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Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. How-
ever, the exact origin of the strong torque, in particular whether it stems from the spin-momentum
locking of the topological surface states or rather from spin-Hall physics of the topological-insulator
bulk remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the
topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic
metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascrib-
ing the key theoretical differences between the two setups to location and number of active surface
states, we describe both setups within the same framework of spin diffusion of the non-equilibrium
spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque
efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the
TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot
explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive
picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical
constraints on spin-torque generation due to topological surface states.

I. INTRODUCTION

Harnessing the spin-momentum locking of the sur-
face states of topological insulators holds great promise
for spintronics applications. Indeed, recent experiments
on TI/FM1,2 and TI/mdTI heterostructures3 observed a
large spin-torque efficiency, the figure of merit for their
application. The torque measured in these two sets of ex-
periments, however, differs quite significantly. While the
TI/FM experiments exhibit spin-transfer- and field-like
torques of comparable magnitude, the TI/mdTI has pre-
dominantly spin-transfer-like torque, and thus resembles
the spin-Hall setup of heavy metal (HM)/FM bilayers.4–6

Its efficiency, however, exceeds the HM/FM bilayers’ by
several orders of magnitude.

Devices consisting of topological insulators and fer-
romagnetic metals have so far mainly been the focus
of theoretical studies in the context of magnetotrans-
port, where the FM affects the transport properties of
the topological surface states.7–9 Most theoretical inves-
tigations of torque generation using topological insula-
tors, however, have focused on (ideal) TI/ferromagnetic
insulator (FI) hybrid structures.10–13 There, a current
through the topological surface state mainly results in a
non-equilibrium spin density due to the surface states’ he-
lical spin structure (inverse spin-galvanic effect). Adding
to the Oersted field, this acts as a magnetic field on the
ferromagnetic moments.10,11 This effect can clearly not
account for either of the two setups.

In this work, we investigate TI/FM and TI/mdTI bi-
layers assuming that in both setups the spin torque orig-
inates in the spin-momentum locking of the topological
surface states. After a short description of our approach
based on spin diffusion into the ferromagnetic layer,1 we
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FIG. 1. (Color online) The heterostructures we consider in
this work: (a) TI / FM bilayer1,2 with a topological surface
state at the inferace and (b) TI/ magnetically doped TI bi-
layer3 with surface states at the two opposite surfaces (indi-
cated in red). The current in both cases runs in x direction

and the in-plane magnetization ~M = M ~m is along the in-
plane diagonal.

discuss first the TI/FM bilayer with an in-plane magneti-
zation, assuming a topological state at the interface, see
Fig. 1(a). While it is not a priori clear that a TI next to a
FM hosts a topological interface state, such a state is sup-
ported by density functional theory calculations.14 Then,
we investigate the TI/mdTI structure. To describe this
setup within the same scheme, we assume that both sides
of the structure are ‘metallic’, i.e., have bulk states. Fur-
thermore, we do not expect topological interface states
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between the two TIs, but topological surface states on
each side of the total structure,15 see Fig. 1(b). Note that
while a current in the bulk may lead to additional contri-
butions to the spin torque due to the spin Hall effect,4–6

we focus here entirely on the role of the topological sur-
face states. Finally, we discuss our findings and propose
ways to disentangle the various contributions to the spin
torque.

II. METHOD

The states at the surface of a topological insulator can
exert a torque on an adjacent ferromagnet, which for in-
plane magnetization is purely field-like.16 This field-like
torque can intuitively be understood looking at the sur-
face states described by the Dirac Hamiltonian

Hk = vF(ẑ × ~σ) · k− µ (1)

with ~σ the Pauli matrices acting in spin space and ẑ is the
unit vector in z direction. Further, µ 6= 0 is the chemical
potential away from the charge neutrality point. The
velocity operator ~v = ∂kHk is directly proportional to

the spin operator ~S = (~/2)~σ and reads

~v =
2

~
vF(ẑ × ~S). (2)

While the TI has a vanishing equilibrium spin expecta-
tion, a finite current density jx = en〈vx〉neq [Figs. 1(a)
and (b)], where e is the electron’s charge and n the elec-
tron density, yields a spin density

〈Sy〉neq = − ~
2evF

jx. (3)

It is important to note that in a steady-state situa-
tion of a translationally invariant system,17 which is the
situation we are interested in, there is no transfer of mo-
mentum between the topological surface state and the
adjacent ferromagnet. Hence, there is also no net trans-
fer of spin from the surface states to the ferromagnet as is
the case in the situation of the spin Hall effect. However,
the magnetic moments of the ferromagnetic layer couple

to the surface-state spins through Hex = −∆ex ~m · ~S with
~m the magnetization direction in the ferromagnet.10,11

Thus, the spin polarization on the TI surface leads to a

field-like torque of the form ~T = ∆ex ~m × 〈~S〉neq, which
for an in-plane magnetization is out-of-plane. We show
in the following how for an FM layer thicker than the
diffusion length, spin diffusion leads to an additional in-
plane torque (Slonczewski-like torque), in a way similar
to the spin-current injection in HM/FM bilayers.4–6

Given the spin polarization at the TI surface, Eq. (3),
as an input, we consider the diffusion of (itinerant) spins
into the ferromagnetic metal and the torque they thereby
exert. The diffusion (in z direction) leads to a steady-
state transverse spin density through18

0 = −~∇· ~Ji−
1

τJ
(~S× ~m)i−

1

τφ
[~m× (~S× ~m)]i−

Si
τsf
, (4)
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FIG. 2. (Color online) Spin accumulation in the ferromagnet
(d = 8nm) as a function of distance z from the TI/FM bound-
ary, where the solid (dashed) line denotes S⊥ (Sz). For these
plots, we used a spin decoherence length of λφ = 1nm and
the spin diffusion length of Permalloy λsf = 5nm19. Green
(red) curves correspond to a spin-precession length λJ = 1nm
(λJ = 0.5nm).

where the spin current (for the ith spin component) is
given by

~Ji = −D~∇Si (5)

with D the diffusion coefficient. The second term in
Eq. (4) describes the precession of the spins around the
moments of the FM with τJ the spin precession time. The
third term captures the relaxation of the spin component
perpendicular to ~m with τφ the spin decoherence time,
and the last term is the spin diffusion with time scale τsf .
In the following, we use λsf = 5nm19 and values for λJ
and λφ of order 1nm (λ2i = Dτi).

III. TI/FM BILAYER

For the setup of Refs. 1 and 2, Fig. 1(a), we solve
equations (4) and (5) requiring no spin current through
the outer boundary of the FM, J (d) = 0, where d is
the thickness of the ferromagnetic layer. For the TI/FM
interface, we assume that due to the exchange interac-
tion, the itinerant spins of the FM right at the inter-
face align with the spin density of the TI interface, i.e.,
~S(0) = γ〈~S〉neq with γ of order one.20 With these bound-
ary conditions, the spin distribution in z direction is given
by

Ŝ(z) = S⊥(z) + iSz(z) = S0
cosh[k̂(z − d)]

cosh(k̂d)
(6)

with

k̂ =
√
λ−2‖ − iλ

−2
J , (7)

and λ−2‖ = λ−2sf +λ−2φ . S⊥(z) is the in-plane spin density

and S0 = |~S(0) × ~m| is the initial spin density (z = 0),
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FIG. 3. (Color online) (a) Integrated torque as a function of
the FM thickness d. We again set λsf = 5nm, and the solid
(dashed) lines denote the in-plane (out-of-plane) torque.

both perpendicular to ~m. Figure 2 shows the in-plane
spin density S⊥ perpendicular to the magnetization (solid
line) and Sz along the z axis (dashed line) for d = 8nm.

Note that this thickness d ≈ 8nm � 1/k′ with k̂ = k′ +
ik′′. Using Eq. (6), we can thus approximate

Ŝ(z) ≈ S0e
−k̂z = S0 cos k′′ze−k

′z− iS0 sin k′′ze−k
′z, (8)

i.e., both components oscillate and decrease exponen-
tially, see Figure 2.

Figure 3 shows the integrated torque as a function of
the FM layer thickness d. Assuming the spin angular
momentum to be a good quantum number, the torque is
given by the spatial change of the spin current compen-
sated by the spin relaxation,

T̂ =

∫ d

0

dz
[
− ∂zĴ (z)− 1

τsf
Ŝ(z)

]
, (9)

where we again use the short forms T̂ = T⊥ + iTz and
Ĵ = J⊥+ iJz. Given the spin distribution in z direction
of Eq. (6), we find

T̂ = S0(
1

λ2φ
− i

λ2J
)
D
k̂

sinh(k̂d)

cosh(k̂d)
(10)

→ S0
D
k̂

(
1

λ2φ
− i

λ2J
). (11)

For the limit in the last line, we used d→∞. As expected
from the fast decay of the spin density in Figure 2, the
torque is ‘deposited’ within only a few nanometers. The
total torque exerted on the ferromagnet as a function of
the thickness d thus stays constant with layer thickness.

For the geometry described in Fig. 1(a), the spin po-
larization perpendicular to the magnetization of the FM
is
√

2/2 of the total polarization 〈Sy〉neq, and we find for
the thick-FM limit (d� 1/k′)

T̂ = −~
2

D
k̂

(
1

λ2φ
− i

λ2J
)

√
2

2

jx
evF

. (12)

-

(a)

(b)

2 4 60

T
 [a

.u
.]

T
 [a

.u
.]

d [nm]1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

FIG. 4. The two torque components as a function of the TI
thickness d1 for ~S1 = −~S2 for λJ = λφ = 1nm (in the mdTI)
and λsf = 5nm (on both sides) and d2 = 6nm. The solid
(dashed) line denotes the in-plane (out-of-plane) torque. (b)
shows the two components for fixed d1 = 3nm [gray bar in

(a)] as a function of the ratio |~S1|/|~S2| for |~S1|+ |~S2| fixed.

In analogy to the spin-Hall angle θSH = (2eJS)/(~JC),
which describes the spin-Hall current per charge current,
we define the spin-torque efficiency

θ̂ =
T̂

jx

2e

~
= −
√

2

2

D
vFk̂

(
1

λ2φ
− i

λ2J
). (13)

For λJ ∼ λφ � λsf , the out-of-plane and in-plane spin-
torque efficiencies are of comparable magnitude. Using
λJ = λφ = 1nm, λsf = 5nm, vF = 5 × 105ms−1, and a
typical diffusion coefficient D = 1 − 10cm2s−1, we find
for the in-plane and out-of-plane-torque efficiency |θ⊥| =
0.15− 1.5 and |θz| = 0.065− 0.65.

IV. TI/mdTI BILAYER

We apply the same scheme now to investigate the setup
of Ref. 3, Fig. 1(b), namely a bilayer of a TI (thickness
d1) and a Cr-doped TI (thickness d2). At sufficiently
low temperature, the doped TI exhibits ferromagnetism
due to the magnetic moments introduced by Cr dop-
ing.21 Within our approach, the key difference between
the TI/mdTI bilayer setup and the TI/FM setup is then
the spatial location of the topological surface states. As-
suming no topological distinction between TI and mdTI,
we do not anticipate a topological state at the inter-
face. Instead, we expect two surface states, one on each
naked surface [see Figure 1(b)]. These two surfaces carry

the current ~j1 and ~j2 with associated spin-polarization
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~S1 and ~S2. Now the boundary conditions for the spin-
diffusion equation (4) as stated for the TI/FM bilayer has
to change. First, the spin density on the two sides are
~S(0) = ~S1 and ~S(d1 + d2) = ~S2. In addition, we require
that the spin density and the spin current match at the
interface, i.e. at z = d1.

Figure 4(a) shows the integrated torque of a 6nm thick

mdTI as a function of d1 for j1 = j2 and thus ~S1 = −~S2,
where we use again λJ = λφ = 1nm (in the mdTI) and
λsf = 5nm. For d1 = 0, i.e., no TI next to the mdTI, the
contributions from the two surface states exactly can-
cel and upon increasing d1 the torque grows monotoni-
cally with the field-like torque always smaller than the
transfer-like torque. The two currents will in general
not be identical, and Fig. 4(b) shows the two torques
for d1 = 3nm and d2 = 6nm, the dimensions of the ex-

perimental setup, for different ratios of |~S1|/|~S2|. As long

as |~S1| ≈ |~S2|, the spin-transfer-like torque dominates, in
accordance with the experimental results of Ref. 3.

V. DISCUSSION AND CONCLUSIONS

In this work, we analyzed the spin-torque genera-
tion in TI-based heterostructures arising from the spin-
momentum locking of the topological surface states.
Considering itinerant spins that diffuse in the ferromag-
netic side (either FM or mdTI), we find both an out-
of-plane (field-like) and an in-plane (Slonczewski-like)
torque. For realistic parameters, a spin-torque efficiency
of the order of |θ| ≈ 0.1 − 1 should be expected. This
agrees with the reported values in Refs. 1 and 2 and
is comparable to or larger than the largest value of
spin-torque efficiency observed in HM/FM structures to
date.4–6,22 However, we do not find as large a spin-torque
efficiency as reported in Ref. 3 within our approach.

Within our model, both components of the torque
stem from the combination of the inverse spin-galvanic
effect of the TI surface and spin diffusion into the FM.
The two torque components not only differ in their di-

rection, but also in their behavior under ~M 7→ − ~M :
While the field-like torque changes sign, the Slonczewski-
like torque does not. This can help distinguish in-plane
torque arising from out-of-plane spin polarization23 from
Slonczewski-like torque. For ‘metallic’ TIs, an additional
spin-transfer-like torque arises from the bulk spin Hall
effect. As transport is dominated by the surface states
for thin TIs,24 we still expect the two components of the
torque to be of comparable magnitude. In the case of
the TI/mdTI heterostructure, the fact that the transfer-
like torque is more than an order of magnitude larger
than the field-like torque, however, hints at a dominant
contribution from the bulk.

In closing we comment on limits of the applicability
of our approach to extremely thin FM layers. As the
total spin torque stays constant independent of FM layer
thickness for d & 2nm, thin FM layers are preferable for
device applications. However, our calculation treating
the FM layer in z direction to be in the diffusive regime
relies on a FM layer that is thicker than its mean free
path. For a device with an FM layer thinner than the
diffusion length, the device should be modeled using a
semiclassical Boltzmann approach or through quantum
tunneling of spins.9,25–27. Our simple model can already
guide ferromagnetic resonance measurements, which do
not require such thin FM layers, and help distinguish
the various contributions to the spin-torque in TI based
heterostructures.
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