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Abstract
The GW approximation is a well-known method to improve electronic structure predictions cal-

culated within density functional theory. In this work, we have implemented a computationally

efficient GW approach that calculates central properties within the Matsubara-time domain using

the modified version of Elk, the full-potential linearized augmented plane wave (FP-LAPW) pack-

age. Continuous-pole expansion (CPE), a recently proposed analytic continuation method, has

been incorporated and compared to the widely used Pade approximation. Full crystal symmetry

has been employed for computational speedup. We have applied our approach to 18 well-studied

semiconductors/insulators that cover a wide range of band gaps computed at the levels of single-

shot G0W0, partially self-consistent GW0, and fully self-consistent GW (full-GW), in conjunction

with the diagonal approximation. Our calculations show that G0W0 leads to band gaps that agree

well with experiment for the case of simple s-p electron systems, whereas full-GW is required for

improving the band gaps in 3 d electron systems. In addition, GW0 almost always predicts larger

band gap values compared to full-GW, likely due to the substantial underestimation of screening

effects as well as the diagonal approximation. Both the CPE method and Pade approximation lead

to similar band gaps for most systems except strontium titantate, suggesting further investigation

into the latter approximation is necessary for strongly correlated systems. Moreover, the calcu-

lated cation d band energies suggest that both full-GW and GW0 lead to results in good agreement

with experiment. Our computed band gaps serve as important benchmarks for the accuracy of the

Matsubara-time GW approach.
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I. INTRODUCTION

Calculations using density functional theory1,2 (DFT) have become the standard ab initio
technique to study the electronic and structural properties of molecules, nanoparticles, and
periodic solids.3–6 However, it is well-known that the electronic band gap of semiconductors
and insulators is severely underestimated within DFT due to the lack of a derivative dis-
continuity in standard exchange-correlation potentials.7 This deficiency hinders the theory’s
useful application in fields such as optics, photovoltaics, thermoelectrics, and transport that
require an accurate characterization of excited state properties.

The GW approximation, originally proposed by Hedin,8 provides a route to improve elec-
tronic descriptions and band gap results using many-body perturbation theory. The central
quantity in this approach is the exchange-correlation self-energy (Σxc), which incorporates
(i) the exact electronic exchange interaction, and (ii) the complex electron-electron correla-
tion accounting for screening effects often treated within the random phase approximation
(RPA).9,10 This approach has been applied to a wide variety of materials and provides
electronic structure results in better agreement with experiments compared to its DFT
counterpart.11–17

Although studies employing the GW approximation have enjoyed early success in im-
proving band gap predictions, many implementations rely on the pseudopotential (PP) ap-
proximation that treats pseudo wave functions and valence-core interactions at the level of
DFT.18–21 To avoid the PP approximation, several all-electron GW implementations have
been reported in recent years based on the full-potential linearized augmented plane wave
(FP-LAPW),22–26 the linearized muffin-tin orbital (LMTO),26 and the projector-augmented
wave (PAW)27 in conjunction with a plane-wave basis.13,28 Most of these all-electron studies
have only implemented the G0W0 approximation due to its lower computational cost,26,29,30

however these single-shot calculations are plagued by violations of momentum, energy, and
particle conservation laws.31–33 They also introduce a troubling dependence on the choice of
Kohn-Sham (K-S) basis used as a zeroth order starting point.15,34 Fully self-consistent GW, in
which the single-particle Green’s function (G) and self-energy (Σ, defined in the GW frame-
work) are iterated by solving the Dyson equation to full self-consistency, avoids these issues
and provide an unbiased physical picture predicted by GW theory. To date, few studies have
performed self-consistent GW calculations within an all-electron framework,22,35,36 with one
study performing the self-consistent GW method within the Matsubara-time domain22,37,38,
as first implemented by Ku and Eguiluz.22 In that method, Σ and hence G have been
approximated diagonal in the K-S basis, which is known as the diagonal approximation.
However, this approach has only been applied to bulk Si and Ge and its applicability to
other semiconductors and insulators requires further examination.

There are two main advantages of performing GW calculations within the Matsubara-
time domain. First, Σ is simply the product of the single-particle Green’s function (G) and
screened Coulomb interaction (W ). In contrast, the solution for Σ in Matsubara-frequency
space requires a convolution of G and W that usually demands more frequency points to
reach convergence.39 Second, the Green’s function in Matsubara-time lacks singular points
that can arise in frequency space, which leads to smoother single-particle Green’s functions
compared to those in the frequency domain. Despite these advantages, the need for a
reliable analytic continuation technique makes accurate calculations within Matsubara-time
particularly challenging. The Pade approximation is often adopted for this purpose due to its
simple implementation and low computational efficiency.40 In this approach, the quantities

2



of interest (e.g., Σ and G) are expressed as fractional polynomials that are fitted to computed
values in the Matsubara-frequency domain. Such expressions are then analytically continued
into the real-frequency domain. The reliability of this approximation remains under debate,
and recently Staar and co-workers have proposed the continuous-pole expansion (CPE) as
an alternative algorithm for analytic continuation from the Matsubara-frequency to the
real-frequency domain.41 Unlike the Pade approximation, this method explicitly takes into
account the physical causality that places a constraint on the self-energy.

In this paper, we build upon an all-electron GW code we have already developed11,42

by calculating Σ within the Matsubara-time domain, which improves the code’s computa-
tional efficiency and provides self-consistent GW (full-GW) calculations within the diagonal
approximation. We implement this method in conjunction with the CPE to solve for the
quasiparticle energies in the real-frequency domain. We validate this method by investigating
the electronic band gaps of a wide range of semiconductors and insulators at different levels
of GW approximation. Our calculations demonstrate that the band gaps for 3 d electron sys-
tems are often in better agreement with experiment when using full-GW than the commonly
used G0W0 approximation, whereas the latter approximation often yields reasonable experi-
mental agreement in simple s-p electron systems. We also find that both the CPE and Pade
approximation yield very similar electronic band gaps among most tested systems, however
the CPE method provides a better electronic description of strongly-correlated strontium
titanate.

The rest of the paper is organized as follows. Section II outlines the full-GW approx-
imation and Section III describes its implementation within the existing all-electron DFT
package. Results and discussion are then presented in Section V, followed by the conclusion
in Section VI.

II. BASICS OF THE THEORY

Within the single-particle picture, the excitation properties of solids can be determined
by the single-particle Green’s function via Dyson equation. When expressed in real-space
and Matsubara-time domain, the Dyson equation reads

G(r, r′|τ) = G0(r, r′|τ) +

∫ β

0

dτ1

∫ β

0

dτ2

∫
dr1

∫
dr2G

0(r, r1|τ − τ1) (1)

×∆Σ(r1, r2|τ1 − τ2)G(r2, r
′|τ2),

where G and G0 are the Green’s functions associated with the interacting system of interest
and a pre-selected reference system, respectively. In this work, the non-interacting K-S
system calculated within DFT is adopted as the reference system. τ is the Matsubara-time
argument that in general falls within [-β, β] where β = 1/kBT , kB is Boltzmann’s constant,
and T is the temperature. Given that G obeys the relation G(r, r′,−τ) = −G(r, r′,−τ + β)
for τ ∈ [0, β], it is sufficient to restrict our study to τ ∈ [0, β]. ∆Σ is the change in the
electron-electron interaction between the interacting and reference K-S systems:

∆Σ(r, r′|τ) = Σ(r, r′|τ)− Σ0(r, r′)δ(τ), (2)

Σ(r, r′|τ) = ΣH(r)δ(r− r′)δ(τ) + Σxc(r, r′|τ), (3)

ΣH(r) =

∫
dr1

ρ(r1)

|r− r1|
, (4)

ρ(r) = G(r, r|τ → 0−). (5)
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Here, Σ is the electron self-energy that captures the complicated electron-electron inter-
actions. It is composed of the Hartree (ΣH) and exchange-correlation (Σxc) components of
the self-energy. ΣH relates to the updated electronic charge density (ρ) and Σ0 is the sum of
Hartree and exchange-correlation potentials in the reference K-S system. δ(τ) is the Dirac
delta function.

Given the high computational cost of calculating Σxc, the standard method used to find
this quantity is the GW approximation, which can be expressed in real-space and Matsubara-
time as37

Σxc(r, r′|τ) = −G(r, r′|τ) ·W (r, r′|τ). (6)

Here, W is the dynamically screened Coulomb potential, which describes the interactions
between quasiparticles while including screening effects. The screened Coulomb potential
obeys the Dyson equation that reads

W (r, r′|τ) = v(r, r′)δ(τ) +

∫ β

0

dτ ′
∫
dr1

∫
dr2v(r, r1) (7)

×P (r1, r2|τ − τ ′)W (r2, r
′|τ ′),

where v(r, r′) = 1/|r−r′| is the bare Coulomb potential, and P is the irreducible polarization
within RPA,

P (r, r′|τ) = G(r, r′|τ) ·G(r, r′| − τ). (8)

In addition, Σxc(τ) is often expressed as the sum of the exchange self-energy, Σx(τ) =
−G(τ) ·vδ(τ), which corresponds to the Fock exchange term, and the correlation self-energy,
Σc = −G(τ) · [W (τ) − vδ(τ)]. Note that the self-energy in Matsubara-time domain is
simply a product of the Green’s function and screened Coulomb potential, in contrast to
the corresponding expression in Matsubara-frequency domain that requires a convolution of
G and W . The electron self-energy within the GW approximation (its exchange-correlation
part is given in Eq. (6)) correlates with the Green’s function and thus both need to be solved
self-consistently via Eq. (1).

The set of inter-correlated equations presented above allows us to compute G and Σ self-
consistently. Once they are converged to the required accuracy, a Fourier transform of Σ from
the Matsubara-time to Matsubara-frequency domain is performed, i.e. {Σ(τ)} → {Σ(iωn)}
where {ωn = (2n + 1)π/β} are the Matsubara frequencies with n being integers, and the
spatial dependence of Σ is neglected for simplicity. This is then followed by an analytic
continuation to real frequency space, {Σ(iωn)} → {Σ(ω + iη)}, with η being a positive
infinitesimal number, which yields the Green’s function in the real-frequency domain and
the excitation spectrum of the system.

III. IMPLEMENTATION OF THE SELF-CONSISTENT GW METHOD

In this section, we describe the full-GW approach in the Matsubara-time domain with
the diagonal approximation, which has been implemented in the modified version of the
Elk FP-LAPW package.42,43 The approach is essentially similar to the one proposed by Ku
and Eguiluz,22 but with more efficient computational schemes. In particular, (i) we have
employed the more efficient uniform power mesh (UPM) in Matsubara-time domain as pro-
posed by Stan et al.,44 (ii) we have adopted the CPE for analytic continuation in conjunction
with our full-GW method, and (iii) full crystal symmetry has been taken into account to
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significantly reduce the computational load. We briefly summarize these improvements in
the subsections below.

A. Matsubara-time sampling

The Green’s function G in the Matsubara-time domain varies smoothly in the range
0 ≤ τ ≤ β and does not have any singularity points, however it varies rapidly near τ = 0
and β. To capture this behavior without losing computational efficiency, we employ the
UPM to sample the τ -axis on the grid {τ0 = 0, τ1, τ2, ..., τM = β} as proposed by Stan et
al.,44 which is a modified version of the original one by Ku and Eguiluz.22 The UPM grid can
be characterized by a pair of integers (p, m) as well as the length of the interval β, in which
p is the number of non-uniform sub-intervals generated between 0 and β with 2m−1 evenly
distributed grid points inside each of these sub-intervals. A UPM mesh with given (p, m)
results in 2pm+1 grid points (including the end points) in the interval. In this scheme, the
grid density increases for values of τ closer to the end points in order to capture the varying
behavior of G. Using this scheme, explicit evaluation of quantities such as the self-energy
and Green’s function, which is normally computationally expensive, now only requires a
coarse UPM grid. Thus, implementation of this grid significantly reduces the computational
effort. For τ domain integrals that require knowledge of the integrand on a dense uniform τ
grid, e.g. solving the Dyson equation, a higher-order interpolation such as cubic spline can
be subsequently applied.

B. Scheme for full-GW in Matsubara-time domain

In this work, we expand and compute the Green’s function G and self-energy Σ using
the K-S basis ({φnk}), whereas we evaluate the polarization function P and the screened
Coulomb potential W in reciprocal space ({G}). We also adopt the diagonal approximation
such that Σ and G become approximately diagonal in the K-S basis, significantly reducing
computational effort. This approximation has been shown to provide reasonable results for
a variety of systems.13,26,29 A direct generalization to include off-diagonal elements of Σ,
i.e. removing the diagonal approximation, will be completed in the future. The full-GW
approach is outlined below.

1. Green’s function in the reference K-S system G0

As a first step in full-GW, we construct the Green’s function in the reference K-S system
(G0):

G0
j(k|τ) = − exp(−εjkτ)[1− nF (εjk)], 0 ≤ τ ≤ β (9)

where {εjk} are the K-S eigenenergies measured from the chemical potential µ of the system,
nF = [exp(βεjk) + 1]−1 is the Fermi-Dirac distribution, and k is a wave vector. In the zero-
temperature limit, the results for a system with a non-zero band gap are insensitive to the
choice of µ provided that it is placed inside the gap.
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2. Irreducible polarization

The irreducible polarization P in the reciprocal space {G} can be obtained via Fourier
transformations in Eq. (8) that reads,

PGG′(q|τ) =
1

Ω

∫
dr

∫
dr′e−i(k+G)·rP (r, r′|τ)ei(k+G′)·r′ , (10)

where Ω is the volume of the unit cell, and q falling within the first Brillouin Zone (BZ).
Using the relation between P and G in real space via Eq. (8), and by transforming the
Green’s function from the Bloch-basis to real space,

G(r, r′|τ) =
BZ∑
k

∑
j

φjk(r)Gj(k|τ)[φjk(r′)]∗, (11)

it is straight-forward to show that the irreducible polarization in the reciprocal space can
be expressed as follows,

PGG′(q|τ) =
1

ΩNk

∑
σ

BZ∑
k

∑
j1,j2

Mk
j2j1

(G,q)Qj1j2(k,q|τ)[Mk
j2j1

(G′,q)]∗, (12)

Qj1j2(k,q|τ) = Gj1(k + q|τ)Gj2(k| − τ),

Mk
nm(G,q) =

∑
σ

∫
dr[ψσnk(r)]∗e−i(q+G)·rψσmk+q(r). (13)

Here, j1 and j2 are dummy band indices that run through both valence and conduction
bands, σ is the dummy spin index, q is a reciprocal vector, and G is a reciprocal lattice
vector. It is clear that the irreducible polarization P at any two distinct τ1 and τ2 in [0,
β] are decoupled. Therefore, parallelization over τ can be performed efficiently when P is
evaluated.

3. Screened Coulomb potential

The screened Coulomb potential (W ) can be computed once P is determined. Instead
of directly solving for W , during which the emergence of the Dirac delta function δ(τ) (see
Eq. (7)) may lead to numerical instability, we work with W̃ (τ) ≡ W (τ) − vδ(τ) (only τ
dependence is indicated for simplicity). This formulation yields a correlation self-energy,
Σc(τ) = −G(τ) ·W̃ (τ), and exchange self-energy, Σx(τ) = −G(τ)v ·δ(τ), such that Σxc(τ) =
Σx(τ) + Σc(τ). In reciprocal space and Matsubara-time domain, W̃ obeys the following
Dyson equation

W̃GG′(q|τ) =
∑
G2

[∑
G1

vGG1(q)PG1G2(q|τ)

]
vG2G′(q)

+

∫ β

0

dτ ′
∑
G2

[∑
G1

vGG1(q)PG1G2(q|τ − τ ′)

]
W̃G2G′(q|τ ′), (14)
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where vGG′(q) = 4πδGG′/|q + G|2 is the Fourier transform of the bare Coulomb potential.
We follow the algorithm proposed by Stan et al.44 to discretize the τ -axis using the generated
UPM grid. The above equation can then be re-arranged to form a linear matrix equation
that reads

M∑
r=0

∑
G2

[
δGG2δp,r − AGG2(q|τ (p) − τ (r))∆τ (r)

]
W̃G2G′(q|τ (r))

=
∑
G2

AGG2(q|τ (p))vG2G′(q), (15)

AGG2(q|τ) ≡
∑
G1

vGG1(q)PG1G2(q|τ).

Here, the increments ∆τ are positive, with ∆τ (i) = (τ i+1 − τ i−1)/2 for 1 ≤ i ≤ M − 1. At
the end points, ∆τ (0) = (τ 1 − τ 0)/2 and ∆τ (M) = (τM − τM−1)/2.

4. Evaluating the self-energy

With W̃ (τ) and G(τ) in hand, the correlation self-energy (Σ) can be evaluated as

Σc
n(k|τ) = − 1

ΩNk

BZ∑
q

∑
GG′

∑
j

[
Mk−q

jn (G,q)
]∗
OGG′

j (k,q|τ)Mk−q
jn (G′,q), (16)

OGG′

j (k− q|τ) = Gj(k− q|τ)W̃ (q|τ).

On the other hand, the exchange self-energy Σx is evaluated in real-space due to the slow
convergence of Σx in reciprocal space,11

Σx
nk = −

∑
k′∈BZ

occ∑
m

∫
dr
∑
σ

[ψσnk(r)]∗ψσmk′(r)

∫
dr′
∑′

σ[ψσ
′

mk′(r
′)]∗ψσ

′

nk(r′)

|r− r′|
fmk′ , (17)

where fjk = Gj(k|0−) is the occupation number of the K-S eigenfunction in spinor form,

Ψjk′(r) = [ψ↑jk(r), ψ↓jk(r)]. Similarly, the Hartree potential is expressed as

ΣH
nk =

∑
σ

∫
dr|ψσnk(r)|2

∫
dr′
∑

k′∈BZ
∑

σ′,m |ψσmk′(r
′)|2

|r− r′|
fmk′ . (18)

5. Dressed Green’s function

During the full-GW calculation, the Green’s function (G) is updated in each iteration
using the newly obtained self-energy Σ in the Dyson equation, which reads

GN
j (k|τ) = G0

j(k|τ) +

∫ β

0

dτ2Zjk(τ, τ2)G
N
j (k|τ2), (19)

Zjk(τ, τ2) = Zx
jk(τ, τ2) + Zc

jk(τ, τ2), (20)

Zx
jk(τ, τ2) = G0

j(k|τ − τ2)[Σx
N,j(k) + ΣH

N,j(k)− Σ0,j(k)], (21)

Zc
jk(τ, τ2) =

∫ β

0

dτ1G
0
j(k|τ − τ1) · Σc

N,j(k|τ1 − τ2). (22)
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The integrals along the τ axis in Eqs. (19) and (22) may have substantial numerical
errors when performed on the UPM mesh that becomes coarse farther away from the end
points of 0 ≤ τ ≤ β. To overcome this issue, a cubic spline interpolation is applied to the
Green’s function and self-energy elements between two adjacent τ grid points, in which the
increment ∆τ in the resulting dense uniform τ grid is selected as τ1 − τ0. This is also the
smallest ∆τ in the UPM mesh. Then the Dyson equation is solved on the generated, denser
uniform τ mesh. Similar to the algorithm for W̃ as proposed by Stan et al.,44 the Dyson
equation for G along τ axis can be re-arranged to form a linear matrix equation.

N∑
r=1

[δp,r −∆τ (r)Zjk(τ (p), τ (r))]GN
j (k|τ (r)) = G0

j(k|τ (p)). (23)

During the full-GW calculation, we repeat the steps mentioned above in each iteration
using the newly obtained Green’s function G, as indicated in Eqs.(12), (15)-(18) and (21)-
(23). We solve for the self-energy and the Green’s function in Matsubara-time domain
self-consistently until any given accuracy is reached. Note that this corresponds to the
single-shot G0W0 if the self-consistent calculation is terminated at the first iteration. The
approximated calculation known as GW0 can also be performed if the screened Coulomb
potential W is kept constant after the first iteration whereas G is updated during the self-
consistent loop.

6. Analytic continuation

To obtain quantities that can be measured in experiments, such as the excitation spec-
trum, knowledge of G and Σ in the real-frequency domain is required. This is achieved by a
two-step procedure performed after calculating the converged self-energy in the Matsubara-
time domain (Σxc(τ)). First, a Fourier transformation from Matsubara-time to Matsubara-
frequency domain is employed. For a given band index n and k, this reads

Σxc
j (k|iωn) =

∫ β

0

dτeiωnτΣxc
j (k|τ), (24)

where ωn = (2n+1)π/β is the Matsubara frequency with n being an integer. We use a cubic
spline interpolation of the UPM grid for the accurate evaluation of the integral. Second, we
implement analytic continuation using the CPE method proposed by Staar et al.41 to yield
the self-energy in the real-frequency domain (Σxc(ω+ iη)). Unlike the commonly used Pade
approximation,40 where the self-energy elements are simply expanded as polynomials, the
CPE takes advantage of the fact that the self-energy in the upper complex plane (z) can be
expressed as

Σxc
j (k, z) =

1

2π

∫ +∞

−∞
dω

Im[Σxc
j (k, ω + iη)]

ω − z
, (25)

Im[Σxc
j (k, ω + iη)] < 0, (26)

where η is a positive infinitesimal and Eq. (26) arises from causality. For each j and k,
Im Σxc

j (k|ω + iη) can be expanded as a set of piecewise linear functions of ω with undeter-
mined coefficients {anj(k)}. This leads to Σxc

j (k, z) =
∑

m amj(k)Φmj,k(z) where Φmj,k(z) is
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some analytic function defined in the upper complex plane z. With the set of computed ele-
ments {Σ̃xc

j (k|iωm)} in hand and Eq. (26) as the constraint, for each given j and k, {anj(k)}
are then determined by minimizing the norm function Ω defined as

Ωj(k) =
M∑
m=0

|Σ̃xc
j (k|iωm)− Σxc

j (k|iωm)|2, (27)

with M being the number of positive Matsubara frequencies. Given the fitted Σxc
j (k|ω), for

each j and k, the Green’s function associated with the interacting system can be determined
using

Gj(k|ω) =
1

[G0
j(k|ω)−1 − Σxc

j (k|ω)− ΣH
j (k)]

. (28)

The quasiparticle energies, and hence the electronic band gap can be directly obtained from
the spectral function Ajk(ω) = − 1

π
Im[Gjk(ω)] for given j and k.

C. Use of Crystal Symmetry for Computational Speedup

Calculating the elements of Σc(τ) can be computationally expensive as it involves the
evaluation of Eqs. (12), (13), (15) and (16). Such computational effort can be considerably
reduced using crystal symmetry to decrease the number of required operations. The allowed
crystal symmetry operations are those that leave the Hamiltonian invariant. Using these
operations, reciprocal vectors in the first BZ {kBZ} are decomposed to a number of subsets.
The reciprocal vectors in each of these subsets are related via the action of the symmetry
operations. Therefore, the first BZ can be represented using a reduced set of k vectors that
form the irreducible BZ, denoted as {kIBZ}.

Suppose Su ≡ {(Ri|ti), i = 1, ..., Nu} is the set of symmetry operations in which R is a
3× 3 rotation matrix and t the translation vector in real space. The application of a given
symmetry operation, Bi = (Ri|ti), on the real-space vector r and reciprocal vector in IBZ
lead respectively to

Bir = Rir + ti, (29)

kBZ = BikIBZ = RikIBZ + GRi, (30)

where GRi is the reciprocal lattice vector that brings RikIBZ back to the 1st BZ. For a given
qBZ that is associated with qIBZ via R and G using Eq. (30), it is straight forward to prove
that the plane-wave matrix M in Eq.(13), the irreducible polarization P (τ) in Eq.(12), and
W̃ (τ) in Eq.(15) obey the following relations

Mk
nm(G,qBZ) = MR−1k

nm [G1,qIBZ ] exp[−i(RqIBZ + GR + G) · t], (31)

PGG′(qBZ |τ) = PG1G′1
(qIBZ |τ) exp[−i(G−G′) · t], (32)

W̃GG′(qBZ |τ) = W̃G1G′1
(qIBZ |τ) exp[−i(G−G′) · t], (33)

where G1 = R−1(G + GR) and G′1 = R−1(G′ + GR). It follows that the correlation
self-energy can be re-arranged as

Σc
n(k|τ) = − 1

ΩNk

∑
qIBZ

∑
R

∑
GG′

W̃GG′(qIBZ |τ)
∑
j

[MR−1k−qIBZ
jn (G,qIBZ)]∗

×Gj(R
−1k− qIBZ |τ)MR−1k−qIBZ

jn (G′,qIBZ). (34)
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Here, R−1k − qIBZ is assumed to fall in the set of {kBZ} vectors. It is thus sufficient
to compute the summands in the above equation for the sets of {qIBZ} and {kBZ} vectors,
which leads to significant reduction to computational time. Similarly, the computation of
the elements of Σx can be sped up with the use of symmetry operations for k. According
to Eq. (17), in particular, k associated with Σx can be confined to the IBZ, whereas k′ runs
over the 1st BZ.

IV. COMPUTATIONAL DETAILS

The full-GW scheme has been applied to calculate the electronic band gaps of 18 diverse
semiconductors and insulators. We have adopted the experimental lattice parameters of
5.43 Å (Si), 5.658 Å (Ge), 5.66 Å (GaAs), 4.35 Å (SiC), 5.91 Å (CaSe), 3.57 Å (diamond),
5.64 Å (NaCl), 4.21 Å (MgO), 3.62 Å (cubic BN), 4.01 Å (LiF), 3.91 Å (cubic SrTiO3),
4.27 Å (Cu2O), 4.52 Å (GaN), 4.58 Å (zinc-blende ZnO), 5.42 Å (zinc-blende ZnS), 5.67
Å (zinc-blende ZnSe), 6.05 Å (zinc-blende CdSe) and 5.82 Å (zinc-blende CdS) throughout
this work. All DFT calculations have been carried out using the modified version of the Elk
FP-LAPW package.42,43 The augmented plane wave + local orbitals (APW+lo) basis45 with
a single second-order local orbital per core or semi-core state has been adopted. The local
density approximation (LDA)46 has been utilized for the exchange-correlation functionals.
When expanding the interstitial potential and charge density, the maximum length of the
reciprocal lattice vector |G| has been chosen as 12 a.u. The angular momentum has been
truncated as `max = 8 for the expansions of muffin-tin charge density, potential and wave
function. In the expansion of the wave function, |G + k|max = 8.0/Ravg has been used,
where Ravg is the average of the muffin-tin radii (RMT ) in each system. Linearization energy
(E`,ν), which is associated with each radial function labeled with ν, is chosen at the center of
the corresponding band with `-like character. The first BZ has been sampled by a 4× 4× 4
k-mesh for all the systems except for diamond, where a 6 × 6 × 6 k mesh has been used
instead. All the aforementioned parameters have been carefully tested to achieve total energy
convergence.

In the GW calculations, the cutoff for |G + q| used in Eqs. (12) and (18) has been set
4.0 a.u. for all the systems except for the systems of ZnO, diamond and cubic BN (c-BN),
where a cutoff of 5.0 a.u. has been selected instead. These length cutoffs correspond to
a kinetic-energy cutoff of 16 Ry and 25 Ry, respectively. The Matsubara-time (τ) domain
has been sampled with a (9, 5) UPM mesh, which consists of 81 grid points between 0 and
β associated with an artificial temperature of 300 K. A minimum of 150 conduction bands
have been included for the band summations in Eqs. (12) and (18) for the systems studied
to ensure the convergence of the band gaps. In the GW0 and full-GW calculations, states
with an energy falling in the energy window of ± 15 eV around the DFT-LDA Fermi energy
have been updated, and the number of iterations has been set 4. In the transformation
indicated in Eq. (24), a set of 128 positive Matsubara frequencies has been adopted, which
is subsequently used in analytic continuation schemes of both CPE and Pade approxima-
tion. For comparison, we have also performed G0W0 calculations using the plasmon-pole
approximation (PPA), in which we have selected the model proposed by Godby and Needs47

that has proven to be in consistent agreement with numerical integration method.11,48 All
the above parameters are carefully examined to ensure the band gap values converged to
within 50 meV.
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V. RESULTS AND DISCUSSION

A. Benchmarking Si, Ge and GaAs

We first apply the Matsubara-time GW method to study the electronic properties of
bulk silicon (Si), a prototypical system that has been studied as a benchmark for previous
GW code developments. Fig. 1(a) and (b) illustrate the Matsubara-time Green’s functions
(G(τ)) of the band-edge states at Γv and Xc at different levels of GW approximations, where
Kv (Kc) denotes the highest occupied (lowest unoccupied) single-particle state at K. G(τ)
approaches -1 and 0 at each end of the τ axis. For the case of the valence (conduction) band
state in a semiconductor/insulator, G(β−) → −1(0) to account for the occupation number
of that state. It can be seen that in Matsubara-time domain, full-GW leads to substantial
changes of G compared to those from G0W0. It is worth pointing out that the dressed G
at Γv upon full-GW becomes very similar to that from LDA, i.e. G0. On the other hand,
the full-GW leads to more deviation of G at Xc from G0, suggesting that GW corrections
to the conduction bands are likely more pronounced than to the valence bands. Fig. 1 (c)
shows the typical Green’s function in Matsubara-frequency domain (both real and imaginary
parts) for the band edge states of bulk Si from full-GW calculations.

The calculated band gaps for bulk Si are tabulated in Table I. When the non-self-
consistent G0W0 calculation is performed, the direct band gap at Γ and the indirect band
gap from Γ to X are, respectively, 3.40 eV and 1.38 eV. These values are in relatively
good agreement with experimental values.49 Compared to those obtained from plane-wave
pseudopotential (PP)-based and/or all-electron G0W0, our computed G0W0 direct band
gap and the indirect band gap are 0.1 eV and 0.2 eV higher, respectively. Moreover, we
notice that band gap values are further increased by 0.2 eV upon implementing the partially
self-consistent, GW0 calculation. However, fully self-consistent GW brings the direct and
indirect band gap values close to those calculated within the G0W0 approximation. Our full-
GW results are also comparable with the previous study by Ku et al., which uses a similar
implementation to the present method. We also compare the results at different levels of
GW using either the CPE method or Pade approximation. Band gap results using the Pade
approximation generally agree well with those using CPE analytic continuation within 0.02
eV. However, the Si direct band gap value predicted by the Pade approximation is 0.16 eV
higher than the CPE value, and is 0.09 eV higher than the value by Ku et al.. This also
shows that CPE results are generally in better agreement with experiment. In addition, all
levels of GW calculations, from G0W0 to full-GW, overestimate the experimental indirect
band gap value by 0.13 to 0.34 eV. The overestimation arising by full-GW also agrees with
the previous GW study.13

Note that the important effect of core electrons on the valence-core interaction, and hence
exchange self-energy has been discussed for bulk Si in the previous study.22 We have also
evaluated the exchange self-energy elements of band edge states Γv and Xc with and without
the core electrons. The difference in self-energy can be as large as 2 eV, in line with values
given in that study.

We have also compared the spectral functions (Ajk(ω)) of the band edge states Γv and
Xc of bulk Si from CPE to those obtained from Pade approximation, as shown in Fig. 2
(a) and (b) for the cases of G0W0 and full-GW, respectively. In the case of Si, results from
these two approaches of analytic continuation are very similar in terms of peak position, as
well as the broadening of peaks that is related to the lifetime of the associated quasiparticle

11
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FIG. 1: (Color online) Single-particle Green’s functions Gnk at the (a) valence band maximum (Γv)

and (b) conduction band minimum (Xc) of bulk Si in Matsubara-time domain. (c) Single-particle

Green’s function of bulk Si in Matsubara-frequency domain from full-GW calculations.
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FIG. 2: (Color online) Spectral functions of band edge states Γv and Xc of bulk Si from (a) G0W0,

and (b) full-GW. Spectral functions of band edge states Rv and Γc of SrTiO3 from (c) G0W0, and

(d) full-GW.

states.
Finally, we demonstrate the computational advantage of the current implementation by

evaluating silicon’s G0W0 band gaps with a similar parameter set but using a direct numerical
integration method in the real-frequency domain. We find that more than 1000 frequency
points are needed to achieve the converged results. Since the computational load at each
frequency/Matsubara-time grid point is similar, it is clear that significant computational
speedup can be accomplished when GW calculation is performed in Matsubara-time domain
(81 τ points used in this work).

Table II summarizes the band gaps at different levels of theory for bulk Ge. The minimal,
indirect band gap of bulk Ge is between Γv and Lc according to experiment.49 It is clear
that both LDA and G0W0 predict a minimal band gap as direct at Γ, inconsistent with
experiment. It is only when the self-consistency is considered in GW, (either GW0 or full-
GW) that the correct indirect band gap can be predicted. Note that the results from full-GW
agree well with experimental data, and also very close to those from GW0, regardless of CPE
or Pade approximation being adopted. It is worth pointing out that there is a substantial
difference between our results and those by Ku et al., with a band gap difference as large as
0.5 eV. We believe that such discrepancy is due mainly to the insufficient amount of empty
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TABLE I: Band gap values of bulk Si for various

levels of approximation. The values in parentheses

are computed using the Pade approximation. All

values are in eV.

Γv − Γc Γv −Xc

This work

LDA 2.52 0.58

G0W0 3.40 (3.38) 1.38 (1.36)

GW0 3.69 (3.68) 1.59 (1.58)

full-GW 3.41 (3.57) 1.44 (1.44)

plane-wave PP, G0W0
a 3.24 1.18

all-electron, G0W0

Hamada et al.b 3.30 1.14

Kotani et al.c 3.13

Ku et al.d 3.12

Gomez-Abal et al.e 1.15

all-electron, full-GWd 3.48

Experimentf 3.35 1.25

a Reference 50.
b Reference 51.
c Reference 52.
d Reference 22.
e Reference 29.
f Reference 49.

bands used in their study, as pointed out in the previous study by Tiago et al..50

Gallium aresnide is another common compound we use as a benchmark, with computed
band gap results shown in Table III. This compound has also been extensively investigated,
which has a direct electronic band gap at Γ. Our calculations show that G0W0 results in the
best agreement with experiment,53 and also agree with previous all-electron G0W0 studies
with a ∼0.2 eV difference. Moreover, both full-GW and GW0 lead to larger band gap
values compared to the G0W0 results, and are overestimated by around 0.3 eV compared to
experiment. Such trends regarding G0W0 and full-GW are also in line with previous GW
studies within the plane-wave PAW potential framework.13 Similar to the aforementioned
compounds investigated, the CPE and Pade approximation lead to very close results to each
other. Our full-GW results presented here also serve as important predictions for this level
of theory since there are no previous all-electron-based, self-consistent GW results for GaAs.

In general, G0W0 accurately predicts Si and GaAs band gap values but predicts inaccurate
bulk Ge band gap values compared to experiment. On the other hand, full-GW band gaps
agree fairly well with experiment across all three elements, and GW0 generally worsens the
band gaps compared to full-GW.
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TABLE II: Band gap values of bulk Ge for various levels of approx-

imation. The values in parentheses are computed using the Pade

approximation. All values are in eV.

Γv − Γc Γv − Lc Γv −Xc

This work

LDA -0.19 0.03 0.64

G0W0 0.49 (0.51) 0.58 (0.59) 0.65 (0.70)

GW0 1.09 (1.10) 0.85 (0.86) 1.35 (1.33)

full-GW 1.11 (1.11) 0.85 (0.85) 1.30 (1.30)

plane-wave PP, G0W0
a 0.85 0.65 0.98

all-electron, G0W0

Kotani et al.b 0.89 0.57

Ku et al.c 1.11 0.51 0.49

all-electron, full-GWc 1.51 0.79 0.71

Experimentd 0.90 0.74 1.30

a Reference 50.
b Reference 52.
c Reference 22.
d Reference 49.

TABLE III: Band gap values of bulk GaAs for various levels of

approximation. The values in parentheses are computed using the

Pade approximation. All values are in eV.

Γv − Γc Γv − Lc Γv −Xc

This work

LDA 0.23 0.81 1.31

G0W0 1.48 (1.47) 1.62 (1.62) 1.98 (1.94)

GW0 1.82 (1.83) 2.00 (2.00) 2.31 (2.30)

full-GW 1.80 (1.81) 1.95 (1.96) 2.23 (2.25)

plane-wave PP, G0W0
a 1.38 1.65 1.83

all-electron, G0W0

Kotani et al.b 1.20 1.40 1.46

Gomez-Abal et al.c 1.29

Friedrich et al.d

Experimente 1.52 1.82 1.98

a Reference 50.
b Reference 52.
c Reference 29.
d Reference 24.
e Reference 53.
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B. Band gap calculations for other semiconductors and insulators

Having demonstrated the accuracy of full-GW calculations for predicting electronic band
gaps in benchmark materials, we next report results for 18 semiconductors/insulators that
have band gaps covering a wide range of values from less than 1 eV to over 10 eV. The
calculated minimal band gaps are summarized in Table IV, comparing all levels of approx-
imation, and also in Fig. 3, which visualizes LDA, G0W0, GW0, and full-GW results. As
expected, the LDA band gaps are always severely underestimated compared to experimental
values. Upon GW corrections, the electronic band gaps for all the systems studied are sub-
stantially improved. In the following, we discuss the effects of G0W0 and full-GW band gap
corrections by categorizing the compounds studied into three groups: (1) simple s-p electron
systems involving Si, SiC, C, BN, LiF, NaCl and MgO; (2) systems with deep d electron
levels relative to the valence band maximum, including Ge, GaAs, GaN, CaSe, CdS, CdSe,
ZnO, ZnS and ZnSe; and (3) systems with relatively shallow d electron levels, including
SrTiO3 and Cu2O.
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FIG. 3: (Color online) Computed electronic band gap at DFT-LDA as well as GW levels versus

the experimental counterpart for all the compounds studied in this work except for Ge. Log scale

is adopted for both axes.

Concerning simple s-p electron systems, the G0W0 corrected band gaps are in very good
agreement with experimental data, with a relative band gap error of ±10% for most com-
pounds with the exception of diamond, for which G0W0 overestimates the experimental gap
by 0.6 eV (12%). This may be attributed to the RPA that leads to more severe underestima-
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TABLE IV: Electronic band gap (in eV) of various semiconductors and insulators calculated by

DFT-LDA, different levels of Matsubara-time GW (G0W0, GW0 and full-GW), and PPA-G0W0.

Values in the parentheses are obtained using the Pade approximation. The experimental values

(Expt.) are also given for comparison.

LDA G0W0 GW0 full-GW PPA-G0W0 Expt.

Si 0.58 1.38 (1.36) 1.59 (1.58) 1.44 (1.44) 1.28 1.25a

Ge 0.03 0.58 (0.59) 0.85 (0.86) 0.85 (0.85) 0.71 0.74a

GaAs 0.24 1.48 (1.47) 1.82 (1.83) 1.80 (1.81) 1.51 1.52b

SiC 1.27 2.44 (2.45) 2.90 (2.90) 2.64 (2.56) 2.30 2.40a

CaSe 2.00 3.89 (3.94) 4.60 (4.64) 4.35 (4.34) 3.89 3.85c

C 4.14 6.15 (6.15) 6.42 (6.43) 6.10 (6.11) 6.09 5.48a

NaCl 4.74 8.09 (8.11) 9.00 (9.02) 8.27 (8.28) 8.11 8.5d

MgO 4.65 7.79 (7.78) 8.74 (8.74) 7.94 (7.94) 7.75 7.83e

BN 4.34 6.71 (6.73) 7.16 (7.18) 7.10 (7.11) 6.58 6.1-6.4f

LiF 8.94 14.51 (14.54) 15.78 (15.81) 14.45 (14.47) 14.55 14.20g

SrTiO3 1.75 3.58 (4.08) 7.01 (7.13) 6.87 (7.22) 3.86 3.25h

Cu2O 0.52 1.61 (1.54) 2.16 (2.17) 2.00 (2.02) 1.59 2.17i

GaN 1.70 3.01 (3.05) 3.61 (3.66) 3.36 (3.38) 3.03 3.27j

ZnO 0.60 2.31 (2.35) 3.69 (3.71) 3.53 (3.56) 2.32 3.44k

ZnS 1.80 3.46 (3.43) 4.06 (4.09) 3.92 (3.85) 3.43 3.91k

ZnSe 1.01 2.43 (2.48) 3.03 (3.09) 2.94 (2.96) 2.50 2.95a

CdS 0.86 2.01 (2.03) 2.63 (2.66) 2.49 (2.50) 2.06 2.50a

CdSe 0.34 1.42 (1.51) 1.97 (1.98) 1.92 (1.93) 1.46 1.83a

a Reference 49.
b Reference 53.
c Reference 54.
d Reference 55.
e Reference 56.
f Reference 57.
g Reference 58.
h Reference 59.
i Reference 60.
j Reference 61.
k Reference 62.

tion of the screening effect in diamond, as pointed out in a previous study.13 Results using
PPA are remarkably close to general G0W0 calculations, differing by only 0.1 eV or less. Our
G0W0 band gaps are all comparable to previous all-electron G0W0 calculations.24,29 When
full self-consistency is taken into account, our calculations show that full-GW may further
overestimate the electronic band gap due probably to the underestimated screening effect
by RPA, in agreement with previous findings.13,65 The exceptions are diamond and the ionic
crystals NaCl and LiF, for which the inclusion of self-consistency tends to improve results.
Furthermore, the band gaps at different levels of GW have also been computed based on the
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TABLE V: The average positions of cation outermost filled d bands

at Γ (in eV) for GaAs, GaN, ZnO, ZnS, ZnSe, CdS and CdSe with

zinc blende structure, as calculated using DFT-LDA, different levels

of Matsubara-time GW (G0W0, GW0 and full-GW) along with CPE.

The experimental values (Expt.) are also given for comparison.

LDA G0W0 GW0 full-GW Expt.

GaAs -14.91 -16.79 -19.37 -19.42 -(18.7-18.82)a

GaN -13.62 -16.49 -18.54 -18.53 -17.0b

ZnO -5.30 -7.21 -7.71 -7.64 -(7.5-8.81)a

ZnS -6.30 -7.46 -9.31 -9.29 -9.03a

ZnSe -6.55 -7.68 -9.59 -9.57 -(8.9-9.2)a

CdS -7.62 -8.56 -9.71 -9.70 -(9.2-10.0)a

CdSe -7.86 -8.70 -9.91 -9.91 -(9.9-10.7)a

a Reference 63.
b Reference 64.

CPE and Pade approximation. According to our results, they are in remarkable agreement
with each other, with a typical difference of 0.1 eV or less in all the cases. This also confirms
the applicability of the Pade approximation and the analytic continuation approach for s-p
electron systems.

It is worth pointing out that the band gaps from partially self-consistent GW0 are consid-
erably higher than full-GW ones, which contrasts previous findings.13,66 This different trend
is likely due to differences in method implementation. Specifically, the Green’s function un-
der the diagonal approximation is fully updated during the GW0 iteration in our approach.
In contrast, previous GW0 studies have only shifted the quasiparticle energies to update the
presumedly diagonal Green’s function,13 or within the Hermitian approximation to the full
self-energy.66 Such a different trend may also relate to the diagonal approximation for the
Green’s function in our approach. Compared to our full-GW results, the further overesti-
mation of GW0 band gaps may be attributed to the further underestimation of screening
due to the screened potential (W ), which is not updated iteratively within GW0. This also
highlights the importance of the full self-consistency.

For systems with deep 3 d electrons, we have observed that G0W0 corrected band gaps
are typically still underestimated. Fully self-consistent GW calculations are necessary to
achieve better agreement with experimental data. The exception involves CaSe and GaAs,
in which full-GW leads to overestimated band gaps by about 0.3-0.5 eV, corresponding to
a relative difference of more than 12 %. Compared to full-GW, GW0 results in about 5 %
larger band gap values in the systems studied. The difference is smaller than in the case
of s-p electron systems. Moreover, in the cases of ZnO and Cu2O, it is clear that band
gaps resulting from G0W0 are substantially underestimated by at least 0.5 eV compared to
the experimental values. In particular, the G0W0 band gap of ZnO is 1 eV lower than the
experimental data, agreeing well with previously underestimated values.13 Upon full-GW,
the band gaps of these systems are significantly improved such that they are within 0.2 eV
of experimental results.

To study the systems with deep 3 d electrons in more detail, we have computed the
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energies of the outermost cation filled d shell at Γ for GaAs, GaN, ZnO, ZnS, ZnSe, CdS
and CdSe (e.g. 4d and 3d for Cd and Zn, respectively). They are estimated as the average
of all the corresponding d band energies, and are shown in Table V. For Cu2O and SrTiO3,
given that the 3d bands are substantially hybridized and broadened, a simple averaging
cannot give a clear picture so we will study them in more depth in a separate study. It is
clear that the d band levels predicted by DFT-LDA are offset by at least 2 eV compared to
the experimental data, as expected. On the other hand, G0W0 tends to improve the d band
levels of all the systems studied, but the discrepancy can still be as large as 1 eV in systems
such as GaAs and CdSe. Our G0W0 results are in good agreement with the previous all-
electron study.30 Upon self-consistency, we observe that full-GW leads to excellent agreement
with experiment except for GaN, in which the deep Ga-3d band energy is substantially below
the experimental value by 1.5 eV. It is worth pointing out that GW0 leads to remarkably
similar results to those from full-GW across all the systems.

Electronic structure predictions for the perovskite, SrTiO3, provide our most inaccurate
and intriguing results. Our G0W0 approach overestimates the band gap by about 0.3 eV,
which is also consistent with the studies by Friedrich et al.24 and Kang et al.,67 and both
full-GW and GW0 worsen the band gap prediction further with a result of more than 6.8
eV, much higher than the experimental value of 3.25 eV. We have further varied parameters
such as the number of conduction bands and the cutoff of reciprocal lattice vectors, and the
corresponding results only slightly change.

A previous GW study by Cappellini et al. also showed that the minimal band gap
of SrTiO3 can be severely overestimated even at the level of G0W0 (5.07 eV),68 Such an
overestimation may be attributed to the improper description of local field effects by their
model dielectric function. Moreover, our full-GW band gap of SrTiO3 is indeed in line with
the previous findings, in which the band gap is overestimated by around 0.9 eV in all-electron
quasiparticle self-consistent GW,69 whereas such overestimation becomes 1.8 eV in full-GW
with the diagonal approximation in the plane-wave PAW potential framework.67 Such a
severe overestimation of the calculated full-GW band gap is thus likely due to the poor
accuracy of the diagonal approximation adopted for G, which leads to unchanged charge
and spin densities during full-GW. For systems with strongly correlated 3 d electrons near
the band edge, such as SrTiO3, the quasiparticle wave functions may substantially deviate
from K-S wave functions, resulting in considerable change in charge density and errors to
the electronic band gap. Future work will include an investigation into how the diagonal
approximation affects electronic structure predictions of transition metal oxides and other
strongly correlated systems.

Another possibility is the missing electron-hole correlation effects in RPA.69 Such effects
have proven to be crucial in conjunction with self-consistency to predict correct electronic
band gaps.65 Further investigation excluding the diagonal approximation and/or including
screening effects beyond RPA is necessary and will be conducted in the future. Similar
to the other two types of systems, the CPE and Pade approximation lead to similar band
gaps differing within 0.05 eV. The only exception is SrTiO3, for which the band gap from
both approaches can differ by as much as 0.5 eV, as indicated in Table IV and shown via
the spectral functions in Fig. 2 (c) and (d). Regarding the spectral functions of band edge
states, difference in weight of spectral functions indicates that the estimated lifetime of the
quasiparticle states may differ substantially. CPE appears to be the more valid method
for analytic continuation given its general agreement with experiment for a wide range of
systems. Still, the applicability of Pade approximation is justified for many systems based
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on our calculations.

VI. CONCLUSION

To summarize, we have implemented an efficient Matsubara-time GW approach in con-
junction with CPE, a newly developed analytic continuation method. The method has been
used in a detailed study of the electronic band gaps across 18 semiconductors and/or insu-
lators at the levels of G0W0, GW0 and full-GW approximations. Benchmark calculations
of silicon’s electronic structure demonstrate the accuracy and computational speedup of
our Matsubara-time method compared to previously used frequency-domain calculations,
indicating nearly an order of magnitude outperformance (in speed) of our Matsubara-time
method over traditional frequency-domain GW approaches. Nevertheless, a systematic eval-
uation regarding the performance of our method is required and will be carried out in future
work. Our results demonstrate that for most of the simple s-p electron systems, G0W0 leads
to reasonable agreement with experiments, and full-GW tends to overestimate the calcu-
lated band gaps, whereas full-GW is required for more accurate band gaps in the cases of 3
d transition metal chalcogenides. These findings are in line with the previous GW studies
and it is likely due to the underestimated screening effects by RPA during full-GW. We
have also found that the band gap of strongly correlated systems such as SrTiO3 can be
substantially overestimated within the current framework, and off-diagonal elements in G
as well as the electron-hole correlation effects beyond RPA may need to be included for
more accurate results in those systems. Moreover, we have compared the results from both
CPE and Pade approximation. In general, CPE results are more consistently in agreement
with experimental data in a wide range of systems, suggesting the applicability of CPE
for analytic continuation as a standard for GW calculations. Finally, our calculations of
average cation d band energies suggest that both full-GW and GW0 lead to results in good
agreement with experiment.
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7 L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
8 L. Hedin, Phys. Rev. 139, A796 (1965).
9 H. Eshuis, J. Bates, and F. Furche, Theor. Chem. Acc. 131, 1084 (2012).

10 X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012).
11 I.-H. Chu, A. Kozhevnikov, T. C. Schulthess, and H.-P. Cheng, J. Chem. Phys. 141, 044709

(2014).
12 L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801

(2007).
13 M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
14 G. Kresse, M. Marsman, L. E. Hintzsche, and E. Flage-Larsen, Phys. Rev. B 85, 045205 (2012).
15 F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109

(2007).
16 S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93, 126406 (2004).
17 T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76, 165106 (2007).
18 J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, Comput.

Phys. Commun. 183, 1269 (2012).
19 A. Marini, G. Onida, and R. Del Sole, Phys. Rev. Lett. 88, 016403 (2001).
20 H. Dixit, R. Saniz, D. Lamoen, and B. Partoens, Comput. Phys. Commun. 182, 2029 (2011).
21 T. A. Pham, H.-V. Nguyen, D. Rocca, and G. Galli, Phys. Rev. B 87, 155148 (2013).
22 W. Ku and A. G. Eguiluz, Phys. Rev. Lett. 89, 126401 (2002).
23 S. Sharma, J. K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev. Lett. 95, 136402 (2005).
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27 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
28 M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).
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