, ω) at second or-
der in the strength of e-e interactions and in the limit
vFq � ω � 2εF.

We note that, from Eq. (20), it is possible to derive an
expression for the non-local charge conductivity σ(q, ω).
Replacing ω2 → ω[ω+i/τ(q, ω)] in its denominator to ac-
count for non-momentum-conserving dissipative effects,
and neglecting the real parts of B̃ω and S̃ω (which are
negligible in the limit vFq � ω) we get

σ(q, ω) ≡ χL(q, ω)

−iω
=

n/mc

−iω + 1/τ(q, ω) + νωq2
. (28)

In Eq. (28) we defined the kinematic viscosity νω ≡
ηω/(nmc), and we used the fact that ζω = 0 (as will
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be demonstrated in what follows). Since Eq. (28) is valid
to all orders in the perturbative expansion in the strength
of the e-e coupling constant, the cyclotron mass mc must
be renormalized according to Landau theory of normal
Fermi liquids4.

B. The microscopic approach

In order to get a macroscopic Navier-Stokes equation
for a given quantity, it is necessary for the latter to be
conserved by interactions at the microscopic level. For
example the momentum density operator p̂(x, t), whose
Fourier transform is microscopically defined as

p̂q =
∑

k∈BZ,α

kψ̂†k−q,αψ̂k,α , (29)

is a locally conserved quantity, and satisfies the following
continuity equation

∂tp̂j(x, t) = −∂iτ̂ij(x, t) , (30)

where i, j = x, y are Cartesian indices and the summa-
tion over repeated indices is understood. Eq. (30) defines
the symmetric stress tensor operator τ̂ij(x, t). In the
non-interacting limit, the Fourier transform of τ̂ij(x, t) is
defined by

τ̂
(0)
q,ij = vF

∑
k,α,β

ψ̂†k−q,α
kiσ

j
αβ + kjσ

i
αβ

2
ψ̂k,β . (31)

Let us now consider a time dependent deformation
u(r, t) of the electron coordinates {ri, i = 1, . . . , N},
which are thus shifted as ri → ri − u(ri, t). This de-
formation should not be confused with a similar one that
could be applied to the lattice. To linear order, the met-
ric tensor of the deformed system is

gij = δij − (∂iuj + ∂jui)

≡ δij − 2uij , (32)

where uij is the strain tensor of the elasticity theory33.
Note that gij = δij + 2uij . Under this transformation
the Hamiltonian becomes (to linear order in uij)

Ĥ′ = Ĥ+ 2
δĤ
δgij

∣∣∣∣∣
gij=δij

uij

= Ĥ+ τ̂iju
ij . (33)

It can be shown35 that the non-interacting part of the
stress tensor defined by Eq. (33) is identical to Eq. (31).
The variation of the Hamiltonian, τ̂iju

ij , induces a varia-
tion in the expectation value of the stress tensor operator.
To linear order in uij we get

δ〈τ̂ij〉(q, ω) = χij,kl(q, ω)ukl(q, ω) , (34)

which defines the tensor of elasticity χij,kl(q, ω). In a
rotationally invariant system this tensor can be decom-
posed as

lim
ω→0

χij,kl(q = 0, ω) = B̃ωδijδkl

+ S̃ω
(
δikδjl + δilδjk −

2

d
δijδkl

)
,

(35)

where d = 2 is the dimensionality of the system. From
the general theory of linear response4 and the form of
the perturbation in Eq. (33), it is clear that the elasticity
tensor can be calculated from the stress-stress response
function, i.e.

χij,kl(q, ω) =
1

S
〈〈τ̂ij(q); τ̂kl(−q)〉〉ω . (36)

In writing Eq. (36) we have neglected a “contact” term
(analogous to the diamagnetic term of the current-
current response function), which has been recently dis-
cussed e.g. in Ref. 36. However, this term is purely real
and thus does not contribute to the bulk and shear vis-
cosities, which are defined as

ηω = − lim
ω→0

1

4ω

∑
i,j

=m
[
χij,ij(0, ω)− 1

2
χii,jj(0, ω)

]
,

ζω = − lim
ω→0

1

4ω

∑
i,j

=m
[
χii,jj(0, ω)

]
. (37)

C. Equivalence of the hydrodynamic and
microscopic approaches in a Fermi liquid

In a Galilean invariant system (in which the current

operator is ĵq = p̂q/mc) it is rather easy to see that the
hydrodynamic and microscopic approach give identical
results. Thanks to Eq. (30) and the following identity

ω〈〈Â; B̂〉〉ω = 〈〈i∂tÂ; B̂〉〉ω + 〈[Â, B̂]〉
= 〈〈Â;−i∂tB̂〉〉ω + 〈[Â, B̂]〉 , (38)

we get (q = qx̂)

=m[χxy,xy(q = 0, ω)] = lim
q→0

m2
cω

2

q2
=m[χT(q, ω)] ,

=m[χxx,xx(q = 0, ω)] = lim
q→0

m2
cω

2

q2
=m[χL(q, ω)] .

(39)

Here, we used twice Eq. (38) and the fact that the av-
erage of the commutator on the right-hand-side of that
equation is purely real. Since,

χxy,xy(0, ω) =
1

4

∑
i,j

[
χij,ij(0, ω)− 1

2
χii,jj(0, ω)

]
,

χxx,xx(0, ω)− χxy,xy(0, ω) =
1

4

∑
i,j

=mχii,jj(0, ω) ,

(40)
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which are valid in the limit ω → 0, from Eqs. (37)
and (39) one immediately recovers Eq. (25). Notice that,
since in a Galilean invariant system mc is not renormal-
ized by e-e interactions, Eq. (25) is valid to all orders
in the strength of e-e interactions, and, therefore, at all
frequencies (as long as ω � εF).

The connection is much less straightforward in the case
of the 2D MDF liquid in graphene. Indeed, in a system
with a linear dispersion, the current operator is not pro-
portional to the momentum-density operator. Therefore,
Eq. (39) does not hold, in general. This fact notwith-
standing, we have found that in the Fermi liquid regime
Eq. (39) still holds in an approximate sense and, there-
fore, to the level of accuracy we are interested in, the
microscopic and hydrodynamic approaches coincide. The
details of the argument are presented in Appendix A, but
the basic idea is quite simple. First of all, it is clear that
at sufficiently low frequency interband transitions are ir-
relevant and can be disregarded. Then it is clear that,
within a narrow band of energies around the Fermi level
in the conduction band, there is no qualitative difference
between the linear dispersion of MDFs and the linearized
dispersion of ordinary massive fermions: the two disper-
sions are indistinguishable if the ordinary Schrödinger
fermions are assigned the cyclotron mass mc = kF/vF.
We conclude that the equivalence of the microscopic and
hydrodynamic approaches carries over to MDFs with the
simple replacement of the effective mass by the cyclotron
effective mass.

IV. CALCULATION OF THE VISCOSITY IN
THE RELAXATION TIME APPROXIMATION

As we pointed out in the Introduction, e-e interactions
enter the calculation of the viscosities quite differently in
the high-frequency (collisionless) and low-frequency (col-
lisional) regimes. In the high-frequency regime, the ef-
fect of the interaction is perturbative, meaning that there
would be no viscosity without interactions creating a cor-
relation between the motions of adjacent parts of the liq-
uid. In the low-frequency regime, e-e interactions are
non-perturbative as their primary role is to establish a
finite mean free path `ee for electrons: this mean free
path would be infinite in the absence of interactions. The
problem is how to connect in a seamless way these two
very different regimes of e-e scattering. The relaxation
time approximation, summarized in Eqs. (1), offers a sim-
ple and physically motivated way to achieve this connec-
tion. The derivation of these formulas closely parallels
the derivation given in Ref. 10 for Galilean invariant sys-
tems. Only a minor adaptation is needed, namely the
replacement of the bare electron mass m by the cyclotron
effective mass mc, as discussed in the previous Section.
We therefore refer the reader to Ref. 10, where a de-
tailed derivation of Eqs. (1) is provided, and we focus in
this Section on the calculation of the inputs for Eqs. (1),
i.e. the high-frequency viscosities and the corresponding

relaxation times. An alternative derivation of Eqs. (1) is
presented in Appendix B.

A. The high-frequency viscosities

To evaluate the transverse current-current response
function, we adopt the (Hamann-Overhauser37 or
Schrieffer-Wolff38) canonical transformation approach
outlined in Refs. 19–21.

First of all, we introduce a unitary transformation gen-
erated by a Hermitian operator F̂ ,

Ĥ′ = eiF̂ (Ĥ0 + Ĥee)e
−iF̂ , (41)

which cancels the e-e interaction from the transformed
Hamiltonian, i.e. we require Ĥ′ ≡ Ĥ0 to second order in
the dimensionless strength αee of e-e interactions. The
transformation F̂ = 1̂1+ F̂1 + F̂2 + ... is determined order-
by-order in perturbation theory. Here 1̂1 is the identity
and F̂n is the term of n-th order in the strength of e-e
interactions. As shown in Refs. 19–21, to calculate the
imaginary part of the current-current response function
in the limit vFq � ω � 2εF it is sufficient to determine
F̂1, which satisfies the equality [Ĥ0, iF̂1] = Ĥee.

After carrying out the transformation F̂ , the Kubo
product in Eq. (27) is reduced to the evaluation of a

non-interacting response function ∝ 〈〈Â′, B̂′〉〉0,ω. The
subscript “0” here means that the average 〈. . .〉 is now
performed over the ground state of the non-interacting
system and that the time evolution is generated by

Ĥ0. However, the operators Â′ = eiF̂ Âe−iF̂ and B̂′ =

eiF̂ B̂e−iF̂ are now dressed by e-e interactions. The key
idea is to realize that the calculation of =m[χjαjβ (q, ω)]
to second order in the strength of e-e interactions and in
the limit vFq � ω � 2εF requires only the knowledge

of the transformed current-density operator ĵ′q to first

order19–21, i.e. ĵ′1,q = ĵq + ĵ1,q, where

ĵ1,q = [iF̂1, ĵq] . (42)

Thus, to second order in the strength of e-e interac-
tions, and for vFq � ω � 2εF, we get the follow-
ing exact-eigenstate (Lehmann) representation4 of the
current-current response function

=m[χjαjβ (q, ω)] = −π
∑
m

〈0|ĵ1,q,α|m〉〈m|ĵ1,−q,β |0〉

× δ(ω − ωm0) .

(43)

The calculation of F̂1 and ĵ1,q is carried out in Appen-
dices C and D.

Here we quote the final formula for the two components
(longitudinal and transverse) of the current-current re-
sponse function, exact to second order in e-e interactions
and in the large-Nf limit, which is
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=m[χ`(q, ω)] = −
∑

α,β=x,y

∫
d2q′

(2π)2
v2q′

∫ ω

0

dω′

π

{
Γ(`)
α (q, q′)Γ

(`)
β (−q,−q′)=m[χ(0)

nn(q′, ω′)]=m[χ
(0)
jαjβ

(q′, ω − ω′)]

+ Γ(`)
α (q, q′)Γ

(`)
β (−q, q′)=m[χ

(0)
njα

(−q′, ω′)] =m[χ
(0)
njβ

(q′, ω − ω′)]
}
. (44)

In this equation ` = L,T and χ
(0)
nn(q, ω), χ

(0)
jαjβ

(q, ω),

and χ
(0)
njα

(q, ω) are the non-interacting density-density,
current-current, and density-current response functions

of a 2D gas of MDFs. The quantities {Γ(`)
α (q, q′);α =

x, y; ` = L,T} are defined as

Γ(T)
α (q, q′)=

vFq

ω2

[
q′xq
′
y

q′2
q′α
kF
−
(

1− q′2

4k2F

)
×
q′xδα,y + q′yδα,y

kF

]
+

q′2

4vFk3F
δα,x , (45)

and

Γ(L)
α (q, q′)=

vFqx
ω2

[
q′2y
q′2

q′α
kF
− 2

q′x
kF

(
1− q′2

4k2F

)
δα,x

]

+
q′2

4vFk3F
δα,x . (46)

We stress that the imaginary parts of the three linear-

response functions χ
(0)
nn(q, ω), χ

(0)
jαjβ

(q, ω), and χ
(0)
njα

(q, ω)

do not depend on any ultraviolet cut-off in the low-energy
MDF limit. Moreover, since in the limit of ω → 0 the
integral over q′ is naturally restricted to 0 ≤ q′ ≤ 2kF,
no ultraviolet regularization is needed in Eq. (44). The
only pathology of the integral in Eq. (44) appears in the
infrared q′ → 0 limit, due to the 1/q′ singularity of the
Coulomb potential vq′ . This problem is cured by screen-
ing, as we will further discuss below.

We observe that, contrary to what happens in a
parabolic-band electron gas, the matrix elements of
Eqs. (45) and (46) do not vanish in the limit q → 0.
The terms that remain finite are due to broken Galilean
invariance24, i.e. due to the presence of the valence band
and, as noted in Ref. 19, are responsible for a finite
optical conductivity in the single-particle optical gap
ω < 2εF, which scales as ∼ ω2. Being a conductivity,
it is conceptually wrong to include it in the viscosities,
and therefore in what follows we neglect the terms of
Eqs. (45) and (46) that do not vanish when q → 0, i.e.
the last terms in Eqs (45)-(46). By insisting in retaining
these terms, we would (wrongly) get diverging viscosities.

Such a finite optical conductivity below the 2εF-gap is
present only in the high-frequency limit (τ−1ee � ω �
2εF) and is an effect beyond the Fermi liquid theory.
Therefore, Eq. (16) does not need to be amended with
the inclusion of a finite conductivity in the low-frequency
regime.

The collisionless limit itself is “by definition” outside
the Fermi-liquid regime, since the electronic excitations
are not restricted to live in a thin shell of thickness

∼ (kBT )2/εF around the Fermi surface. We stress that
no Fermi liquid assumption has been done in this sec-
tion: even though the excitations are close to the Fermi
surface, their energy is still ω � τ−1ee ∼ (kBT )2/εF. Note
also that one needs to take into account the simultane-
ous excitations of two particle-hole pairs at the Fermi
surface, as our theory does, to find a finite optical con-
ductivity below the 2εF-gap. Such processes are usu-
ally neglected in the Fermi-liquid theory, which assumes
that all electronic excitations are uncorrelated.4 Contrary
to one-particle processes, two-particle excitations are not
kinematically constrained (for zero momentum transfer)
at energies ω > 2εF, and can therefore contribute to the
optical conductivity below the 2εF-gap.

Eq. (44) is the main result of this Section. Note that
in the large-Nf limit the second-order expression for the
imaginary part of the current-current response function
in Eq. (44) has the appealing form of a convolution of
two single-particle spectra39. The physical interpreta-
tion of Eq. (44) is the following. At long wavelengths
and to the lowest non-vanishing order of perturbation
theory, the spectrum of the current-current correlator is
dominated by the emission of two correlated electron-
hole pairs. Each of the Kubo products on the right-hand
side of Eq. (44) describes the rate of generation of a sin-
gle electron-hole pair. The spectral weight associated
with the excitation of two particle-hole pairs with oppo-
site momenta and given total energy ω is proportional to
their convolution.

We now sketch how to make analytical progress in
the evaluation of the current-current response function
as from Eq. (44).

The integrals in Eq. (44) can be carried out analyti-
cally with the help of known formulas for the response
functions15. We first observe that in the low-energy MDF
limit the system is translationally and rotationally invari-

ant. The current-current response function χ
(0)
jαjβ

(q, ω)

is a rank-2 tensor that can be therefore decomposed ac-
cording to Eq. (22). In the same way, the density-current
response function can be seen to be equal to

=mχ(0)
jαn

(q′, ω) =
q′α
q′
=mχ(0)

jLn
(q′, ω) , (47)

where χ
(0)
jLn

(q′, ω) is the non-interacting longitudinal-

current-density response function. Eqs. (22) and (47) can
be used to perform analytically the angular integration
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in Eq. (44), which reads

=m[χ`(q, ω)] =

∫
d2q′

(2π)2

∫ ω

0

dω′

π
v2q′

q′2

k2F

×
{
a`=m[χ(0)

nn(q′, ω′)]=m[χ
(0,T)
jj (q′, ω − ω′)]

+ b`=m[χ(0)
nn(q′, ω′)]=m[χ

(0,L)
jj (q′, ω − ω′)]

+ c`=m[χ
(0)
njL

(q′, ω′)] =m[χ
(0)
njL

(q′, ω − ω′)]
}
,

(48)

where

aT = aL =
v2Fq

2

ω4

(q′2/k2F − 4)2

32
, (49)

bL =
v2Fq

2

ω4

3q′4 − 20k2Fq
′2 + 44k4F

32k4F
,

bT =
v2Fq

2

ω4

(q′2/k2F − 2)2

32
, (50)

and, finally,

cL =
v2Fq

2

ω4

3q′4 − 20k2Fq
′2 + 44k4F

32k4F
,

cT =
v2Fq

2

ω4

(q′2/k2F − 2)2

32
. (51)

To cure infrared divergences associated with the long-
range tail of the e-e interaction vq′ , we have eval-
uated the integral over q′ in Eq. (48) by replacing
vq′ with a statically-screened Thomas-Fermi interaction,

i.e. v
(TF)
q′ = 2πe2/[ε(q′ + qTF)]. Here qTF = NFαeekF is

the Thomas-Fermi screening wave vector8.
In the limit ω → 0 we can expand the imaginary part

of each response function χ
(0)
nn , χ

(0)
njL

, χ
(0)
L , and χ

(0)
T in

a power series of ω′, ω − ω′ and retain only the lead-
ing order of this expansion. The leading contribution to
=m[χ`(q, ω)] in Eq. (44) in powers of ω in the limit ω → 0
can be extracted from the following asymptotic formulae:

lim
ω′→0

=m[χ(0)
nn(q′, ω′)] = −Nf

√
4k2F − q′2

2q′
ω′

2πv2F
(52)

and

lim
ω′→0

=m[χ
(0)
T (q′, ω′)] = −Nf

2kF

q′
√

4k2F − q′2
ω′

2πvF
. (53)

The imaginary parts of density-current and lon-
gitudinal current-current response functions scale
with higher powers of ω′. Indeed they can be
derived from Eq. (52) according to the formu-

lae4 =m[χ
(0)
jLn

(q′, ω′)] = ω′=m[χ
(0)
nn(q′, ω′)]/q′ and

=m[χ
(0)
L (q′, ω′)] = ω′2=m[χ

(0)
nn(q′, ω′)]/q′2.

Since the last two lines of Eq. (48) give a subleading
contribution, in the limit vFq � ω � 2εF, they can be

0.0 0.5 1.0 1.5 2.0

αee

0.0

0.2

0.4

0.6

0.8

η ∞
/
(
n
)
[×

10
−

2
]

FIG. 2. (Color online) The high-frequency shear viscosity
η∞ (in units of the excess carrier density n) of the 2D MDF
liquid in a doped graphene sheet is plotted as a function of the
dimensionless parameter αee, which defines the strength of e-e
interactions. Note that the vertical axis must be multiplied
by a factor 10−2.

disregarded. Plugging Eq. (48) back into Eq. (25) we
finally get

η∞ = nANf
(αee) ,

ζ∞ = 0 , (54)

where ANf
(αee) = 2Nfα

2
eef(Nfαee), with

f(x) =
15x3 − 15x2 − 52x+ 42

288π

− (5x4 − 24x2 + 16)

96π
arccoth(1 + x) . (55)

Note thatANf
(αee) is defined with an extra factor of 2/Nf

with respect to Ref. 19, due to the factor m2
c in the defi-

nitions of Eq. (25) which we chose to include in ANf
(αee).

We underline that the dependence on the strength of e-
e interactions beyond α2

ee, encoded in f(x), is due to
the Thomas-Fermi screened interaction introduced above
which we used to regularize the infrared behavior of the
integrand in Eq. (48).

In Fig. 2 we show the high-frequency shear viscosity,
as defined in Eq. (54), in units of the carrier density n,
and as a function of the dimensionless parameter αee. In
the limit of αee → 0 we find that

η∞ → −n
Nf

6π
α2
ee ln(αee) . (56)

The extra logarithmic dependence on the coupling con-
stant of Eq. (56) is due to the Thomas-Fermi screening
used in the calculation. For αee � 1 the Thomas-Fermi
screened interaction becomes independent of αee, and the
high-frequency shear viscosity tends to η∞ → n/(9πNf).

B. The viscosity transport time

We now turn to the evaluation of the viscosity trans-
port time τv, which enters Eq. (1). This quantity can be
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FIG. 3. a) The diagrammatic representation of the current-
current response function. The black filled circle represents
the bare vertex Λ(0,α) (we suppress the momentum-energy de-
pendence for brevity), while the solid double lines are Green’s
functions dressed by the self-energy. In the large-NF limit it
corresponds to the GW self-energy, which is depicted in panel
b). Wavy lines represent the RPA screened interaction W . Fi-
nally, the triangle represents the vertex function Λβ which is
dressed by e-e interactions and satisfies the Bethe-Salpeter
equation in panel c). Note that the form of the irreducible
interaction I is uniquely determined by the choice of the self-
energy, provided that Λβ satisfies the Ward identities4 (see
Fig. 4).

FIG. 4. Feynman diagrams that contribute to the irreducible
interaction I in Fig. 3.

estimated from a diagrammatic calculation of the low-
frequency viscosity. Contrary to its high-frequency coun-
terpart, the low-frequency viscosity is a non-perturbative
quantity, and cannot be calculated by truncating the per-
turbative series of Feynman diagrams to any finite order.
It is thus necessary to sum an infinite set of diagrams, to
all orders in αee. This requires (i) that the Green’s func-
tions are dressed by self-energy insertions and (ii) that
vertex corrections are included.

To bypass the tedious task of expanding the infinite se-
ries of diagrams for the current-current response function
to order q2, and then take the limits shown in Eq. (25), we
use the definition of the shear viscosity given by Eq. (37),

i.e.

η0 = − lim
ω→0

1

4ω

∑
i,j

=m
[
χij,ij(0, ω)− 1

2
χii,jj(0, ω)

]
.

(57)

The greatest advantage of using Eq. (57) is that the
hydrodynamic shear viscosity η0 can be extracted from
the response function χij,k`(q, ω) evaluated at q = 0.
Fig. 3a) shows the general expression of the stress-stress
linear response function we calculate in what follows.
The double solid lines represent Green’s functions dressed
by the self-energy insertion shown in Fig. 3b). The wavy
line represents the dynamically screened e-e interaction
W (q, ω). In the spirit of the large-Nf approximation,
the self-energy can be approximated with its GW expres-
sion. This, in turn, implies that the screened interaction
in Fig. 3b) contains the usual RPA dynamical dielectric
function ε(q, ω). Herein lies our large-Nf approximation.

The black filled circle on the left side of Fig. 3a) rep-
resents the bare stress-tensor vertex

Λ
(0,ij)
λλ′ (k,k′) = vF

kiS(j)λλ′(k−,k+) + kjS(i)λλ′(k−,k+)

2
.

(58)

To account for vertex corrections, we need to dress one of
the two vertices in Fig. 3a). The dressed vertex is marked
as “Λ” and it is required to satisfy the self-consistent
Bethe-Salpeter equation represented in Fig. 3c). The
choice of the quasiparticle self-energy [Fig. 3b)] and the
requirement of fulfilling the Ward identities uniquely de-
termine the irreducible interaction I. The diagrams that
contribute to I are shown in Fig. 4.

The present calculation closely follows that reported
in Ref. 23, the main difference being that here we have
stress-tensor vertices in lieu of current vertices. There-
fore, the calculation of Ref. 23 should be adapted to the
present case. These changes are explained in detail in
Appendix E. Here, we briefly summarize the procedure
we adopted to solve the problem posed by the diagrams
in Figs. 3-4.

As explained above, the choice of working with the
stress-stress response function allows us to avoid the ex-
pansion of the Bethe-Salpeter equation for the current
vertex to order q2. We therefore set q = 0 from the
very beginning of the present calculation. In what fol-
lows we focus on the imaginary part of the stress-stress
response function, which is the quantity that controls the
low-frequency viscosity [recall Eq. (57)]. Taking the low-
frequency and -temperature limits, it becomes evident
that only the states in a narrow region of size ∼ kBT
around the Fermi surface give a significant contribution
to the imaginary part of stress-stress response function.
Moreover, in the limit ω, τ−1ee � 2εF, whenever a prod-
uct of two Green’s functions with the same momentum
argument appears, one of the two must be considered as
retarded and the other as advanced (schematically, we
get products of the form G(A)G(R)). Terms containing



12

products of two retarded or two advanced Green’s func-
tions are responsible for subleading contributions in the
limit εFτee � 1. Finally, in the spirit of the theory of
normal Fermi liquids, each product G(A)G(R) is approx-
imated by a δ-function, i.e. the incoherent part of each
Fermi-liquid Green’s function is neglected and we retain
only its singular part. This corresponds to the so-called
“quasiparticle approximation”, which is usually done in
time-dependent perturbation theory to derive the Boltz-
mann transport equation from the Keldysh equation for
the Green’s function. Therefore, our theory describes the
transport of momentum in the “semiclassical” regime,
and neglects all quantum effects.

The set of approximations described above allows us
to dramatically simplify the expression of the Bethe-
Salpeter equation. The latter can be then solved ana-
lytically with the Ansatz40 (suppressing all the frequency
and momentum dependencies) Λ = γΛ(0). In this way we
require the dressed vertex to be proportional to the bare
one. The Bethe-Salpeter equation becomes an algebraic
equation, which can be solved analytically. We get

γ(ω) =
ω + i/τee
ω + i/τv

. (59)

The expression for τv reads (see also Appendix E)

1

τv
' − 2

(2π)2

∫ +∞

−∞
dω

1− nF(ξk,+ − ω)

1− exp(−βω)

∫ +∞

0

dq q

×
∣∣∣∣ vq
ε(q, ω, T )

∣∣∣∣2=m[χ(0)(q, ω, T )]A++(k, q, ω)

× 4

[
1− q2 − ω2/v2F

4k(k − ω/vF)

]
q2 − ω2/v2F

2k(k − ω/vF)
. (60)

where

A++ =
4(k − ω/vF)

vF
√

[(2k − ω/vF)2 − q2](q2 − ω2/v2F)

×
[
1− q2 − ω2/v2F

4k(k − ω/vF)

]
× Θ

{[
(2k − ω/vF)2 − q2

]
(q2 − ω2/v2F)

}
.

(61)

Eq. (60) describes the scattering of a quasiparticle with
momentum k = kFx̂ and energy equal to the Fermi en-
ergy into a quasiparticle with momentum |k + q| = kF.
In this process the whole Fermi liquid is excited. The
many-particle excitations created during the scattering
event are encoded in the imaginary part of the density-

density response function =m[χ
(0)
nn(q, ω, T )]. The last

line of Eq. (60) can be shown to be proportional to
1 − cos2(ϕk+q) [see Appendix E—to get Eq. (60) an in-
tegration over the angle of q has been performed]. At
low temperature and in the limit of αee → 0 the shear
viscosity becomes

η0 ∝
~n
α2
ee

(
εF
kBT

)2

. (62)

Note that the matrix element 1 − cos2(ϕk+q) vanishes
when k + q is either parallel or antiparallel to k (recall
that k is along the x̂ direction), and it is maximum for
excitations for which k+q is perpendicular to k. There-
fore it suppresses the contribution coming from the re-
gion of small transferred momenta q ∼ 0, which is re-
sponsible for the logarithmic-in-temperatures correction
to the quasiparticle lifetime. Indeed, at low temperature
1/τee ∝ −T 2 ln(T ), with a coefficient of proportionality
which is independent of the coupling constant αee (see
Ref. 5 for more details). Therefore, because of the pres-
ence of the matrix element 1 − cos2(ϕk+q), 1/τv ∝ T 2,
and the coefficient of proportionality depends on αee.

Note also that, since the derivation of the viscosity
transport time does not rely on the linear band dispersion
of MDFs, a similar conclusion can be drawn for a Galilean
invariant parabolic-band 2D electron gas. Also in the lat-
ter case there is no logarithmic-in-temperature correction
to the low-temperature behavior of τv. Indeed, the ma-
trix element suppresses both the regions q ∼ 0 (forward
scattering) and q ∼ 2kF (perfect backscattering), which
are responsible for the aforementioned correction4.

Finally, it is possible to extrapolate Eq. (62) to the
undoped regime. In this regime, the Fermi energy is pro-
portional to the temperature, while the density, being
proportional to ε2F, becomes proportional to the temper-
ature squared. Therefore, apart from numerical factors,

η0

∣∣∣
undoped

∝
(
kBT

αee

)2

, (63)

which coincides with the power law reported in Ref. 11.

V. RESULTS AND CONCLUSIONS

In Fig. 5a) we illustrate the carrier density dependence
of the low-frequency kinematic viscosity ν0 ≡ η0/(nmc)
of a 2D MDF liquid in a doped graphene sheet. We
show three curves corresponding to different values of
temperature T , i.e. T = 150, 200, and 270 K. Data
in this plot have been obtained by setting αee = 0.5.
In Fig. 5b) we plot the same quantity but viewed as a
function of temperature T (in units of K), for an excess
carrier density n = 0.4× 1012 cm−2. In the inset we also
show a logarithmic plot of ν0, and we compare it with
the power laws T−2 and T−3/2. While the kinematic
viscosity goes as T−2 for very small temperatures, we
find that it goes as T−3/2 for the larger temperatures
shown in Fig. 5b). Note that the kinematic viscosity of
the 2D MDF liquid in graphene is much higher than that
of classical fluids1.

In Fig. 6 we illustrate the frequency dependence of the
kinematic viscosity νω ≡ ηω/(nmc) of the 2D MDF liquid
in a doped graphene sheet. The quantity ηω is defined
in Eq. (1). We remind the reader that ω here represents
the frequency of the external perturbation. In Fig. 6a)
we fix the excess carrier density n = 0.2×1012 cm−2, the
coupling constant αee = 0.5, and we show three curves
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FIG. 5. (Color online) Panel a) shows the low-frequency kine-
matic viscosity ν0 ≡ η0/(nmc) of a 2D MDF liquid (in units
of m2/s) as a function of the excess carrier density n (in units
of 1012 cm−2). The three curves refer to different values of
the temperature, i.e. T = 150, 200, and 270 K. In this plot
αee = 0.5. Note that in the range of densities shown in this
plot the temperature is always smaller than TF = εF/kB.
This, in turn, implies that the low-temperature approxima-
tion (T � TF) for 1/τv in Eq. (60) is valid. Indeed, the
minimum Fermi temperature in this plot, corresponding to
n = 0.2 × 1012 cm−2, is TF ' 605 K. Therefore, in this plot
T/TF . 0.45. Panel b) The low-frequency kinematic viscosity
is shown as a function of temperature T (in units of K) for
an excess carrier density n = 0.4× 1012 cm−2 (corresponding
to TF ' 855 K). Inset: a logarithmic plot of ν0 in the same
range of temperatures as in the main panel. Note that ν0
grows like T−2 for T � TF. A crossover to a different power
law, ∼ T−3/2, is evident as temperature increases beyond the
T � TF regime.

for T = 150, 200, and 270 K. In Fig. 6b) and c) we fix
instead the carrier density at n = 0.5 × 1012 cm−2 and
n = 1012 cm−2. Fig. 6 shows that viscosity corrections to
the lifetime of plasmons in the high-frequency (e.g. mid
infrared) regime are totally negligible. However, when
the plasmon frequency is in the Terahertz (THz) spec-
tral region [ω/εF . 0.1 in Figs. 6a)-c)] the viscosity of
the electron liquid leads to corrections41 to the plasmon
lifetime that may be comparable to those due to electron-
impurity20 and electron-phonon scattering21,42. There-
fore, a careful comparison between measurements of the
lifetime of THz plasmons in high-quality graphene sam-
ples and theoretical predictions can be used to extract
the value of νω.

In summary, we have calculated (i) the high-frequency
bulk and shear viscosities—Eq. (54)—and (ii) the vis-
cosity transport time—Eq. (60)—of the two-dimensional
massless Dirac fermion liquid in a doped graphene sheet,
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FIG. 6. (Color online) Panel a) shows the kinematic viscosity
νω = ηω/(nmc) (in units of m2/s) of the 2D MDF liquid
in a doped graphene sheet—Eq. (1)—as a function of ω (in
units of the Fermi energy εF). In this plot we set n = 0.2 ×
1012 cm−2, αee = 0.5, and we show results for three different
temperatures: T = 150, 200, and 270 K. All the curves tend
to the finite (albeit small) value at large ω, whose magnitude
can be extracted from Fig. 2. In this plot we subtracted
the “conductivity term” proportional to BNf (αee) from the
definition of η∞ given in Eq. (54). Panel b) Same as in panel
a) but for n = 0.5 × 1012 cm−2. Panel c) Same as in panels
a) and b) but for n = 1.0× 1012 cm−2.

as solely due to electron-electron interactions. As ex-
pected, the bulk viscosity vanishes. The shear viscosity
is instead finite and is proportional to the excess carrier
density of the doped system. Note that, since the bulk
viscosity vanishes, the high-frequency shear viscosity η∞
can be directly estimated by measuring the lifetime of
Dirac plasmons15 in high-quality encapsulated graphene
sheets42, by carrying out similar experiments in the Ter-
ahertz spectral range. Finally, from the knowledge of the
high-frequency values of the shear viscosity and modu-
lus, and of the viscosity transport time, we extracted the
shear viscosity ηω at all frequencies, using the interpola-
tion formula given by Eq. (1) and derived in Appendix B.

The low-frequency shear viscosity is equal to the high-
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frequency shear modulus S∞ = nεF/4 multiplied by a
“viscosity transport time” τv, which we microscopically
calculated in this Article. We showed that τv is both
quantitatively and qualitatively different from the quasi-
particle lifetime5,6 τee. Indeed, in the low temperature
limit 1/τee ∝ −T 2 ln(T/TF), and the coefficient of pro-
portionality is independent of the coupling constant αee

(as shown in detail in Ref. 5). Conversely, we proved
that 1/τv ∝ T 2 and that it depends on αee. Excitations
in which a quasiparticle is scattered at 90◦ with respect to
its initial direction of motion are responsible for the dom-
inant contribution to the (shear) viscosity transport time.
This is reflected by a matrix element in the expression
of 1/τv, which suppresses the contributions due to both
the forward scattering and perfect backscattering of the
quasiparticle (i.e. the perfectly longitudinal channels).
The same matrix element is expected to show up in the
expression for the viscosity transport time of a Galilean
invariant (parabolic band) two-dimensional electron gas.
Therefore, also in the latter case we expect 1/τv ∝ T 2

for T � TF.
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Appendix A: The equivalence of hydrodynamic and
microscopic approaches in the Fermi liquid regime

In this Appendix, we demonstrate the equivalence of
hydrodynamic and microscopic approaches for the 2D
MDF liquid in a doped graphene sheet, in the low-
temperature Fermi liquid regime.

To this aim, let us focus on the non-interacting equa-
tion of motion for the current operator

i∂tjq,i = [Ĥ0, jq,i]

= −v2Fqin̂q
− 2iv2F

∑
k,αβ

ψ̂†k−q/2,α(k × σαβ)ψ̂k+q/2,β .

(A1)

We remind the reader that we are interested in calcu-
lating the current-current response functions to order q2,
in order to take the limits of Eq. (25). This in turn
implies that we can retain only the term of order q of
Eq. (A1), and replace the first term on its right-hand
side with qin̂q → qin̂q=0. Since n̂q=0 is the total num-
ber of particle, it is exactly conserved by any microscopic

process, and therefore does not contribute to any linear
response function. Thus, we neglect it in what follows.
We now use the fact that we are interested only in the
states in conduction band around the Fermi surface. Af-
ter a rotation of the second term on the right-hand side
of Eq. (A1) to the chiral basis, we retain only the states
that have chiral indices λ = λ′ = +. We thus get

∂tjq,i = −2v2F
∑
k

ĉ†k−q/2,+(k × ẑ)ĉk+q/2,+

× S(z)++(k − q/2,k + q/2) , (A2)

where S(z)λλ′(k,k
′) is defined in Eq. (13). Its approximate

expression valid in the continuum limit and at the Fermi
surface is given in Eq. (14). Using the following vectorial
identity

(k × ẑ)i[ẑ · (q × k)] = (r̂i × k) · (q × k)

= qi|k|2 − ki(q · k) , (A3)

which holds since k, q and r̂i ≡ (x̂, ŷ)i are 2D in-plane
vectors, to O(q2) we get

i∂tjq,i = −
∑
k

ĉ†k,+ĉk,+
vF

mckF
ki(q · k)

+ v2Fqi
∑
k

ĉ†k−q/2,+ĉk+q/2,+ . (A4)

The term on the second line is proportional to the to-
tal number of particles in the conduction band. At low
frequencies, since interband processes are strongly sup-
pressed, the number of particles in each band is con-
served. Therefore, such term does not contribute to the
response functions and can be neglected. On the other
hand, in Eq. (14) we noted that the matrix elements of
the current, when projected at the Fermi surface, read

S(i)++(k,k) = ki/kF. Therefore Eq. (A4) can be rewritten
as

i∂tjq,i = −
∑
k,j

ĉ†k,+ĉk,+
vFqj
mc

kiS(j)++(k,k) + kjS(i)++(k,k)

2
.

(A5)

Since (i) we always consider states around the Fermi sur-
face, (ii) we do not allow interband transitions, and (iii)
we use the equation of motion to order q, after a rotation
back to the pseudospin basis we can rewrite Eq. (A5) as

i∂tjq,i = −vFqj
mc

∑
k,α,β

ψ̂†k−q/2,α
kiσ

j
αβ + kjσ

i
αβ

2
ψ̂k+q/2,β .

(A6)

The quantity on the right-hand side is exactly the bare
stress tensor operator of Eq. (31). Using Eq. (A6) we can
derive the analogous of Eq. (39) for an MDF liquid and
prove the equivalence of the two approaches [although in
the approximate sense explained after Eq. (A5)].
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Appendix B: The generalized relaxation time
approximation

The Generalized Relaxation Time Approximation
(GRTA) offers a simple and powerful way to interpolate
between the collisionless and the collisional regimes of
linear response functions. This theory has its roots in
Mermin’s work on the density-density response function
of the electron gas43, but it is applicable to a broader class
of response functions and problems. The classic deriva-
tion is from the solution of the Boltzmann equation with
a collision integral that describes relaxation towards a
local equilibrium distribution function.

A local equilibrium distribution function (LEDF) has
the same form as the equilibrium distribution function (a
function of constants of the motion) but is evaluated at
the local values of the densities of the conserved quan-
tities. Thus, in the presence of impurity scattering, the
LEDF depends on a local chemical potential and a lo-
cal temperature, determined by the local particle density
and energy density respectively. Momentum is not con-
served, and therefore the LEDF has zero average momen-
tum. This is the situation considered in Mermin’s orig-
inal paper. On the other hand, if impurity scattering is
absent or negligible on the time scale of particle-particle
collisions, then the LEDF depends also on a local drift
velocity, determined by the local momentum density.

Regardless of whether electron-impurity collisions or
electron-electron interactions dominate (we assume that
it is always either one or the other) one can distinguish
between (i) a collisionless regime in which the frequency
of the macroscopic motion is much higher than the col-
lision rate, and (ii) a collisional regime in which the fre-
quency of the macroscopic motion is much lower than the
collision rate.

When electron-impurity collisions dominate, the col-
lisional regime is referred to as diffusive regime: in
this regime there is a direct proportionality between
the current and the gradient of the density. Similarly,
when electron-electron collisions dominate, the collisional
regime is referred to as hydrodynamic regime: in this
regime there is a direct proportionality between the stress
tensor and the gradient of the velocity field.

In the diffusive regime a drift velocity can only arise
from the deviation of the distribution function from the
LEDF, whereas in the hydrodynamic regime a drift veloc-
ity is already present in the LEDF. The diffusive regime
is therefore intrinsically limited to drift velocities that
are small relative to the Fermi velocity – it is basically a
linear theory of drift. Whereas the hydrodynamic regime
is suitable to describe large drift velocities, which cannot
be treated in the linear approximation.

Let us formulate the general theory of the GRTA for
a generic response function χ(q, ω). We define the relax-
ation function K(q, ω) as follows44:

χ(q, ω) ≡ χ(q, 0) [1 + iωK(q, ω)] (B1)

Since we will always be working at small q (q � kF ), the

q-dependence of χ(q, 0) will be ignored: χ(q, 0) ' χ0.
Here χ0 is (minus) the density of state of quasiparti-
cles, and is thus renormalized by electron-electron inter-
actions. The relaxation function can further be expressed
in terms of a generalized frequency- and wave vector-
dependent relaxation time T (q, ω) for the quantity under
consideration. Its general structure is

K(q, ω) =
1

−iω + 1
T (q,ω)

(B2)

This form guarantees that the finite frequency response
function χ(q, ω) vanishes if the generalized relaxation
time T is infinite, i.e., if the quantity under consideration
is conserved. From Eqs. (B1)-(B2) it is indeed immediate
to get

χ(q, ω) ≡ χ0

1− iωT (q, ω)
. (B3)

It is essential to realize that T (q, ω) is the lifetime of a
collective mode (say a density fluctuation) and as such
is conceptually different from the microscopic scattering
times (quasiparticle lifetime and transport lifetime) upon
which it may depend. In fact, we will see that the form of
T (q, ω) depends crucially on the nature of the response
function under study.

Let us now introduce the “high-frequency” response
function χ∞(q, ω). The latter includes electron-electron
interactions only to the extent of renormalizing the Fermi
liquid parameters. Thus the quasiparticle lifetime and
all the transport times, whether they be due to electron-
electron, electron impurity, or electron-phonon collisions,
are assumed to be infinite: we are in the collisionless
regime. The associated “high-frequency” relaxation func-
tion will be denoted by K∞(q, ω). We posit that the rela-
tion between the full interacting relaxation function and
the “high-frequency” one has the following form:

1

K(q, ω)
=

1

K∞
(
q, ω + i

τ

) − Vτ (q, ω) . (B4)

The underlying physical idea is that the replacement ω →
ω+i/τ accounts for self-energy corrections, while Vτ (q, ω)
accounts for vertex corrections. It is well known that the
two corrections 1/τ and Vτ are not independent of each
other, however. They must be chosen consistently, in
order to satisfy the relevant conservation laws. In the
following subsections we consider the case of the density
response in both disorder and clean systems. Therefore,
all the response functions that appear in what follows
should be regarded as density-density ones (we suppress
their indices for brevity).

1. GRTA in a disordered system

Let us first apply the theory developed so far to a sys-
tem in which the dominant mechanism is the electron-
impurity scattering. Since the only conserved quantity
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is the particle number, we now consider the relaxation
function of density fluctuations. At q = 0 and finite fre-
quency ω both the collisionless and the collisional relax-
ation functions must tend to (−iω)−1 to ensure the van-
ishing of the corresponding collisionlesss and collisional
density response functions (see Eq. B1), which is required
by the conservation of particle number. Thus, we have
K−1∞ (0, ω) = K−1(0, ω) = −iω. For this to be compati-
ble with Eq. (B4) we must choose Vτ (0, ω) = 1/τ . The
inverse density-density response function, as calculated
from Eq. (B1), reads

1

χ(q, ω)
=

1

χ0
− iω

χ0

K(q, ω)

1 + iωK(q, ω)
(B5)

Substituting in Eq. (B5) the Ansatz (B4), we get

1

χ(q, ω)
=

1

χ0
− iω

χ0

K∞
(
q, ω + i

τ

)
1 + i[ω + iVτ (q, ω)]K∞

(
q, ω + i

τ

) .
(B6)

At the same time, taking the limit τ → ∞ in Eq. (B5),
and replacing ω → ω + i/τ we have

1

χ∞
(
q, ω + i

τ

) =
1

χ0

−
i
(
ω + i

τ

)
χ0

K∞
(
q, ω + i

τ

)
1 + i

(
ω + i

τ

)
K∞

(
q, ω + i

τ

) .
(B7)

Combining Eqs. (B6) and (B7) we finally get

1

χ(q, ω)
=

1

χ0
+

ω(
ω + i

τ

)
χ0

(
χ0

χ∞
(
q, ω + i

τ

) − 1

)

×

[
1−

i
[
Vτ (q, ω)− 1

τ

](
ω + i

τ

) (
χ0

χ∞
(
q, ω + i

τ

) − 1

)]−1
.

(B8)

Setting now Vτ (q, ω) = 1/τ (which amounts to neglecting
the q-dependence of the vertex correction) we get

1

χ(q, ω)
=

i
τ(

ω + i
τ

) 1

χ0
+

ω(
ω + i

τ

) 1

χ∞
(
q, ω + i

τ

) ,
(B9)

which is precisely the Mermin’s formula for the density-
density response function43. In a Galilean-invariant elec-
tron gas in the diffusive regime

1

χ(q, ω)
' 1

χ0

(
1− iω

Dτq2

)
, (B10)

where Dτ = −Dwτ/(χ0) is the diffusion constant, Dw

is the renormalized Drude weight (n/m for the two-
dimensional electron gas or kF vF /~ for massless Dirac
fermions), and we have used the ω → 0 diffusive form of
the density-density response function χ∞(q, ω + i/τ) '
−Dwq

2τ2.

However, it is well known that the transport relaxation
time appearing in the diffusion constant, commonly de-
noted by τtr, differs from the self-energy relaxation time
τ (quasiparticle lifetime). The conservation of particle
number, as implemented in the q-independent vertex cor-
rection, is not sufficient to produce the correct transport
relaxation time. To capture the difference between τ and
τtr we must allow for the q-dependence of the vertex cor-
rection in our Ansatz (B4). Namely, we set

Vτ (q, ω) =
1

τ
+ D̃τq

2 . (B11)

The coefficient D̃τ has the dimensions of a diffusion con-
stant and its value is determined by the requirement that
the final formula for χ(q, ω) has a diffusive limit with the
correct relaxation time, i.e., τtr. With the choice (B11)
for the vertex correction our Eq. (B8) gives

1

χ(q, ω)
' 1

χ0
− iω

χ0

1

(Dτ − D̃τ )q2
. (B12)

It is evident from this result that we obtain the correct
diffusive limit if and only if

D̃τ = Dτ

(
1− τtr

τ

)
(B13)

Thus, the coefficient D̃τ in the vertex correction is simply
the difference between the “naive” diffusion constant and
the “true” diffusion constant, in which τ is replaced by
the transport lifetime τtr.

2. GRTA in a clean system

We now discuss the case of a clean Galilean-invariant
system in the so-called “hydrodynamic regime”, in which
the main mechanism of quasiparticle relaxation is given
by electron-electron interactions. Replacing τ → τee,
from Eqs. (B9) we get the “naive” diffusion constant

Dτ =
Dw

χ0

1

i
(
ω + i

τee

) . (B14)

However, since electron-electron collisions conserve the
total momentum the true diffusion constant must be di-
vergent in the limit of ω → 0, i.e. it must be

Dtr =
Dw

χ0

1

iω
, (B15)

Therefore the role of D̃τ is played by

D̃τ = Dτ −Dtr = − Dw

χ0τee

1

ω
(
ω + i

τee

) . (B16)

Substituting this in Eq. (B11) for the q-dependent ver-
tex correction, and then putting this vertex correction in
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Eq. (B8) we get

1

χ(q, ω)
=

1

χ0
+

ω(
ω + i

τee

)
 1

χ∞

(
q, ω + i

τee

) − 1

χ0



×

1 +
iDwq

2/(ωτee)(
ω + i

τee

)2
 1

χ∞

(
q, ω + i

τee

) − 1

χ0



−1

,

(B17)

This expression can be further simplified by using the
fact that

χ∞

(
q, ω +

i

τee

)
' Dwq

2(
ω + i

τee

)2 (B18)

Then simple algebraic manipulations give us

1

χ(q, ω)
=

1

χ0
+

(
ω

ω + i
τee

)2
 1

χ∞

(
q, ω + i

τee

) − 1

χ0

 ,
(B19)

where we have dropped a term proportional to χ2
∞, which

is negligible for small q.
To make a clearer connection with the solution of the

Boltzmann equation in the relaxation time approxima-
tion we rewrite(

ω

ω + i
τee

)2

=
ω

ω + i
τee

− iω/τee(
ω + i

τee

)2
=

ω

ω + i
τee

− iω

τeeDwq2
Dwq

2

(ω + i/τee)2
.

(B20)

The first term reproduces the Mermin formula, and the
second term is the correction required to ensure momen-
tum conservation:

1

χ(q, ω)
'

i
τee(

ω + i
τee

) 1

χ0
+

ω(
ω + i

τee

) 1

χ∞

(
q, ω + i

τee

)
− iω

τeeDwq2
. (B21)

To extract the hydrodynamic coefficients from
Eq. (B21) we now observe that

1

χ∞(q, ω)
' ω2

Dwq2
−

[
B∞
n2

+

(
2− 2

d

)
S̃∞(ω)

n2

]
,

(B22)

where the bulk modulus B∞ is real, frequency-
independent, and related to χ0 by the well-known com-
pressibility sum rule

χ0 = − n2

B∞
, (B23)

while S̃∞(ω) = S∞−iωη∞ is the complex shear modulus.
Plugging Eqs. (B22) and (B23) into Eq. (B21) we get,
after some algebra,

1

χ(q, ω)
' ω2

Dwq2

−

[
B∞
n2

+

(
2− 2

d

)
ω

ω + i/τee

S̃∞(ω)

n2

]
.

(B24)

This expression can be directly compared with what
one obtains from the inversion of Eqs. (20) and (21). The
only problem is that it still contains the electron-electron
lifetime τee instead of the physically correct viscosity re-
laxation time τv. This discrepancy is a consequence of
the Ansatz (B11) for the vertex correction. We can show
that the replacement of τee by τv is effect of the inclusion
of an additional term proportional to q4 on the right hand
side of Eq. (B11). Just as the inclusion of the q2 term
in the vertex correction guaranteed the correct behavior
of the momentum relaxation time, the inclusion of the
q4 term enacts the replacement of τee by τv. With this
replacement it is at last straightforward to identify the
frequency-dependent generalized bulk and shear moduli
as

B̃ω = B∞
S̃ω =

ω

ω + i/τv
S∞ (B25)

Separating the real and the imaginary parts of these com-
plex coefficients we arrive at the expressions in agreement
with Eqs. (1).

Appendix C: Calculation of F̂1 and ĵ1,q

The operator F̂1 was calculated in Ref. 19 and reads

iF̂1 ≡
1

2

∑
q′

vq′
∑
k,k′

∑
λ,λ′,µ,µ′

Mλ,λ′,µ,µ′(k,k
′, q′)

× c†k−,λck+,λ′c
†
k′+,µ

ck′−,µ′ . (C1)

where

Mλ,λ′,µ,µ′(k,k
′, q′) =

Dλλ′(k−,k+)Dµµ′(k′+,k′−)

εk−,λ − εk+,λ′ + εk′+,µ − εk′−,µ′
.

(C2)
To simplify the notation we have introduced k± ≡ k ±
q′/2 and k′± ≡ k′ ± q′/2.

The transverse component of the operator ĵ1,q is ob-
tained from its definition of Eq. (42). After some manip-
ulations, along the lines of Ref. 19, we get

ĵ1,q,T =
1

2

∑
q′

vq′
[
Υ̂

(T)
q,q′ n̂−q′ + n̂q′Υ̂

(T)
q,−q′

]
, (C3)
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where

Υ̂
(T)
q,q′ =

∑
k,λ,λ′

Mλ,λ′(k, q
′, q)ĉ†k−−q/2,λĉk++q/2,λ′ ,

(C4)

with

Mλ,λ′(k, q
′, q) ≡

∑
ρ

Dλρ
(
k− −

q

2
,k+ −

q

2

)
S(x)ρλ′

(
k+ −

q

2
,k+ +

q

2

)
ω + εk++q/2,λ′ − εk+−q/2,ρ

−
S(x)λρ

(
k− −

q

2
,k− +

q

2

)
Dρλ′

(
k− +

q

2
,k+ +

q

2

)
ω + εk−+q/2,ρ − εk−−q/2,λ

 .
(C5)

We stress that Eqs. (C3)-(C5) are valid only for their use
in Eq. (43), and become exact in the low-energy MDF
continuum limit, which will be taken momentarily. The
same limit restores rotational invariance: we therefore
have the freedom of fixing the direction of the wave vector
q arbitrarily. In deriving these equations we have taken,
without any loss of generality, q = qŷ which implies that
ĵ1,q,T = ĵ1,q,x.

Following the same steps outlined in Ref. 19 it is possi-
ble to show that the operator in Eq. (C4) can be written

as (the details of this derivation are given in App. D)

Υ̂
(T)
q,q′=

∑
α=x,y

{
vFq

ω2kF

[
q′xq
′
y

q′2
q′α −

(
1− q′2

4k2F

)

× (q′xδα,y + q′yδα,y)
]

+
q′2

4vFk3F
δα,x

}
ĵq′,α

≡
∑
α=x,y

Γ(T)
α (q, q′)ĵq′,α . (C6)

The main differences between Eq. (C6) and the corre-
sponding expression that can be found for a 2DEG39 are:
(i) the factor 1− q′2/(4k2F), which is due to the chirality
of the MDF eigenstates and suppresses backscattering at
the Fermi surface19, and (ii) the last term in curly brack-
ets, which is finite even in the long-wavelength q → 0
limit19.

For a sake of completeness we recall19 that the first-
order correction to the longitudinal current operator
is formally identical to Eq. (C3), with the longitudi-

nal counterpart [Υ̂
(L)
q,q′ ] of the operator Υ̂

(T)
q,q′ taking

its place. We recall that Υ̂
(L)
q,q′ is also proportional

to the untransformed current operator, i.e. Υ̂
(L)
q,q′ =∑

α=x,y Γ
(L)
α (q, q′)ĵq′,α, where

Γ(L)
α (q, q′)=

vFqx
ω2

[
q′2y
q′2

q′α
kF
− 2

q′x
kF

(
1− q′2

4k2F

)
δα,x

]

+
q′2

4vFk3F
δα,x . (C7)

After the change of variables q′ → −q′ in the second
term on the right-hand side of Eq. (C3), the latter can be

rewritten as q · ĵ1,q =
∑
q′ vq′Υ̂

(T)
q,q′ n̂−q′ . A major sim-

plification is suggested by the analysis of the Feynman
graphs contributing to the non-interacting spectrum of

q̂ · ĵ1,q. As shown in Ref. 19 the disconnected graphs
contain two independent sums over the number Nf of
fermion flavors, whereas the connected ones contain only
one such sum. We conclude that the disconnected graphs
dominate in the large-Nf limit. The final formula for
the two components (longitudinal and transverse) of the
current-current response function, which is exact to sec-
ond order in e-e interactions and in the large-Nf limit,
is

=m[χ`(q, ω)] = −
∑

α,β=x,y

∫
d2q′

(2π)2
v2q′

∫ ω

0

dω′

π

{
Γ(`)
α (q, q′)Γ

(`)
β (−q,−q′)=m[χ(0)

nn(q′, ω′)]=m[χ
(0)
jαjβ

(q′, ω − ω′)]

+ Γ(`)
α (q, q′)Γ

(`)
β (−q, q′)=m[χ

(0)
njα

(−q′, ω′)] =m[χ
(0)
njβ

(q′, ω − ω′)]
}
, (C8)

In this equation χ
(0)
nn(q, ω), χ

(0)
jαjβ

(q, ω), and χ
(0)
njα

(q, ω)

are the non-interacting density-density, current-current,
and density-current response functions of a 2D gas of

MDFs. The quantities {Γ(`)
α (q, q′);α = x, y; ` = L,T}

are defined in Eq. (C6) and (C7). We stress that the
imaginary parts of the three linear-response functions



19

χ
(0)
nn(q, ω), χ

(0)
jαjβ

(q, ω), and χ
(0)
njα

(q, ω) do not depend

on any ultraviolet cut-off in the low-energy MDF limit.
Moreover, since in the limit of ω → 0 the integral over
q′ is naturally restricted to 0 ≤ q′ ≤ 2kF, no ultraviolet
regularization is needed in Eq. (C8). The only pathology
of the integral in Eq. (C8) appears in the infrared q′ → 0
limit, due to the 1/q′ singularity of the Coulomb poten-
tial vq′ . This problem is cured by screening, as discussed
in the main text.

Appendix D: Details of the manipulation of Υ̂
(T)

q,q′

In this appendix we approximate the expression of

the operator Υ̂
(T)
q,q′ in Eqs. (C4)-(C5) by taking the limit

vFq � ω � 2εF. We will try to slowly guide the reader
through the many steps of this lengthy process.

To begin with, in the long-wavelength q → 0 limit we

can write

1

ω + εk±+q/2,λ − εk±−q/2,ρ
→ δλ,ρ

[
1

ω
− q

ω2

∂εk±
∂ky

]
+ (1− δλ,ρ)

1

ω + 2λεF

+ O(q2) . (D1)

We then observe that in the regime of interest in this
Paper, i.e. vFq � ω � 2εF, the particle-hole states

created by the operator Υ̂
(T)
q,q′ are energetically close to

the Fermi energy. The band indices λ, λ′ on the right-
hand side of Eq. (C5) are therefore constrained to take
the values λ = λ′ = +1 (recall that εF > 0).

Note that the “virtual state” ρ, over which the sum
on the right-hand side of Eq. (C5) runs, can be either
in conduction (ρ = +1) or valence (ρ = −1) band, even
though the states labeled by the band indices λ and λ′

are bound to the Fermi surface.
We first simplify Eqs. (C4)-(C5) by using Eq. (D1).

We are naturally led to define

Mintra(k, q′, q) ≡ M++(k, q′, q)|ρ=+1 = cos

(
θk−−q/2 − θk+−q/2

2

)
cos(θk+

)

[
1

ω
− vFq

ω2
sin(θk+

)

]
− cos

(
θk−+q/2 − θk++q/2

2

)
cos(θk−)

[
1

ω
− vFq

ω2
sin(θk−)

]
+O(q2) , (D2)

and

Minter(k, q
′, q) ≡ M++(k, q′, q)|ρ=−1 = − 1

2εF
sin

(
θk−−q/2 − θk+−q/2

2

)
sin

(
θk+−q/2 + θk++q/2

2

)
+

1

2εF
sin

(
θk−+q/2 − θk++q/2

2

)
sin

(
θk−−q/2 + θk−+q/2

2

)
+O(q2) . (D3)

so that in the limit vFq � ω � 2εF we have

M++(k, q′, q) = Mintra(k, q′, q)+Minter(k, q
′, q) . (D4)

In writing Eq. (D3) we have taken the limit ω → 0 in the
second term on the right-hand side of Eq. (D1). More-
over, in obtaining Eq. (D2) we have used that

cos

(
θk±−q/2 + θk±+q/2

2

)
= cos(θk±) +O(q2) ,(D5)

and

∂εk±,λ

∂ky
→ λvF sin(θk±) . (D6)

The last equation becomes exact for k close to the K
point of the BZ and therefore in the low-energy MDF
limit.

Clearly we can carry out further approximations, rely-
ing on the fact that we are interested in the low-energy
MDF limit. Eq. (D2) can be further simplified by noting

that

cos

(
θk−±q/2 − θk+±q/2

2

)
=cos

(
θk−−q/2 − θk++q/2

2

)
−q

2
sin

(
θk− − θk+

2

)
∂θk∓
∂ky

+O(q2) , (D7)

which leads to

Mintra =
cos(θk+)− cos(θk−)

ω
cos

(
θk−−q/2 − θk++q/2

2

)
+
vFq

ω2
[cos(θk−) sin(θk−)− cos(θk+

) sin(θk+
)]

× cos

(
θk− − θk+

2

)
+

q

2ω

∂[sin(θk−)− sin(θk−)]

∂kx
sin

(
θk− − θk+

2

)
+O(q2) . (D8)
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In the first term on the right-hand side of Eq. (D8) we
can approximate

cos(θk+)− cos(θk−)→ q′x
kF

, (D9)

while the second term on the right-hand side of Eq. (D8)
becomes

[cos(θk−) sin(θk−)− cos(θk+
) sin(θk+

)] cos

(
θk− − θk+

2

)
=−

kxq
′
y + kyq

′
x

k2F
cos

(
θk− − θk+

2

)
→−

[
q′y
kF

cos(θk+
) + cos(θk−)

2
+
q′x
kF

sin(θk+
) + sin(θk−)

2

]
×cos

(
θk− − θk+

2

)
=−

(
1− q′2

4k2F

)
×
[
q′x
kF

sin

(
θk− + θk+

2

)
+
q′y
kF

cos

(
θk− + θk+

2

)]
.

(D10)

Finally, the derivative in the third term on the right-hand
side of Eq. (D8) reduces to

∂[sin(θk−)− sin(θk−)]

∂ky
→ −

∂(q′y/kF)

∂ky
= 0 . (D11)

Introducing Eq. (D8), approximated according to
Eqs. (D9)-(D11), back into Eq. (C4) we get the “intra-

band” contribution to the operator Υ̂
(T)
q,q′ , which reads

Υ̂
(T,intra)
q,q′ =

[
vFq
′
x

kFω
n̂q+q′ −

vFq

ω2

(
1− q′2

4k2F

)
×
(
q′x
kF
ĵq′,y +

q′y
kF
ĵq′,x

)]
+O(q2) . (D12)

We remind the reader that, without loss of generality, we

have taken q = qŷ. Here we used that ĵq = vFσ̂q close
to the K point of the BZ.

We now consider Eq. (D3). Steps similar to what sum-

marized above for the intra-band contribution to Υ̂
(T)
q,q′

yield

Minter =
1

2εF
[sin(θk−)− sin(θk+)] sin

(
θk− − θk+

2

)
=

1

εF
sin2

(
θk− − θk+

2

)
cos

(
θk− + θk+

2

)
=

q′2

4vFk3F
S(x)λλ′(k−,k+) . (D13)

Once Eq. (D13) is introduced into Eq. (C4), it gives the

“inter-band” contribution to the operator Υ̂
(T)
q,q′ , i.e.

Υ̂
(T,inter)
q,q′ =

q′2

4vFk3F
jq′,x +O(q2) . (D14)

Again, we used the fact that ĵq = vFσ̂q close to the K
point of the BZ.

Summing Eqs. (D12) and (D14) we finally get

Υ̂
(T)
q,q′ =

vFq
′
x

kFω
n̂q+q′ + Υ̂′q,q′ (D15)

with

Υ̂′q,q′ = −vFq
ω2

(
1− q′2

4k2F

)(
q′x
kF
ĵq′,y +

q′y
kF
ĵq′,x

)
+

q′2

4vFk3F
ĵq′,x .

(D16)

The first term on the right-hand side of Eq. (D15) can
be further manipulated. Indeed, when it is introduced in
Eq. (C3) it gives

1

2ωkF

∑
q′

vq′ [q
′
xn̂q+q′ n̂−q′ − q′xn̂q′ n̂q−q′ ]

=
vF

2ωkF

∑
q′

n̂q+q′ n̂−q′ [q
′
xvq′ − q′xvq+q′ ]

→ vFq

2ωkF

∑
q′

q′xq
′
y

q′2
vq′ n̂q′ n̂−q′ +O(q2) . (D17)

Here, we performed the shift q′ → q + q′ in the term
proportional to n̂q′ n̂q−q′ , using that q = qŷ, and we took
the small-q limit in the last line of Eq. (D17). Finally,
using the continuity equation

ωn̂q′ n̂−q′ = −q′ · ĵq′ n̂−q′ + n̂q′q
′ · ĵ−q′ , (D18)

we can rewrite Eq. (C4) in the form of Eq. (C6).

Appendix E: The viscosity transport time

We now guide the reader through the all-order di-
agrammatic calculation of the low-frequency viscosity,
from which we extract the corresponding transport time
τv. We remind the reader that the low-frequency shear
viscosity is given by Eq (57), i.e.

η0 = − lim
ω→0

1

4ω

∑
i,j

=m
[
χij,ij(0, ω)− 1

2
χii,jj(0, ω)

]
,

(E1)

where χαβ,µν(q, ω) is the stress-stress response function.
Figs. 3-4 summarize the all-order microscopic calculation
of χαβ,µν(q, ω), which is given by [Fig. 3a)]

χαβ,µν(q, iωm) = −kBT
∑

k,εn,λ,λ′

Gλ(k−, iεn)

× Λ
(0,αβ)
λ,λ′ (k−,k+)Gλ′(k+, iεn + iωm)

× Λ
(µν)
λ′λ (k+, iεn + iωm,k−, iεn) . (E2)
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Here Gλ(k, iε) is the Green’s function (represented by a
double solid line in Figs. 3-4) dressed by the self-energy
insertion of Fig. 3b), k± = k±q/2, εn (ωm) is a fermionic
(bosonic) Matsubara frequency, and λ and λ′ are band
indices. In Eq. (E2) we defined the bare vertex (repre-
sented as a solid dot in Fig. 3)

Λ
(0,αβ)
λλ′ (k,k′) = vF

kαS(β)λλ′(k−,k+) + kβS(α)λλ′(k−,k+)

2
.

(E3)

Finally, Λ
(µν)
λλ′ (k, iε,k′, iε′) is the dressed vertex function

(represented as a triangle in Figs. 3-4), which satisfies
the self-consistent Bethe-Salpeter equation of Fig. 3c).
The choice of the quasiparticle self-energy, and the re-
quirement of fulfilling the Ward identities, uniquely de-
termine the form of the Bethe-Salpeter equation, i.e. the
irreducible interaction I. Fig. 4 shows the three contri-
butions to the irreducible interactions. In formulas, the
Bethe-Salpeter equation is

Λ
(αβ)
λ′λ (k+, iεn + iωm,k−, iεn) = Λ

(0,αβ)
λ′λ (k+,k−)

+

3∑
i=1

Λ
(i,αβ)
λ′λ (k+, iεn + iωm,k−, iεn) , (E4)

where the three
{

Λ
(i,αβ)
λ′λ (k+, iεn + iωm,k−, iεn), i =

1, . . . , 3
}

correspond to the three diagrams in fig. 4, and
read

Λ
(1,αβ)
λ′λ (k+, iεn + iωm,k−, iεn) = kBT

∑
k′,εn′

×W (1)
λλ′µµ′(k

′,k, iεn′ − iεn)Gµ′(k
′
+, iεn′ + iωm)

×Λ
(αβ)
µ′µ (k′+, iεn′ + iωm,k

′
−, iεn′)Gµ(k′−, iεn′) , (E5)

and

Λ
(2,αβ)
λ′λ (k+, iεn + iωm,k−, iεn) = kBT

∑
k′,εn′

×W (2)
λλ′µµ′(k

′,k, iεn′ − iεn)Gµ′(k
′
+, iεn′ + iωm)

×Λ
(αβ)
µ′µ (k′+, iεn′ + iωm,k

′
−, iεn′)Gµ(k′−, iεn′) , (E6)

and finally

Λ
(3,αβ)
λ′λ (k+, iεn + iωm,k−, iεn) = kBT

∑
k′,εn′

×W (3)
λλ′µµ′(k

′,k, iεn′ + iεn + iωm)Gµ′(k
′
+, iεn′ + iωm)

×Λ
(αβ)
µ′µ (k′+, iεn′ + iωm,k

′
−, iεn′)Gµ(k′−, iεn′) . (E7)

Here

W
(1)
λλ′µµ′(k

′,k, iωm) ≡W (k − k′, iωm)Dλ′µ′(k+,k′+)

×Dµλ(k′−,k−) , (E8)

where W (q, iωm) is the screened interaction, represented
as a wavy line in Figs. 3-4. In the large-Nf limit this is
given by

W (q, iΩm) =
vq

1− vqχnn(q, iΩm)
, (E9)

where χnn(q, ω) is the proper density-density response
function4 of graphene, i.e.23

χnn(q, iωm) = NfkBT
∑
q′,εn

∑
λ′′,µ′′

Gλ′′(q
′, iεn)

× Gµ′′(q′ + q, iεn + iωm)

× Dλ′′µ′′(q′, q′ + q)Dµ′′λ′′(q′ + q, q′) .
(E10)

Moreover,

W
(2)
λλ′µµ′(k

′,k, iεn′ − iεn) = −kBT
∑
q′,ωm′

∑
λ′′,µ′′

W (q′, iωm′)

×W (q′ − q, iωm′ − iωm)Dλ′λ′′(k+,k+ − q′)
×Dλ′′λ(k+ − q′,k−)Dµµ′′(k′−,k′+ − q′)
×Dµ′′µ′(k′+ − q′,k′+)Gλ′′(k+ − q′, iεn + iωm − iωm′)
×Gµ′′(k′+ − q′, iεn′ + iωm − iωm′) , (E11)

and

W
(3)
λλ′µµ′(k

′,k, iεn′ + iεn + iωm) = −kBT
∑
q′,ωm′

∑
λ′′,µ′′

×W (q′, iωm′)W (q′ − q, iωm′ − iωm)Dλλ′′(k−,k− + q′)

×Dλ′′λ′(k− + q′,k+)Dµµ′′(k′−,k′+ − q′)
×Dµ′′µ′(k′+ − q′,k′+)Gλ′′(k− + q′, iεn + iωm′)

×Gµ′′(k′+ − q′, iεn′ + iωm − iωm′) . (E12)

In Eqs. (E5)-(E12) we suppressed the q-dependence of
W (2)(k′,k, iεn′ − iεn) and W (3)(k′,k, iεn′ + iεn + iωm).

In what follows we first analytically continue Eqs. (E2)-
(E12), and then we consider the limit of q = 0, small fre-
quency and low temperature. These limits allows us to
exactly solve the Bethe-Salpeter equation. This informa-
tion is then used to calculate the low-frequency viscosity
as shown by Eq. (E1).

1. Analytical continuation to real frequencies

The analytical continuation of equations similar to
Eqs. (E2)-(E12) was performed in Ref. 23. There-
fore, we summarize here only the main results. After
the analytical continuation, the integral on the right-
hand side of Eq. (E2) contains products of two ad-
vanced Green’s functions (schematically G(A)G(A)), two
retarded ones (G(R)G(R)), or one advanced and one re-
tarded (G(A)G(R)). The first two combinations have both
poles on the same side of the complex plane. Therefore,
in the limit εFτee � 1 they give a negligible contribution,
and we can retain only the combination G(A)G(R). We
thus get

χαβ,µν(q, ω) =
∑
k,λ,λ′

∫
dε

2π

[
nF(ε+ ω)− nF(ε)

]
×G(A)

λ (k−, ε)Λ
(0,αβ)
λ,λ′ (k−,k+)G

(R)
λ′ (k+, ε+ ω)

×Λ
(µν)
λ′λ (k+, ε+ + ω,k−, ε−) ,

(E13)
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where ε± = ε ± i0+, and G
(R)
λ (k, ε) ≡ Gλ(k, ε+)

[G
(A)
λ (k, ε) ≡ Gλ(k, ε−)] is the retarded [advanced]

Green’s function. The vertex function satisfies the fol-
lowing Bethe-Salpeter equation

Λ
(αβ)
λ′λ (k+, ε+ + ω,k−, ε−) = Λ

(0,αβ)
λ′λ (k+,k−)

+

3∑
i=1

Λ
(i,αβ)
λ′λ (k+, ε+ + ω,k−, ε−) , (E14)

where

Λ
(1,αβ)
λ′λ (k+, ε+ + ω,k−, ε−) = −

∑
k′,µ,µ′

∫
dε′

2πi

×
[
nF(ε′) + nB(ε′ − ε)

]
×
[
W

(1)
λλ′µµ′(k

′,k, ε′− − ε)−W
(1)
λλ′µµ′(k

′,k, ε′+ − ε)
]

×G(R)
µ′ (k′+, ε

′ + ω)Λ
(αβ)
µ′µ (k′+, ε

′
+ + ω,k′−, ε

′
−)

×G(A)
µ (k′−, ε

′) ,

(E15)

and

Λ
(2,αβ)
λ′λ (k+, ε+ + ω,k−, ε−) = −

∑
k′,µ,µ′

∫
dε′

2πi

×
[
nF(ε′) + nB(ε′ − ε)

]
×
[
W

(2)
λλ′µµ′(k

′,k, ε′− − ε)−W
(2)
λλ′µµ′(k

′,k, ε′+ − ε)
]

×G(R)
µ′ (k′+, ε

′ + ω)Λ
(αβ)
µ′µ (k′+, ε

′
+ + ω,k′−, ε

′
−)

×G(A)
µ (k′−, ε

′) ,

(E16)

and finally

Λ
(3,αβ)
λ′λ (k+, ε+ + ω,k−, ε−) = −

∑
k′,µ,µ′

∫
dε′

2πi

×
[
nF(ε′) + nB(ε′ + ε)

]
×
[
W

(3)
λλ′µµ′(k

′,k, ε′− + ε)−W (3)
λλ′µµ′(k

′,k, ε′+ + ε)
]

×G(R)
µ′ (k′+, ε

′ + ω)Λ
(αβ)
µ′µ (k′+, ε+ + ω,k′−, ε

′
−)

×G(A)
µ (k′−, ε

′) .

(E17)

In these equations we defined the Fermi and Bose distri-
butions nF(ε) = [eε/(kBT ) + 1]−1 and nB(ε) = [eε/(kBT )−
1]−1, and the potentials

W
(1)
λλ′µµ′(ε

′
− − ε)−W

(1)
λλ′µµ′(ε

′
+ − ε) = −4

∑
q′,λ′′,µ′′

×|W (k − k′, ε′ − ε)|2
∫
dω′

2πi

[
nF(ω′ + ε′)− nF(ω′ + ε)

]
×=m

[
G

(R)
λ′′ (q′ − k, ω′ + ε)

]
=m

[
G

(R)
µ′′ (q′ − k′, ω′ + ε′)

]
×Dλ′µ′(k+,k′+)Dµλ(k′−,k−)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k) ,

(E18)
and

W
(2)
λλ′µµ′(ε

′
− − ε)−W

(2)
λλ′µµ′(ε

′
+ − ε) =

∑
q′,λ′′,µ′′

∫
dω′

2πi
W (q′, ω′+)W (q′, ω′− − ω)

[
nF(ω′ − ε− ω)− nF(ω′ − ε′ − ω)

]
×
[
G

(R)
λ′′ (k+ − q′, ε+ ω − ω′)−G(A)

λ′′ (k+ − q′, ε+ ω − ω′)
][
G

(R)
µ′′ (k′+ − q′, ε′ + ω − ω′)−G(A)

µ′′ (k′+ − q′, ε′ + ω − ω′)
]

×Dλ′λ′′(k+,k+ − q′)Dλ′′λ(k+ − q′,k−)Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+) , (E19)

and finally

W
(3)
λλ′µµ′(ε

′
− + ε+ ω)−W (3)

λλ′µµ′(ε
′
+ + ε+ ω) = −

∑
q′,λ′′,µ′′

∫
dω′

2πi
W (q′, ω′+)W (q′, ω′− − ω)

[
nF(ω′ + ε)− nF(ω′ − ε′)

]
×
[
G

(R)
λ′′ (k− + q′, ε+ ω′)−G(A)

λ′′ (k− + q′, ε+ ω′)
][
G

(R)
µ′′ (k′+ − q′, ε′ + ω − ω′)−G(A)

µ′′ (k′+ − q′, ε′ + ω − ω′)
]

×Dλλ′′(k−,k− + q′)Dλ′′λ′(k− + q′,k+)Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+) . (E20)

2. The Bethe-Salpeter equation

Setting q = 0 and taking the limit ω → 0, Eq. (E13)
becomes

χαβ,µν(q = 0, ω) =
2iω

ω + i/τee

∑
k,λ

∫
dε

2πi

(
−∂nF(ε)

∂ε

)
×=m

[
G

(R)
λ (k, ε)

]
Λ
(0,αβ)
λ,λ (k,k)Λ

(µν)
λλ (k, ε+ + ω,k, ε−) .

(E21)

Here we used that

G
(A)
λ (k, ε)G

(R)
λ′ (k, ε+ ω) ' − 2iδλλ′

ω + i/τee
=m

[
G

(R)
λ′ (k, ε)

]
.

(E22)
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In writing Eq. (E22) we retained only the singular part
of the product of the two Green’s functions, i.e. the
quasiparticle pole, and we neglected the regular part.
Herein relies our Fermi-liquid approximation. In so do-
ing we are able to significantly simplify the following
expressions, especially that of the Bethe-Salpeter equa-
tion, which can then be solved analytically. This al-
lows us to determine the viscosity transport time. How-
ever, by neglecting the regular part of the product (E22),
we miss the Fermi-liquid renormalization of the shear
modulus S∞. Note that, while the transport time is
a non-perturbative quantity which diverges in the limit
αee → 0, the renormalization of S∞ can be calculated
perturbatively. Therefore our approach captures the
most significant effect of e-e interactions in the regime

in which they are not too strong (i.e. αee . 1).

We observe that, at low temperature, the derivative
of the Fermi function is strongly peaked at ε ∼ 0. This

in turn implies that we can set ε = 0 in =m
[
G

(R)
λ (k, ε)

]
on the right-hand side of Eq. (E21). The latter is then
strongly peaked at the Fermi surface, and allows us to
set k = kF and λ = + in the rest of the integrand.
As shown in Ref. 23, we cannot set ε = 0 in the fac-

tor Λ
(µν)
λλ (k, ε+,k, ε−). This happens because the lat-

ter contains Fermi and Bose distributions which combine
with the factor −∂nF(ε)/(∂ε) on the right-hand side of
Eq. (E21) to produce the correct vertex correction,.

After the analytical continuation Eqs. (E15)-(E20)
read

Λ
(1,αβ)
λλ (k, ε+ + ω,k, ε−) = − 8i

ω + i/τee

∑
k′,q′

∑
µ,µ′′,λ′′

∫
dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

][
nF(ω′ + ε′)− nF(ω′ + ε)

]
×|W (k − k′, ε′)|2=m

[
G(R)
µ (k′, ε′)

]
=m

[
G

(R)
λ′′ (q′ − k, ω′)

]
=m

[
G

(R)
µ′′ (q′ − k′, ω′ + ε′)

]
Dλµ(k,k′)Dµλ(k′,k)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k)Λ(αβ)
µµ (k′, ε′+ + ω,k′, ε′−) , (E23)

and

Λ
(2,αβ)
λλ (k, ε+ + ω,k, ε−) = − 8i

ω + i/τee

∑
k′,q′

∑
µ,λ′′,µ′′

∫
dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

][
nF(ω′ − ε)− nF(ω′ − ε′)

]
×|W (q′, ω′)|2=m

[
G(R)
µ (k′, ε′)

]
=m

[
G

(R)
λ′′ (k − q′,−ω′)

]
=m

[
G

(R)
µ′′ (k′ − q′, ε′ − ω′)

]
Dλλ′′(k,k − q′)

×Dλ′′λ(k − q′,k)Dµµ′′(k′,k′ − q′)Dµ′′µ(k′ − q′,k′)Λ(αβ)
µµ (k′, ε′+ + ω,k′, ε′−) , (E24)

and finally

Λ
(3,αβ)
λλ (k, ε+ + ω,k, ε−) =

8i

ω + i/τee

∑
k′,q′

∑
µ,λ′′,µ′′

∫
dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ + ε)

][
nF(ω′ + ε)− nF(ω′ − ε′)

]
×|W (q′, ω′)|2=m

[
G(R)
µ (k′, ε′)]=m

[
G

(R)
λ′′ (k + q′, ω′)

]
=m

[
G

(R)
µ′′ (k′ − q′, ε′ − ω′)

]
Dλλ′′(k,k + q′)

×Dλ′′λ(k + q′,k)Dµµ′′(k′,k′ − q′)Dµ′′µ(k′ − q′,k′)Λ(αβ)
µµ (k′, ε′+ + ω,k′, ε′−) . (E25)

In these equations the limit ω → 0 is understood.

We now recall that Eqs. (E23)-(E25) must be intro-
duced into Eq. (E21) and integrated over ε with the
weighting factor ∂nF(ε)/(∂ε). To perform such integra-
tion we use the fact that

N =
∂nF(ε)

∂ε

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ε′′ + ε)− nF(ε′′ + ε′)

]
=
∂nB(ε′′)

∂ε′′
[
nF(ε+ ε′′)− nF(ε)

]
×
[
nF(ε′ + ε′′)− nF(ε′)

]
→ ε′′2

∂nB(ε′′)

∂ε′′
∂nF(ε)

∂ε

∂nF(ε′)

∂ε′
. (E26)

In evaluating an integral of the form

I =

∫ ∞
−∞

dε′′
∂nB(ε′′)

∂ε′′
ε′′2f(ε′′) , (E27)

where f(ε′′) is some smooth function of its argu-
ment, we exploit the fact that the weighting function
ε′′2∂nB(ε′′)/∂ε′′ is strongly peaked at ε′′ = 0 and its
width scales with k2BT

2/εF. This does not mean, how-
ever, that one can simply replace f(ε′′) by f(0). Such
a crude approximation may introduce spurious diver-
gences23. To take this into account we approximate

I = −2π2(kBT )2

3
f(ε̄) +O(T 4) , (E28)

where23 ε̄ = ζkBT is approximated with half the variance
of the distribution ε2∂nB(ε)/(∂ε). Therefore, ζ = π/

√
5.
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With this approximation we can rewrite

Λ
(1,αβ)
λλ (k, ω+,k, 0

−) = − 4i(kBT )2

3(ω + i/τee)

∑
k′,q′

∑
µ,µ′′,λ′′

×|W (k − k′, 0)|2=m
[
G(R)
µ (k′, 0)

]
=m

[
G

(R)
λ′′ (q′ − k, 0)

]
×=m

[
G

(R)
µ′′ (q′ − k′, 0)

]
Dλµ(k,k′)Dµλ(k′,k)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k)

×Λ(αβ)
µµ (k′, ω+,k

′, 0−) , (E29)

and

Λ
(2,αβ)
λλ (k, ω+,k, 0

−) = − 4i(kBT )2

3(ω + i/τee)

∑
k′,q′

∑
µ,λ′′,µ′′

×|W (q′, 0)|2=m
[
G(R)
µ (k′, 0)

]
=m

[
G

(R)
λ′′ (k − q′, 0)

]
×=m

[
G

(R)
µ′′ (k′ − q′, 0)

]
Dλλ′′(k,k − q′)Dλ′′λ(k − q′,k)

×Dµµ′′(k′,k′ − q′)Dµ′′µ(k′ − q′,k′)
×Λ(αβ)

µµ (k′, ω+,k
′, 0−) , (E30)

and finally

Λ
(3,αβ)
λλ (k, ω+,k, 0

−) =
4i(kBT )2

3(ω + i/τee)

∑
k′,q′

∑
µ,λ′′,µ′′

×|W (q′, 0)|2=m
[
G(R)
µ (k′, 0)]=m

[
G

(R)
λ′′ (k + q′, 0)

]
×=m

[
G

(R)
µ′′ (k′ − q′, 0)

]
Dλλ′′(k,k + q′)Dλ′′λ(k + q′,k)

×Dµµ′′(k′,k′ − q′)Dµ′′µ(k′ − q′,k′)
×Λ(αβ)

µµ (k′, ω+,k
′, 0−) . (E31)

Shifting k′ → k − q′′ and q′ → k − k′′ in Eq. (E30), we
obtain

Λ
(2,αβ)
λλ (k, ω+,k, 0

−) = − 4i(kBT )2

3(ω + i/τee)

∑
k′′,q′′

∑
µ,λ′′,µ′′

×|W (k − k′′, 0)|2=m
[
G(R)
µ (k − q′′, 0)

]
=m

[
G

(R)
λ′′ (k′′, 0)

]
×=m

[
G

(R)
µ′′ (k′′ − q′′, 0)

]
Dλλ′′(k,k′′)Dλ′′λ(k′′,k)

×Dµµ′′(k − q′′,k′′ − q′′)Dµ′′µ(k′′ − q′′,k − q′′)
×Λ(αβ)

µµ (k − q′′, ω+,k − q′′, 0−) , (E32)

while shifting k′ → k′′−q′′ and q′ → k′′−k in Eq. (E31),
we get

Λ
(3,αβ)
λλ (k, ω+,k, 0

−) =
4i(kBT )2

3(ω + i/τee)

∑
k′,q′

∑
µ,λ′′,µ′′

×|W (k′′ − k, 0)|2=m
[
G(R)
µ (k′′ − q′′, 0)]=m

[
G

(R)
λ′′ (k′′, 0)

]
×=m

[
G

(R)
µ′′ (k − q′′, 0)

]
Dλλ′′(k,k′′)Dλ′′λ(k′′,k)

×Dµµ′′(k′′ − q′′,k − q′′)Dµ′′µ(k − q′′,k′′ − q′′)
×Λ(αβ)

µµ (k′′ − q′′, ω+,k
′′ − q′′, 0−) . (E33)

We now observe that the products of the three Green’s
functions on the right-hand sides of Eqs. (E29)-(E31)

constrains (i) µ = µ′′ = λ′′ = + and (ii) the momenta
of their arguments to be at the Fermi surface. After
renaming dummy momentum variables and noting that
Dλλ′(−k,−k′) = Dλλ′(k,k′), we finally get

Λ
(αβ)
++ (k, ω+,k, 0−) = Λ

(0,αβ)
++ (k,k)− 4i(kBT )2

3(ω + i/τee)

×
∑
k′,q′

∑
µ,µ′′,λ′′

|W (k − k′, 0)|2=m
[
G(R)
µ (k′, 0)

]
×=m

[
G

(R)
λ′′ (q′ − k, 0)

]
=m

[
G

(R)
µ′′ (q′ − k′, 0)

]
×Dλµ(k,k′)Dµλ(k′,k)Dλ′′µ′′(q′ − k, q′ − k′)

×Dµ′′λ′′(q′ − k′, q′ − k)
[
Λ
(αβ)
++ (k′, ω+,k

′, 0−)

+Λ
(αβ)
++ (k − q′, ω+,k − q′, 0−)

−Λ
(αβ)
++ (k′ − q′, ω+,k

′ − q′, 0−)
]
. (E34)

We solve Eq. (E34) with the following Ansatz:

Λ
(αβ)
++ (k, ω+,k, 0

−) = γ(ω)Λ
(0,αβ)
++ (k,k) , (E35)

which reduces the self-consistent equation to an algebraic
one. We now recall that the full vertex must be plugged
in the stress-stress response function of Eq. (E13), which
has then to be summed according to Eq. (E1) to produce
the shear viscosity. Thanks to the result of Eq. (54) and
to the interpolation formula of Eq. (1), only the first
term on the right-hand side of Eq. (E1) is expected to
give a final result. The summation required by that term

is equivalent to multiply Eq. (E34) by Λ
(0,αβ)
++ (k,k) and

sum over the space indices α, β. Since

1

εF

∑
α,β

Λ
(0,αβ)
++ (k,k)Λ

(0,αβ)
++ (k,k) = 1 , (E36)

we get

γ(ω) = 1− γ(ω)
4i(kBT )2

3(ω + i/τee)

∑
k′,q′

∑
µ,µ′′,λ′′

|W (k − k′, 0)|2

×=m
[
G(R)
µ (k′, 0)

]
=m

[
G

(R)
λ′′ (q′ − k, 0)

]
×=m

[
G

(R)
µ′′ (q′ − k′, 0)

]
Dλµ(k,k′)Dµλ(k′,k)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k)

×
[

cos2(ϕk′) + cos2(ϕk−q′)− cos2(ϕk′−q′)
]
, (E37)

Here we used that k = k′ = kF and that the Green’s func-
tions of Eq. (E34) constrain their momentum arguments
to be at the Fermi surface. We also assumed k = kx̂.
Eq. (E37) can be rewritten as

γ(ω) = 1 + γ(ω)
i/τee − i/τv
ω + i/τee

, (E38)
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where

1

τv
=

4(kBT )2

3

∑
k′,q′

∑
µ,µ′′,λ′′

|W (k − k′, 0)|2

×=m
[
G(R)
µ (k′, 0)

]
=m

[
G

(R)
λ′′ (q′ − k, 0)

]
×=m

[
G

(R)
µ′′ (q′ − k′, 0)

]
Dλµ(k,k′)Dµλ(k′,k)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k)

×
[

cos2(ϕk′) + cos2(ϕk−q′)− cos2(ϕk′−q′)− 1
]
.

(E39)

Eq. (E38) is readily solved by

γ(ω) =
ω + i/τee
ω + i/τv

, (E40)

which contains all the information about the vertex cor-
rections.

Finally, putting Eqs. (E35) and (E40) back into
Eq. (E13) and Eq. (E1), and taking the limit ω → 0,
we get

η0 =
ε2Fτv
8τee

∑
k,λ,λ′

∫
dε

2π

∂nF(ε)

∂ε
=m

[
G

(A)
λ (k, ε)G

(R)
λ′ (k, ε)

]
=

ε2Fτv
16πτee

∑
k

=m
[
G

(A)
+ (k, 0)G

(R)
+ (k, 0)

]
=

1

4
nεFτv . (E41)

Here we used the result of Eq. (E36) to calculate the
product of two bare matrix elements. One immediately
recognizes S0 = nεF/4 as the non-interacting bulk mod-
ulus (which is not renormalized by e-e interactions, as
discussed before) and τv as the viscosity transport time.

3. Transformation of Eq. (E39) to a
computationally efficient formula

We start from the definition of Eq. (E39), and we shift
k′ → k − q, q′ → k′′ + k. We get

1

τv
=

4(kBT )2

3

∑
q,q′

∑
µ,µ′′,λ′′

|W (q, 0)|2=m
[
G(R)
µ (k − q, 0)

]
× =m

[
G

(R)
λ′′ (k′′, 0)

]
=m

[
G

(R)
µ′′ (k′′ + q, 0)

]
× Dλµ(k,k − q)Dµλ(k − q,k)Dλ′′µ′′(k′′,k′′ + q)

× Dµ′′λ′′(k′′ + q,k′′)
×
[

cos2(ϕk−q) + cos2(ϕk′′)− cos2(ϕk′′+q)− 1
]
.

(E42)

Now we use the fact that, if the scattering occurs at the
Fermi surface, k′′ + q (k′′) is opposite to k (k + q) (see

also Ref. 23). Therefore

1

τv
= −8(kBT )2

3

∑
q,q′

∑
µ,µ′′,λ′′

|W (q, 0)|2=m
[
G

(R)
λ′′ (k′′, 0)

]
× =m

[
G(R)
µ (k − q, 0)

]
=m

[
G

(R)
µ′′ (k′′ + q, 0)

]
× Dλµ(k,k − q)Dµλ(k − q,k)Dλ′′µ′′(k′′,k′′ + q)

× Dµ′′λ′′(k′′ + q,k′′)[1− cos2(ϕk+q)] . (E43)

Note that the expression of Eq. (E43), if one exclude the
matrix element in its last line, coincides with the quasi-
particle lifetime for kBT � εF reported in Refs. 22 and
23. The expression of the quasiparticle lifetime valid at
all temperatures was also given in Ref. 5. At low tem-
perature (a limit that almost always holds in graphene),
we can thus rewrite 1/τv using the formulas provided
in Ref. 5, amending them by multiplying the integrand
with the matrix element 1− cos2(ϕk+q). Since that was
derived in a regime in which intraband transitions are
responsible for the dominant contribution, in what fol-
lows we approximate the formulas of Ref. 5 by neglecting
contributions due to interband processes. This approxi-
mation is valid in the low-temperature regime. We get

1

τv
' 4

(2π)2

∫ ∞
−∞

dξ
∂nF(ξ)

∂ξ

∫ +∞

−∞
dω

1− nF(ξ − ω)

1− exp(−βω)

×
∫ +∞

0

dq q

∣∣∣∣ vq
ε(q, ω, T )

∣∣∣∣2=m[χ(0)
nn(q, ω, T )]

× A++(kF, q, ω)

[
1− q2 − ω2/v2F

4kF(kF − ω/vF)

]
× 4(q2 − ω2/v2F)

2kF(kF − ω/vF)
. (E44)

where

A++ =
4(k − ω/vF)

vF
√

[(2k − ω/vF)2 − q2](q2 − ω2/v2F)

×
[
1− q2 − ω2/v2F

4k(k − ω/vF)

]
× Θ

{[
(2k − ω/vF)2 − q2

]
(q2 − ω2/v2F)

}
,

(E45)

and we used that

cos(ϕk+q)→ 1− q2 − ω2/v2F
2k(k − ω/vF)

. (E46)

Eq. (E44) has a form similar to the quasiparticle con-
tribution to the decay rate given in Ref. 5. We did
not write the quasihole contribution, but we included it
with an extra factor of two that multiplies the whole
expression. Indeed, in the low-temperature limit the
quasiparticle and quasihole contributions are identical5.
The integration over ξ in Eq. (E44), with the weight-
ing factor ∂nF(ξ)/(∂ξ), is the same integration we per-
formed in the Bethe-Salpeter equation [see the discus-
sion after Eq. (E25)]. Its origin has to be found in the
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fact that, in the limit of low temperature, the energy-
dependent self-energy can be replaced by its average over
the thermally excited states. Note that, since in the low-
temperature limit the function ∂nF(ξ)/(∂ξ) is strongly
peaked at ξ = 0 (which in turn implies k = kF), we set
k = kF everywhere in the integrand on the right-hand
side of Eq. (E44), except in the Fermi function on its first
line, which strongly depends on ξ.

Following Refs. 5, 22, and 23, we can now calculate
Eq. (E44). As noted in the main text, the matrix element
1− cos2(ϕk+q) completely suppresses the divergence due
to the small-q region. Following the same manipulations
performed in Ref. 5 we get

1

τv
= 32N(0)α2

ee

∫ ∞
−∞

dξ
∂nF(ξ)

∂ξ

∫ +∞

−∞
dω ωnB(−ω)

×
∫ 2kF−ω/vF

|ω|/vF

dq

q

nF(ξ − ω)(
1 +

qTF

q

)2

+
q2TF

q2
ω2

v2F

1− q2/(4k2F)

q2 − ω2/v2F

× 1− q2/(4k2F)

q2 − ω2/v2F

[
1− q2 − ω2/v2F

4kF(kF − ω/vF)

]
× q2 − ω2/v2F

2kF(kF − ω/vF)
. (E47)

Here N(0) = NfεF/[2π(~vF)2] is the density-of-states at
the Fermi energy. Since the ratio in the integrand on the
first line of Eq. (E47) is strongly peaked around ξ, ω = 0,
we take the limit of ξ, ω → 0 in the rest of the integrand.
Contrary to the case of the quasiparticle lifetime this
does not lead to any divergence. Indeed, the integrand is
regular for q → 0, 2kF.

As we showed in the main text, the largest contribution
to the integral (E47) comes from processes at the Fermi
surface for which the initial (k) and final (k+q) momenta
are nearly orthogonal. In these processes the transferred
momentum is q '

√
2kF. Taking this into account, and

owing to the fact that the integrand vanishes for q =
0, 2kF (i.e. for collinear processes), we estimate the 1/q-

factor on the right-hand side of Eq. (E47) with (
√

2kF)−1.
We then take the limit ω → 0 everywhere but in the first
line of Eq. (E47). Upon integration we get

1

τv
= Nf

64π
√

2

45

α2
ee

(1 +Nfαee)2
(kBT )2

~εF
. (E48)
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