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We derive a dielectric function tensor model approach to render the optical response of mon-
oclinic and triclinic symmetry materials with multiple uncoupled infrared and farinfrared active
modes. We apply our model approach to monoclinic β-Ga2O3 single crystal samples. Surfaces cut
under different angles from a bulk crystal, (010) and (2̄01), are investigated by generalized spec-
troscopic ellipsometry within infrared and farinfrared spectral regions. We determine the frequency
dependence of 4 independent β-Ga2O3 Cartesian dielectric function tensor elements by matching
large sets of experimental data using a point by point data inversion approach. From matching our
monoclinic model to the obtained 4 dielectric function tensor components, we determine all infared
and farinfrared active transverse optic phonon modes with Au and Bu symmetry, and their eigen-
vectors within the monoclinic lattice. We find excellent agreement between our model results and
results of density functional theory calculations. We derive and discuss the frequencies of longitudi-
nal optical phonons in β-Ga2O3. We derive and report density and anisotropic mobility parameters
of the free charge carriers within the tin doped crystals. We discuss the occurrence of longitudi-
nal phonon plasmon coupled modes in β-Ga2O3 and provide their frequencies and eigenvectors.
We also discuss and present monoclinic dielectric constants for static electric fields and frequencies
above the reststrahlen range, and we provide a generalization of the Lyddane-Sachs-Teller relation
for monoclinic lattices with infrared and farinfrared active modes. We find that the generalized
Lyddane-Sachs-Teller relation is fulfilled excellently for β-Ga2O3.

PACS numbers: 61.50.Ah;63.20.-e;63.20.D-;63.20.dk;

I. INTRODUCTION

Group-III sesquioxides have regained interest as wide
band gap semiconductors with unexploited physical
properties. Electric conductivity in transparent, poly-
crystalline, tin doped In2O3 and Ga2O3 facilitates thin
film electrodes for smart windows,1,2 photovoltaics,1

large area flat panel displays,3 and sensors, for exam-
ple.4 The highly anisotropic monoclinic β-gallia crystal
structure (β phase) is the most stable crystal structure
among the five phases (α, β, γ, ε, and δ) of Ga2O3.

5,6

Mixed phase α− β Ga2O3 oxide junctions were recently
discovered for high activity photocatalytic water split-
ting.7 Current research focusses on the development of
single crystalline group-III sesquioxide semiconductors
with low defect densities for potential use as active mate-
rials in electronic and optoelectronic devices.8 The ther-
modynamically stable β-Ga2O3 phase is of particular in-
terest due to its large band gap energy of 4.85 eV, lend-
ing promise for applications in short wavelength photon-
ics and transparent electronics.9 The high electric break
down field value of β-Ga2O3, which is estimated at 8
MVcm−1 exceeds those of contemporary semiconductor
materials such as Si, GaAs, SiC, group-III nitrides, or
ZnO.10 Baliga’s figure of merit for β-Ga2O3 is several

times larger than those for 4H-SiC or GaN.11 Baliga’s
figure of merit is the basic parameter to evaluate a ma-
terial’s suitability for power device applications. The fig-
ure of merit is proportional to the cube of the break-
down field, but only linearly proportional to mobility,
hence, a large breakdown field can trump small mobil-
ity. Melt growth methods of bulk single crystals have
been demonstrated by Czochralski growth,12 float zone
growth,13 and edge-defined film-fed growth14 suitable for
mass production due to cost efficiency compared with
growth of GaN substrates, for example.15 Homoepitax-
ial thin film growth was developed by molecular beam
epitaxy,10 and metal-organic vapor phase epitaxy meth-
ods16 yielding good quality crystalline materials. Schot-
tky barrier diodes (SBD) and metal-semiconductor field-
effect transistors (MESFETs) on β-Ga2O3 homoepitaxial
layers were reported for the first time by Sasaki et al.10

and a breakdown voltage of 125 V was obtained. The
MESFETs also exhibited excellent characteristics such as
a nearly ideal pinch-off of the drain current, an off-state
breakdown voltage over 250 V, a high on/off drain cur-
rent ratio of around 104, and small gate leakage current.14

These device characteristics clearly indicate the great po-
tential of β-Ga2O3 as a high power device material. It
is also expected that extremely wide band gap semicon-
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ductors (with band gap energies larger than 4 eV) may
have potential for so far unexplored optoelectronic appli-
cations in the deep ultra violet region. Such applications
are emerging in the biotechnology and nanotechnology
areas. For example, combining scanning near field opti-
cal microscopy17 with deep ultra violet transparent opti-
cal fibers18 may enable imaging of molecular structures of
DNA and proteins using characteristic absorption and/or
fluorescence. Rare earth or 3d transition metal doping in
β-Ga2O3 thin films further demonstrated promising opti-
cal and photoluminescent properties, for example in thin
film electroluminescent devices.19,20

Crucial for device design and operation is knowledge
on electrical transport parameters. Likewise, under-
standing of heat transport as well as phonon assisted
free charge carrier scattering requires precise knowledge
on long wavelength phonon energies and band structure
properties. In this paper we investigate lattice and free
charge carrier properties of β-Ga2O3 by experiment and
by calculation of phonon mode parameters. Knowledge
on phonon modes and free charge carrier parameters
is not exhaustive for β-Ga2O3. Very few reports ex-
ist on experimental determination of phonon mode pa-
rameters and their anisotropy.21 No report exists to our
best knowledge which observes and describes coupling of
phonon and free charge carrier modes. Few reports exist
on theoretical prediction and experimental determination
of static and high frequency dielectric constants and their
anisotropy.22–28 Calculations predict effective mass pa-
rameters,8,29–32 and few experiments were reported.33,34

Theoretical descriptions of Brilloun zone center phonon
modes are reported,28 and phonon band structures and
density of states allowed prediction of thermal transport
properties. Recently, Guo et al. measured the thermal
conductivity in β-Ga2O3 single crystals and observed be-
haviors indicative for phonon assisted heat transport with
strongly anisotropic group velocities supported by first
principles calculations.35

Owing to the unique strength of ellipsometry to resolve
the state of polarization of light reflected off or transmit-
ted through samples, both real and imaginary parts of the
complex dielectric function can be determined at optical
wavelengths.36–38 Generalized ellipsometry extends this
concept to arbitrarily anisotropic materials, and allows
to determine, in principle, all 9 complex-valued elements
of the dielectric function tensor.39 Jellison et al. reported
generalized ellipsometry analysis of a monoclinic crystal,
CdWO4.

40 Experimental data were taken from multiple
sample orientations in the near infrared to ultra violet
spectral regions. It was shown that 4 complex-valued
dielectric tensor elements are required for each wave-
length, which were determined spectroscopically, and in-
dependently of physical model line shape functions. The
authors pointed out that no general rotations could be
found to diagonalize the 4 tensor elements independently
of wavelength. In the transparency region, a diagonal-
ization could be found, but only one which depends on
wavelength. Jellison et al. suggested to record and
present, in general for monoclinic materials, 4 instead
of 3 independent spectroscopic dielectric function tensor
elements. In this context, a 4th spectroscopic response
function is described, whose physical meaning, however,

FIG. 1: Unit eigen displacement vector ê characteristic for a
dielectric eigen polarizability Pê whose frequency response is
rendered by a complex-valued response function �ê.

remained unexplained. Kuz’menko et al. and Möller et
al. analyzed polarized reflectance from multiple surface
orientations of monoclinic crystals, CuO and MnWO4,
respectively.41,42 Spectra were obtained as a function of
incident light polarization relative to the crystallographic
axes. The authors used a physical function lineshape
model first described by Born and Huang.43 This line-
shape model brings 4 interdependent dielectric function
tensor elements into existence for monoclinic materials.
Kuz’menko44 described this model in more detail and ex-
emplified analysis of the partially polarization resolved
reflectance spectra for monoclinic α-Bi2O3. The Born
and Huang model allows for the derivation of TO modes
and their unit eigen displacement vectors. These were
obtained and reported in Refs.41,42,44. However, nu-
merical integrations were required to guarantee Kramers-
Kronig consistency for the 4 tensor element spectra, since
neither of these elements can be obtained independently
and as complex-valued functions from reflectance data
analysis. To our best knowledge, no independent ver-
ification of the Born and Huang model was provided
for monoclinic crystals, where the dielectric tensor ele-
ment functions have been determined independently and
without physical lineshape functions. Furthermore, the
determination of longitudinal optical modes as well as
plasma coupling in crystals with monoclinic symmetry
has not been discussed and presented within the Born
and Huang model. Also, the Lyddane-Sachs-Teller rela-
tion is not valid for monoclinic lattices and we present
its generalization in this paper. We apply our model to
β-Ga2O3 single crystals, and obtain and discuss funda-
mental physical parameters for this potentially important
semiconductor material.

II. THEORY

The lattice constants of β-Ga2O3 are a = 12.23 Å,
b = 3.04 Å, and c = 5.80 Å, and the monoclinic angle
is β = 103.7◦45 (Fig. 2). There are ten atoms in the
primitive unit cell of β-Ga2O3 with 30 normal modes of
vibrations. The irreducible representation for acoustical
and optical zone center modes are: Γaco = Au + 2Bu

and Γopt = 10Ag + 4Au + 5Bg + 8Bu. For the optical
modes, Ag and Bg modes are Raman active, while Au

and Bu modes are long wavelength (infrared and farin-
frared) active. Hence, β-Ga2O3 is a material with mul-
tiple modes of long wavelength active phonons and plas-
mons. We provide a simple approach to construct the
dielectric function tensor of materials with non orthog-
onal normal modes. Born and Huang provided both an
atomistic as well as a microscopic description of the lat-
tice dynamics at long wavelengths from first principles
and elasticity theory.43 Both approaches lead to a de-
scription of the dielectric function tensor to which the re-
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sult of our approach is equivalent. While our approach is
straightforward, we extend the Born and Huang model by
discussion of non orthogonal longitudinal optical modes
and coupling with plasma modes. All normal modes with
transverse and longitudinal character predicted by the-
ory are observed in our experiment and will be discussed
in detail.

A. Uncoupled Eigen Polarizability Model

Intrinsic dielectric polarizations (eigen displacement
modes) of a homogeneous material give rise to long wave-
length active phonon modes. Each mode is associated
with an electric dipole charge oscillation. The dipole axis
can be associated with a characteristic eigenvector (unit
eigen displacement vector ê). Within the frequency do-
main, and within a Cartesian system with unit directions
x, y, z, the dielectric polarizability P under the influence
of an electric phasor field E along ê = êxx + êyy + êzz
is then given by a complex-valued response function �ê
(Fig. 1)

Pê = �ê(êE)ê. (1)

Function �ê must satisfy causality and energy conserva-
tion requirements, i.e., the Kramers-Kronig integral rela-
tions and Im{�ê} ≥ 0, ∀ ω ≥ 0.46,47 Under the assump-
tion that different eigen displacement modes do not cou-
ple, their eigenvectors may lie along certain, fixed spatial
directions within a given sample of material. The linear
polarization response of a material withm eigen displace-
ment modes is then obtained from summation

P =
m∑
l=1

Pêl =
m∑
l=1

�êl(êl ⊗ êl)E = χE, (2)

where ⊗ is the dyadic product. Eq. (2) results in a dielec-
tric polarization response tensor χ, which is fully sym-
metric in all indices

(χ)ij =
m∑
l=1

�êl êi,lêj,l = (χ)ji, i, j = “x”, “y”, “z”. (3)

The mutual orientations of the eigenvectors, and the fre-
quency responses of their eigen displacements determine
the optical character of a given, dielectrically polarizable
material. For certain or all frequency regions, analogies
can be found with symmetry properties of monoclinic,
triclinic, orthorhombic, tetragonal, hexagonal, trigonal,
or cubic crystal classes. The field phasors displacement
D, and E are related by the dielectric function tensor (ε0
is the vacuum permittivity)

D = ε0 (1 + χE) = ε0εE. (4)

Likewise to χ, ε is fully symmetric, invariant under
time and space inversion, and a function of frequency
ω. Chiral arrangements of eigen displacements require
augmentation of coupling between eigen modes, which is

FIG. 2: (a) Unit cell of β-Ga2O3. Indicated is the monoclinic
angle β, and the Cartesian coordinate system (x, y, z) fixed to
the unit cell in this work. (b) View onto the a - c plane along
axis b which points into the plane. Indicated is the vector
c�, defined for convenience here. See also Section IIC 2 for
further explanation.

not further discussed here. The dielectric function ten-
sor in Eq. (4) has 6 independent complex-valued param-
eters. These render physical observables, which can be
obtained by experiment, for example using generalized
spectroscopic ellipsometry.48 The dielectric function ten-
sor contains information on fundamental physical prop-
erties. For example, the frequencies of two characteristic
optical modes, transverse optical (TO; ωTO) and longi-
tudinal optical (LO; ωLO), can be obtained, respectively,
from the roots of the determinants of ε−1, and ε

0 = det{ε−1(ωTO)}, (5)

0 = det{ε(ωLO)}. (6)

Each of the modes ωTO and ωLO are associated with a
unit eigen displacement vector, êTO and êLO, which can
be obtained, respectively, from the set of equations

0 = ε−1(ωTO)êTO, (7)

0 = ε(ωLO)êLO. (8)

B. Dielectric Function Tensor Model for β-Ga2O3

Long wavelength active phonon modes correspond to
lattice displacements, which are associated with a linear
dipole moment. In β-Ga2O3 (Fig. 2), 12 long wavelength
active phonon branches are predicted by symmetry. Each
branch consists of a pair of TO and LO modes. In the
presence of free charge carriers, 3 additional LO modes
occur due to 3 available dimensions for plasmon prop-
agation. Their eigen displacement vectors have to be
determined from experiment, as will be discussed further
below. The free charge carrier modes couple with the
LO modes of the phonon branches unless their eigen dis-
placement vectors are orthogonal. This coupling leads
to new experimentally observable modes, the so called
longitudinal phonon plasmon (LPP; ωLPP) modes.
a. Transverse optical modes: Modes with Au sym-

metry (4) are polarized along b only. Modes with Bu

symmetry are polarized within the a - c plane. A choice
of coordinates must be made at this step. We align unit
cell axes b and a with −z and x, respectively, and c is
within the (x-y) plane. We introduce vector c� parallel
to y for convenience, and we obtain a, c�, −b as a pseudo
orthorhombic system (Fig. 2). Then, Eq. (2) leads to the
following summations
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Pβ−Ga2O3 =

8∑
j=1

�Bu

j (cosαjx+sinαjy)+

4∑
k=1

�Au

k z, (9)

where αj describes the dipole oscillation axis of the jth

Bu mode relative to a. As a result, and within the cho-
sen coordinate frame, the dielectric function tensor has 4
independent complex-valued elements: εxx, εxy, εyy, and
εzz .

The energy dependent contribution to the long wave-
length polarization response of an uncoupled electric
dipole charge oscillation is commonly described using a
Lorentzian broadened oscillator function48,49

�(l) (ω) =
A(l)

ω2
TO,(l) − ω2 − iωγ(l)

, (10)

where A(l), ωTO,(l), and γ(l) denote the amplitude, reso-
nance frequency, and broadening parameter of a lattice
resonance with TO character, ω is the frequency of the
driving electromagnetic field, and i2 = −1 is the imagi-
nary unit. The index l numerates the contributions of all
independent dipole oscillations.

b. Free charge carrier contributions: The energy de-
pendent contribution to the long wavelength polarization
response of free charge carriers is commonly described us-
ing the Drude model function48,50–52

�FCC,(x,y,z) = − e2N

ε̃0meff,(x,y,z)ω(ω + iγp,(x,y,z))
, (11)

where N is the free charge carrier volume density pa-
rameter. As discussed further below, we find the eigen
displacement vectors of the plasma modes orthogonal to
each other, and we cast their contributions within the
choice of Cartesian coordinates (x, y, z) shown in Fig. 2.
Hence, the effective mass and plasma broadening pa-
rameters, meff,(x,y,z) and γp,(x,y,z), are indicated by their
Cartesian axes, respectively (ε̃0 is the vacuum permittiv-
ity, and e is the amount of the electrical unit charge).
The plasmon broadening parameters can be related to
optical mobility parameters μ(x,y,z)

γp,(x,y,z) =
e

meff,(x,y,z)μ(x,y,z)
. (12)

c. High frequency dielectric constants: Equations
(10) and (11) vanish for large frequencies, however, con-
tributions to the polarization functions may arise from
higher frequency charge oscillations such as electronic
band to band transitions. A full analysis requires the
incorporation of experimental data far into the ultra vi-
olet region to identify the eigen displacement vectors of
the electronic band to band transitions in β-Ga2O3. Be-
cause the fundamental band to band transition energy is
far outside the spectral range investigated here, we ap-
proximate the high frequency contributions by frequency
independent parameters which represent the sum of all
contributions from all higher energy electronic band to
band transitions

ε∞ =

⎛
⎝ ε∞,xx ε∞,xy 0
ε∞,xy ε∞,yy 0
0 0 ε∞,zz

⎞
⎠ . (13)

Note that due to the monoclinic symmetry, 4 real-valued
parameters are required. An effective eigen displacement
vector can be found from Eq. (3) for the band gap spec-
tral region, which may also be considered as effective
monoclinic angle for this spectral region

α∞ = tan−1

(
ε∞,xy

ε∞,xx − 1

)
= cot−1

(
ε∞,yy − 1

ε∞,xy

)
. (14)

d. Static dielectric constants: Equations (10) con-
tribute constant values at zero frequencies, when free
charge carrier contributions in Eqs. (11) are absent

εDC =

⎛
⎝ εDC,xx εDC,xy 0
εDC,xy εDC,yy 0

0 0 εDC,zz

⎞
⎠ . (15)

The contributions are obtained explicitly as

εDC,xx = ε∞,xx +

8∑
j=1

cos2 αj

ABu

j

ω2
TO,j

, (16)

εDC,xy = ε∞,xy +

8∑
j=1

sinαj cosαj

ABu

j

ω2
TO,j

, (17)

εDC,yy = ε∞,yy +
8∑

j=1

sin2 αj

ABu

j

ω2
TO,j

, (18)

εDC,zz = ε∞,zz +

4∑
k=1

AAu

k

ω2
TO,k

. (19)

Hence, 4 constitutive parameters may be required near
DC frequencies to describe the dielectric response of β-
Ga2O3. An effective monoclinic eigen displacement vec-
tor within the a - c plane can be found from Eq. (3),
valid near DC frequencies only

αDC = tan−1

(
εDC,xy

εDC,xx − 1

)
= cot−1

(
εDC,yy − 1

εDC,xy

)
.

(20)
e. Dielectric function tensor: The β-Ga2O3 mono-

clinic dielectric function tensor is composed of the high
frequency contributions, the dipole charge resonances,
and the free charge carrier contributions
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εxx = ε∞,xx +

8∑
j=1

�Bu

j cos2 αj + �FCC,x, (21a)

εxy = ε∞,xy +

8∑
j=1

�Bu

j sinαj cosαj , (21b)

εyy = ε∞,yy +

8∑
j=1

�Bu

j sin2 αj + �FCC,y, (21c)

εzz = ε∞,zz +
4∑

k=1

�Au

k + �FCC,z, (21d)

εxz = εzx = 0. (21e)

Eqs. 21 provide valuable insight into the dielectric
function tensor elements. If modes with Au and Bu

symmetry are distinct, critical point features53 due to
responses at frequencies with Au symmetry should only
occur in εzz. Features due to modes with Bu symmetry
should only occur in εxx, εxy, and εyy. Depending on
the orientation of the unit eigen displacement vector of
a given mode, contributions may occur either (i) in εxx
(α = 0◦) only, or (ii) in εyy (α = 90◦) only, or (iii) in
all εxx, εxy, and εyy (α �= nπ, n = 0,±1,±2, . . . ). El-
ement εxy is different from zero in case (iii) only. The
imaginary part of εxy can be negative. The latter pro-
vides a unique experimental access to identify whether
α for a given mode shares an acute, a right, or an ob-
tuse angle with the a axis. Note that εxx, εxy, and εyy
over determine the intrinsic polarizability functions. This
is because εxy is the product of simple geometrical shear
projections and not the result of new, or additional physi-
cal properties in materials with non orthogonal unit eigen
displacement vectors of intrinsic modes.

f. LO mode determination: The determinant in
Eq. (6) factorizes into 2 equations, one valid for electric
field polarization within the x - y plane, and one equation
valid for polarization along z, respectively,

0 = εxx(ωLO(n)
)εyy(ωLO(n)

)− ε2xy(ωLO(n)
). (22)

and

0 = εzz(ωLO(n)
). (23)

Hence, LO modes with Au symmetry are polarized along
axis b only. LO modes with Bu symmetry are polarized
within the a − c plane. The eigen displacement vectors,
êLO(n)

= cosαLO(n)
x+ sinαLO(n)

y, can be found from

tanαLO(n)
= −εxx(ωLO(n)

)

εxy(ωLO(n)
)
= −εxy(ωLO(n)

)

εyy(ωLO(n)
)
. (24)

For β-Ga2O3, in the absence of free charge carrier con-
tributions, 4 LO modes with Au symmetry and 8 LO
modes with Bu symmetry are obtained from Eq. (22)
and Eq. (23), respectively.

g. LPP mode determination For β-Ga2O3, in the
presence of free charge carrier contributions, Eq. (6) fac-
torizes again into

0 = εxx(ωLPP(n)
)εyy(ωLPP(n)

)− ε2xy(ωLPP(n)
). (25)

and

0 = εzz(ωLPP(n)
). (26)

Hence, LPP modes with Au symmetry are polarized
along axis b only. LPP modes with Bu symmetry are
polarized within the a - c plane. The eigen displace-
ment vectors, êLPP(n)

= cosαLPP(n)
x + sinαLPP(n)

y, can
be found from

tanαLPP(n)
= −εxx(ωLPP(n)

)

εxy(ωLPP(n)
)
= −εxy(ωLPP(n)

)

εyy(ωLPP(n)
)
. (27)

The presence of a free charge carrier plasma within β-
Ga2O3 results in 5 LPP modes with Au symmetry and 12
LPP modes with Bu symmetry, and which are obtained
from Eq. (25) and Eq. (26), respectively.
h. Lyddane-Sachs-Teller relation: In the absences

of free charge carriers, static and high frequency dielec-
tric constants fulfill the Lyddane-Sachs-Teller (LST) re-
lation54–56

εDC

ε∞
=

m∏
l=1

(
ωLO,l

ωTO,l

)2

, (28)

wherem denotes the number of mode branches of a given
material along a given major polarizability axis. The
LST relation is derived from the behavior of a dielectric
function at static and high frequencies where the imag-
inary part must vanish. Because the long wavelength
dielectric function can typically be rendered as a general
response function with second order poles and zeros, the
summation of all zeros and poles at static frequency leads
to Eq. (28). Written most commonly with the intent for
isotropic materials, the relation has been found correct
for anisotropic dielectrics with orthogonal axes.48,53,57 It
is also valid for the b-axis response, i.e., for εzz here.
For the a - c plane a physically meaningful set of dielec-

tric functions along fixed orthogonal axes does not exist,
and the relation in Eq. (28) is not generally valid for ma-
terials with monoclinic and triclinic crystal structures.
However, a generalized relation for monoclinic materials
can be found, analogous to the LST relation. Follow-
ing the same logic in derivation, one may inspect the
behavior of the sub determinant of the monoclinic di-
electric function tensor, εxxεyy-ε

2
xy. At zero frequencies,

this function is equal to εDC,xxεDC,yy-ε
2
DC,xy, the high fre-

quency limit follows likewise. Casting the sub determi-
nant into a factorized form, it is crucial to recognize that
all terms with (ω2

TO,(l) − ω2)−2 do not contribute to the

summation because their amplitudes cancel. Hence, the
denominator factorizes into the second order poles at all
Bu TO frequencies, and the numerator factorizes into all
roots of the sub determinant. The order of the polyno-
mials are both 2m, hence, there are m poles at ω2

TO,(l)

and m zeros at ω2
LO,(l). The generalized LST relation for

monoclinic materials reads then
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εDC,xxεDC,yy − ε2
DC,xy

ε∞,xxε∞,yy − ε2∞,xy

=

m∏
l=1

(
ωLO,l

ωTO,l

)2

. (29)

In the above equation, m=8 denotes the number of
modes with Bu symmetry for β-Ga2O3. While the im-
plementation of the LST relation, or its generalization
above, is not truly needed when analyzing long wave-
length ellipsometry data, the relations are quite useful to
check for consistency of determined phonon and dielectric
constant parameters.

C. Generalized Ellipsometry

For optically anisotropic materials it is necessary to
apply the generalized ellipsometry approach because cou-
pling between the p (parallel to the plane of incidence)
and s (perpendicular to the plane of incidence) polarized
incident electromagnetic plane wave components occurs
upon reflection off the sample surface. β-Ga2O3 possesses
monoclinic crystal structure, and is highly anisotropic. In
previous work, which included uniaxial and biaxial mate-
rials in single layer and multiple layer structures such as
corundum,53 rutile,57 antimonite,58 pentacene,59,60 zinc
metal oxides,61 wurtzite structure group-III Nitride het-
erostructures,62–72 and form induced anisotropic thin
films73 we discussed theory and applications of gener-
alized ellipsometry in detail. In a number of recent pub-
lications we discussed treatment and necessity of inves-
tigating off axis cut surfaces from anisotropic crystals to
gain access to all long wavelength active phonon modes,
for example in ZnO,74 and in wurtzite structure group-
III Nitrides.75–77 A multiple sample, multiple azimuth,
and multiple angle of incidence approach is required for
β-Ga2O3. Hence, multiple single crystalline samples cut
under different angles from the same crystal must be in-
vestigated and analyzed simultaneously.

1. Mueller matrix formalism

In the generalized ellipsometry formalism, the inter-
action of electromagnetic plane waves with layered sam-
ples is described within the Jones or Mueller matrix for-
malism.48,49,78,79 The Mueller matrix renders the opti-
cal sample properties at a given angle of incidence and
sample azimuth, and data measured must be analyzed
through a best match model calculation procedure. In
the generalized ellipsometry situation the Stokes vec-
tor formalism, where real-valued matrix elements con-
nect the Stokes parameters of the electromagnetic plane
waves before and after sample interaction, is an appropri-
ate choice for casting the ellipsometric measurement pa-
rameters. The Stokes vector components are defined by
S0 = Ip+Is, S1 = Ip−Is, S2 = I45−I−45, S3 = Iσ+−Iσ−,
where Ip, Is, I45, I−45, Iσ+, and Iσ−denote the intensities
for the p-, s-, +45◦, -45◦, right handed, and left handed
circularly polarized light components, respectively.51 The
Mueller matrix is defined by arranging incident and ex-

FIG. 3: Definition of the Euler angles ϕ, θ, and ψ and the
orthogonal rotations as provided by A. (ξ, η, ζ), and (x, y, z)
refer to the Cartesian auxiliary and laboratory coordinate sys-
tems, respectively. Redrawn from Ref.48.

iting Stokes vector into matrix form

⎛
⎜⎝
S0

S1

S2

S3

⎞
⎟⎠

output

=

⎛
⎜⎝
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎠

⎛
⎜⎝
S0

S1

S2

S3

⎞
⎟⎠

input

.

(30)

2. Ellipsometry data and model dielectric function analyses

Spectroscopic ellipsometry is an indirect method and
requires detailed model analysis procedures in order to
extract relevant physical parameters.80,81 Here, the sim-
ple two phase (substrate ambient) model is employed,
where the substrate represents single crystal β-Ga2O3

samples. The light propagation within the anisotropic
substrate is calculated by applying a 4×4 matrix algo-
rithm applicable to plane parallel interfaces.82–84

The matrix algorithm requires a full description of all
dielectric function tensor elements of the substrate. In
order to perform this description, coordinate relations
must be established. Two coordinate systems must be
related to each other, one that is tied to the instrument
and another which must be tied to the crystallographic
sample description. The system tied to the instrument is
the system in which the dielectric function tensor must
be cast into for the 4×4 matrix algorithm. We chose both
coordinate systems to be Cartesian. The sample normal
defines the laboratory coordinate system’s ẑ axis, which
points into the surface of the sample.82 The sample sur-
face then defines the laboratory coordinate system’s x̂ -
ŷ plane. The sample surface is at the origin of the coor-
dinate system. The plane of incidence is the x̂ - ẑ plane.
Note that the system (x̂, ŷ, ẑ) is defined by the ellipsome-
ter instrumentation through the plane of incidence and
the sample holder. One may refer to this system as the
laboratory coordinate system. The system (x, y, z) in
Fig. 1 is fixed by our choice to the specific orientation of
the β-Ga2O3 crystal axes shown in Fig. 2. One may refer
to system (x, y, z) as our β-Ga2O3 system. Then, the full
dielectric tensor in the 4×4 matrix algorithm is obtained
by setting εxx, εxy, εyy, and εzz as unknown parameters,
and by setting the remaining elements to zero.
Then, according to the crystallographic surface orien-

tation of a given sample, and according to its azimuth
orientation relative to the plane of incidence, a Euler an-
gle rotation is applied to ε. The definition of the Euler
angle parameters between two Cartesian coordinate sys-
tems is shown in Fig. 3. The Euler parameters describe
the angular rotations of the β-Ga2O3 crystal axes de-
picted in Fig. 2 relative to the laboratory (ellipsometer)
coordinate system for every ellipsometry measurement.
Matrix A is obtained by
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A = R1(ϕ)R2(θ)R1(ψ), (31)

with

R1(v) =

⎛
⎝ cos v − sin v 0

sin v cos v 0
0 0 1

⎞
⎠ , (32)

R2(v) =

⎛
⎝ 1 0 0

0 cos v − sin v
0 sin v cos v

⎞
⎠ . (33)

The sample azimuth angle, typically termed ϕ, is de-
fined by a certain in plane rotation with respect to the
sample normal. The sample azimuth angle describes the
mathematical rotation that a model dielectric function
tensor of a specific sample must make when comparing
calculated data with measured data from one or multiple
samples taken at multiple, different azimuth positions.
For example, for a (010) surface cut, Euler angles θ and
ψ are zero, the a - c plane is the surface of the sample,
and ϕ=0 when axis a points along the plane of incidence.
Vector c� is then perpendicular to the plane of incidence.

As first step in data analysis, all ellipsometry data were
analyzed using a wavelength by wavelength approach.
Thereby, all data obtained at the same wavenumber from
multiple samples, multiple azimuth angles, and multi-
ple angles of incidence are included (polyfit) and one
set of complex values εxx, εxy, εyy, and εzz is searched
for. This procedure is simultaneously performed for all
wavelengths, while results of εxx, εxy, εyy, and εzz for
one wavelength have no influence on results at any other
wavelength. In addition, each sample requires one set
of 3 independent Euler angle parameters. The latter de-
scribe the rotations of the β-Ga2O3 auxiliary coordinate
system at zero azimuth. Zero azimuth is the first az-
imuth position at which measurements were performed.
Multiple azimuth positions differ by 45◦ counterclock-
wise increments. These increments are added to Euler
angle parameter ϕ, and hence once the zero azimuth po-
sition parameter is known all other Euler parameters are
known. In this polyfit and wavelength by wavelength ap-
proach, we have not augmented any physical lineshape
assumptions for the spectral behavior of εxx, εxy, εyy, and
εzz . In a second step, εxx, εxy, εyy, and εzz are analyzed
simultaneously by Eqs. (21). As a result, we obtain all
parameters for TO, LO, and LPP modes as well as for
static and high frequency dielectric constants.

Two regression analyses (Levenberg-Marquardt algo-
rithm) are performed. The first is minimizing the dif-
ference between measured and calculated generalized el-
lipsometry data during the polyfit. The second is min-
imizing the difference between the wavelength by wave-
length extracted εxx, εxy, εyy, and εzz spectra and those
calculated by Eqs. (21). All model parameters were var-
ied until calculated and experimental data matched as
close as possible (best match model). This is done by
minimizing the mean square error (χ2) function which
is weighed to estimated experimental errors (σ) deter-
mined by the instrument for each data point.39,48,53,57,83

For the second regression step, the numerical uncertainty
limits of the 90% confidence interval from the first re-
gression were used as experimental error bars for the
wavelength by wavelength extracted εxx, εxy, εyy, and
εzz spectra. A similar approach was described, for ex-
ample, in Refs.48,53,57,85. All best match model cal-
culations were performed using WVASE32 (J. A. Wool-
lam Co., Inc.)

D. Phonon mode calculations

Theoretical calculations of long wavelength active
Γ-point phonon frequencies were performed by plane
wave density functional theory (DFT) using Quantum
ESPRESSO (QE).86 The exchange correlation functional
of Perdew and Zunger (PZ)87 and norm conserving pseu-
dopotentials from the QE library were implemented. A
primitive cell of β-Ga2O3 consisting of six Oxygen and
four Gallium atoms was first relaxed to force levels less
than 1/1000 Ry/Bohr. A dense 4 × 8 × 16 regular
Monkhorst-Pack grid was used for sampling of the Bril-
louin Zone.88 A convergence threshold of 1× 10−12 was
used to reach self consistency with a large electronic
wavefunction cutoff of 100 Ry. The phonon frequencies
were computed at the Γ-point of the Brillouin zone using
density functional perturbation theory.89 We modified
the code of QE to provide, in addition to phonon fre-
quencies and their infrared transition dipoles, the actual
Cartesian components of the infrared transition dipole
moments (square of the transition dipole). This allows
us to analyze projections of the infrared transition dipoles
onto arbitrary crystallographic axes and planes. The re-
sults of the phonon mode calculations for infrared active
modes with Au and Bu symmetry are listed in Tab. I.
Data listed include the TO resonance frequencies, and
for modes with Bu symmetry the angles of the transition
dipoles relative to axis a within the a−c plane. Render-
ings of molecular displacements for each mode were pre-
pared using XCrysDen90,91 running under Silicon Graph-
ics Irix 6.5, and are shown in Fig. 4.

III. EXPERIMENT

Single crystals of β-Ga2O3 were grown by the edge-
defined film-fed growth method described in Refs.92–94
at Tamura Corp., Japan. The substrates were fabricated
by slicing from bulk crystals according to their intended
surface orientation, and then single side polished. The
substrate dimensions are 650μm×10mm×10mm. The
substrates are Sn doped with an estimated activated elec-
tron density of Nd −Na ≈ (2− 9)× 1018cm−3.
The vibrational properties and free charge carrier prop-

erties of β-Ga2O3 were studied by room temperature in-
frared (IR) and farinfrared (FIR) GSE. The IR-GSE mea-
surements were performed on a rotating compensator in-
frared ellipsometer (J. A. Woollam Co., Inc.) in the spec-
tral range of 500 – 1500 cm−1 with a spectral resolution
of 2 cm−1. The FIR-GSE measurements were performed
on a in-house built rotating polarizer rotating analyzer
farinfrared ellipsometer in the spectral range of 50 – 500
cm−1 with an average spectral resolution of 1 cm−1.95



8

TABLE I: Phonon mode parameters for Au andBu modes obtained from DFT calculations using Quantum Espresso. Renderings
of displacements are shown in Fig. 4. The unit cell parameters are found as a = 12.19 Å, b = 3.016, c = 5.75 Å, and β = 103.59◦,
in agreement with Refs.45.

X = Bu X = Au

Parameter k=1 2 3 4 5 6 7 8 k=1 2 3 4

AX
k this work 4.65 9.48 30.57 28.1 5.37 0.89 7.33 10.43 12.76 23.24 14.34 0.07

ωTO,k [cm−1] this work 753.76 705.78 589.86 446.83 365.84 289.71 260.4 202.4 678.39 475.69 327.45 155.69
αTO,k [◦] this work 70.9 25.0 128 46.1 165 7.5 175 101 - - - -

ωTO,k [cm−1] Ref.28 741.6 672.6 574.3 410.5 343.6 265.3 251.6 187.5 647.9 383.5 296.2 141.6

FIG. 4: Renderings of TO phonon modes in β-Ga2O3 with Au (a: Au(4), e: Au(3), h: Au(2), j: Au(1)) and Bu symmetry
(b: Bu(8), c: Bu(7), d: Bu(6), f: Bu(5), g: Bu(4), i: Bu(3), k: Bu(2), l: Bu(1)). The respective phonon mode frequency
parameters calculated using Quantum Espresso are given in Tab. I. The renderings were prepared using XCrysDen.90,91

All GSE measurements were performed at 50◦, 60◦, and
70◦ angles of incidence. All measurements are reported
in terms of Mueller matrix elements, which are normal-
ized to element M11. Note that due to the lack of a
compensator for the FIR range in this work, no elements
of fourth row or column is reported for the FIR range.
In order to acquire sufficient information to differenti-
ate and determine εxx, εxy, εyy, and εzz, data measured
from at least two differently cut surfaces of β-Ga2O3,
and within at least two different azimuth positions are
needed. Here, we investigate a (010) and a (2̄01) sam-
ple. At least 5 azimuth positions were measured on each
sample, separated by 45◦.

IV. RESULTS AND DISCUSSION

A. Dielectric Function Tensor analysis

Figures 5 and 6 summarize experimental and best
match model calculated data for the (010) and (2̄01)
surfaces investigated in this work. Insets in Figures 5
and 6 show schematically the sample surface, the plane
of incidence, and the orientation of axis b. Graphs de-
pict selected data, obtained at 3 different sample az-
imuth orientations each 45◦ apart. Panels with individual
Mueller matrix elements are shown separately, and indi-
vidual panels are arranged according to the indices of the
Mueller matrix element. It is observed by experiment as
well as by model calculations that all Mueller matrix el-
ements are symmetric, i.e., Mij = Mji. Hence, elements
with Mij = Mji, i.e., from upper and lower diagonal
parts of the Mueller matrix, are plotted within the same
panels. Therefore, the panels represent the upper part of
a 4×4 matrix arrangement. Because all data obtained are
normalized to elementM11, and becauseM1j =Mj1, the
first column does not appear in this arrangement. The
only missing element is M44, which cannot be obtained
in our current instrument configuration due to the lack
of a second compensator. Data are shown for wavenum-
bers (frequencies) from 125 cm−1 to 1200 cm−1, except
for column M4j = Mj4 which only contains data from

approximately 250 cm−1 to 1200 cm−1. All other pan-
els show data obtained within the FIR range (125 cm−1

to 500 cm−1) using our FIR instrumentation and data
obtained within the IR range (500 cm−1 to 1200 cm−1)
using our IR instrumentation. Data from the additional
azimuth orientations (at least 2) for each sample are not
shown.
While every data set (sample, position, azimuth, angle

of incidence) is unique, all data sets share characteristic
features at certain wavelengths. These wavelengths are
indicated by vertical lines. As discussed further below,
all lines are associated with TO or LPP modes with Au

and Bu symmetry. While we do not show all data in
Figures 5 and 6 for brevity, we note that all data sets
possess a twofold azimuth symmetry, i.e., all data sets
are identical when a sample is measured again shifted by
180◦ azimuth orientation. The most notable observation
from the experimental Mueller matrix data behavior is
the strong anisotropy which is reflected by the non van-
ishing off diagonal block elements M13, M23, M14, and
M24, and the strong dependence on sample azimuth in all
elements. A noticeable observation is that the off diago-
nal block elements in position P1 for the (2̄01) surface in
Fig. 6 are close to zero. There, axis b is aligned almost
perpendicular to the plane of incidence. Hence, the mon-
oclinic plane with a and c is nearly parallel to the plane
of incidence, and as a result almost no conversion of p
to s polarized light occurs and vice versa. As a result,
the off diagonal block elements of the Mueller matrix are
near zero. The reflected light for s polarization is de-
termined by εzz alone, while the p polarization receives
contribution from εxx, εxy, and εyy which then vary with
the angle of incidence. Analysis of such data hence still
require the monoclinic model approach as discussed in
this paper.
All data were analyzed simultaneously during the poly-

fit, best match model data regression procedure. For ev-
ery wavelength, up to 330 independent data points were
included from the different samples, azimuth positions,
and angles of incidence, while only 8 independent pa-
rameters for εxx, εxy, εyy, and εzz were searched for.
In addition, two sets of 3 wavelength independent Euler
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FIG. 5: Experimental (dotted, green lines) and best match model calculated (solid, red lines) Mueller matrix data obtained
from a (010) surface at three different sample azimuth orientations. (P1: ϕ = 62.5(4)◦, P2: ϕ = 107.5(4)◦, P3: ϕ = 152.5(4)◦).
Data were taken at three angles of incidence (Φa = 50◦, 60◦, 70◦). Equal Mueller matrix data, symmetric in their indices, are
plotted within the same panels for convenience. Vertical lines indicate wavenumbers of TO (solid lines) and LPP modes (dotted
lines) with Bu symmetry (blue) and Au symmetry (brown). Fourth column elements are only available from the IR instrument.
Note that all elements are normalized to M11. The remaining Euler angle parameters are θ = 0.4(2) and ψ = 0.0(1) consistent
with the crystallographic orientation of the (010) surface. The inset depicts schematically the sample surface, the plane of
incidence and the orientation of axis b.

FIG. 6: Same as Fig. 5 for the (2̄01) sample at azimuth orientation P1: ϕ = 179.(3)◦, P2: ϕ = 224.(3)◦, P3: ϕ = 269.(3)◦.
θ = 90.(5) and ψ = −28.(1), consistent with the crystallographic orientation of the (2̄01) surface. Note that in position P1, axis
b which is parallel to the sample surface in this crystal cut, is aligned almost perpendicular to the plane of incidence. Hence,
the monoclinic plane with a and c is nearly parallel to the plane of incidence, and as a result almost no conversion of p to s
polarized light occurs and vice versa. As a result, the off diagonal block elements of the Mueller matrix are near zero. The
inset depicts schematically the sample surface, the plane of incidence and the orientation of axis b, shown approximately for
position P1.

angle parameters were looked for. The results of this cal-
culation are shown in Figs. 5 and 6 as solid lines for the
Mueller matrix elements, and in Figs. 7, 8, 9, and 10 as
dotted lines for εxx, εxy, εyy, and εzz, respectively. In
Figures 5 and 6 the agreement between measured and
model calculated data is excellent. The Euler angle pa-
rameters, given in captions of Figs. 5 and 6 are in excel-
lent agreement with the anticipated orientations of the
crystallographic sample axes. For example, measurement
on sample (010) initiated with axis b parallel to ẑ, and a
natural cleavage edge parallel to c was oriented approxi-
mately such that axis a had an ≈ 60◦ azimuth angle with
respect to the plane of incidence.

To begin with, distinct features in εxx, εxy, εyy, and
εzz can be discussed without further model lineshape cal-
culations. Vertical lines are drawn into Figs. 7-10 to in-
dicate extrema in the imaginary parts of each element.
One can observe that these vertical lines are identical for
εxx, εxy, and εyy, while a different set is seen for εzz.
There are 8 distinct frequencies in εxx, εxy, and εyy, and
4 in εzz. These frequencies indicate TO modes with Bu

and Au symmetry. The vertical line indexed with “6” in
εxx, εxy, and εyy is associated with a resonance feature
which seems to only occur in εxx. This indicates a mode
with polarization along direction a only, while all other
lines indicate modes which are neither polarized purely
along a nor c�. We further note the asymptotic increase
towards longer wavelengths in the imaginary parts of εxx,
εyy, and εzz. This increase is likely caused by free charge
carrier contributions. No such behavior is seen in εxy.

B. Phonon mode analysis

The imaginary parts of εxx, εyy, and εzz show fea-
tures, which can typically be rendered by the Lorentzian
broadened harmonic oscillator functions in Eq. (3). With
our model introduced in Sect. II A we obtain best match
model calculations, which are also shown in Figs. 7-
10. Again, an excellent match between the wavelength
by wavelength determined dielectric function tensor el-

FIG. 7: Dielectric function tensor element εxx, representative
for axis a. Lines indicate results from wavelength by wave-
length best match model calculation to experimental Mueller
matrix data (dotted; green) and best match model lineshape
analysis (solid; red). Vertical lines indicate Bu mode TO
frequencies. Vertical bars indicate DFT calculated infrared
transition dipole moments projected onto axis a in atomic
units.

FIG. 8: Same as Fig. 7 for εyy, representative for polariza-
tion along direction c�. Vertical bars indicate DFT calculated
infrared transition dipole moments projected onto axis c�.

FIG. 9: Same as Fig. 7 for εxy, the shear transformation
element within the a - c plane. Numerals index Bu mode TO
frequencies.

FIG. 10: Same as Fig. 7 for εzz, representative for polar-
ization along axis b. Vertical lines indicate Au mode TO
frequencies. Vertical bars indicate DFT calculated infrared
transition dipole moments projected onto axis b.

ements and our physical model lineshape rendering is
noted. It is worthwhile noting that the wavelength by
wavelength derived dielectric functions are all Kramers-
Kronig consistent since the Lorentzian broadened har-
monic oscillator functions are Kramers-Kronig consis-
tent. We have thereby independently verified that all
tensor components of β-Ga2O3 are Kramers-Kronig con-
sistent. The best match model lineshape calculation pa-
rameters are summarized in Tab. II. As a result, we
obtain phonon mode parameters for TO, LO, and LPP
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modes.
a. TO modes: We find 8 TO mode frequencies

within elements εxx, εxy, and εyy. These are the modes
with Bu symmetry. The vertical lines and mode indices
in Figs. 7, 8, and 9 are located at frequencies which are
identical with frequencies for ωTO listed in Tab. II. As dis-
cussed in Sect. II B, element εxy provides insight into the
relative orientation of the unit eigen displacement vectors
for each TO mode within the a - c plane. In particular,
modes Bu-3, Bu-5, and Bu-7 cause negative imaginary
resonance features in εxy. Accordingly, their unit eigen
displacement vectors in Tab. II reflect values larger than
90◦. Modes Bu-1, Bu-2, Bu-4, Bu-6, and Bu-8 possess
values less than 90◦. Accordingly, their resonance fea-
tures in the imaginary part of εxy are positive. However,
mode Bu-6 does not cause a detectable resonance fea-
ture in the imaginary part of εxy because its unit eigen
displacement vector is almost parallel to x. Mode Bu-
2 is almost parallel to mode Bu-6, but its amplitude is
much larger. Hence, a small feature from mode Bu-2 is
detected in εxy here. As predicted by the model descrip-
tion in this work, resonances nearly parallel to x reveal
features mostly in εxx and merely or none in εyy. This
is verified by our experimental finding here. A schematic
presentation of the oscillator function amplitude param-
eters ABu

k and the orientation according to angles αTO,k

from Tab. II within the a - c plane is shown in Fig. 11(a).
The TOmode frequencies and their unit eigen displace-

ment vectors obtained from the ellipsometry model anal-
ysis are in very good agreement with the DFT phonon
mode calculations shown in Tab. I. Predicted mode fre-
quencies agree within few wavenumbers with the exper-
imental findings. The DFT calculated phonon mode in-
frared transition dipole moments (oscillator strengths)
projected onto axes a, c�, and b are shown in Figs. 7, 8,
and 10, respectively, as vertical bars. The bars are
located at the DFT calculated frequencies of the TO
modes. The magnitude of the absorption features within
the imaginary parts of the dielectric function tensor el-
ements, which are proportional to the oscillator func-
tion amplitude parametersABu

k and projections by angles
αTO,k, are comparable with the DFT calculated phonon
mode infrared transition amplitudes. The DFT calcu-
lated dielectric displacement amplitudes are obtained in
atomic units ((eB)2/2, where B is the Bohr lenght). The
projected infrared transition dipole moments are in good
relative agreement when compared with the amplitudes
of the Lorentz oscillator functions for the Au and Bu

modes found from the ellipsometry analysis. Fig. 11(b)
depicts projections of the predicted infrared transition
dipole moments (intensities) onto axes a and c�, in anal-
ogy to projected oscillator amplitudes found from the el-
lipsometry analysis and shown in Fig. 11(a). Overall, the
agreement between the TO mode eigen displacement vec-
tor distribution within the a - c plane obtained from GSE
and DFT results is very good. It is worth to note that
the angular sequence of the Bu mode eigen vectors are in
exact agreement. Calculated angles α agree within less
than 25◦ of those found from our model analysis of the
dielectric function tensor elements. In further agreement,
modes Bu-3, Bu-5, and Bu-7 are predicted by theory to
show the experimentally observed angular values larger

FIG. 11: (a): Schematic presentation of the Bu mode TO
eigen displacement orientation within the a - c plane accord-
ing to TO mode amplitude parameters ABu

k and orientation
angles αTO,k with respect to x obtained from GSE analysis
(Tab. II). (b) DFT calculated Bu mode TO phonon mode
infrared transition dipoles (intensities) in coordinates of axes
a and c�. The transition dipole strength for mode Bu-6 is
multiplied by 10 for convenience. The x-axis is parallel to a,
the y-axis is parallel to c�.

than 90◦, and modes Bu-1, Bu-2, and Bu-4 reveal by ex-
periment the predicted angular values less than 90◦. We
find mode Bu-8 slightly below 90◦ while DFT predicts
this mode slightly above 90◦. Mode Bu-6, which we find
nearly parallel to axis a has a DFT predicted value of
≈ 8◦, in agreement with our experimental finding. Note
that the eigen displacement vectors describe a uni-polar
property without a directional assignment. Hence, α and
α± π render equivalent eigen displacement orientations.
b. LO modes: Using Eq. (6) one can calculate the in-

trinsic LO modes, that is, the LPP modes in the absence
of free charge carriers. The free charge carrier proper-
ties are discussed further below. Subtracting the effects
of the free charge carriers from the model functions for
εxx, εxy, εyy, and εzz the LO modes with Bu and Au

symmetry follow from Eqs. (22) and (23), respectively.
We find 4 LO modes with Au and 8 LO modes with Bu

symmetry. Their values are summarized in Tab. II. Bu

symmetry modes are also indicated in Fig. 12 at ωp = 0.
In materials with multiple phonon modes, typically the

TO-LO rule holds, i.e., a TO mode is always followed by
an LO mode with increasing frequency (wavenumber).
We note that the TO-LO rule is fulfilled for modes with
Au symmetry, but not for Bu symmetry (Fig. 12). This
observation can be understood by inspecting the unit
eigen displacement vectors. These are all parallel for TO
and LO modes with Au symmetry. Hence, the displace-
ment pattern at which the net displacement charge sum
is zero (LO mode) occurs above a TO frequency, and
is bound by the next TO frequency. The TO-LO split-
ting only depends on the polarity of the TO resonance.
The polarity expresses itself as the amplitude of the TO
resonance. At any TO resonance, the net displacement
charge is non zero, and changes from positive to neg-
ative when moving across the TO frequency. Because
the displacement pattern are disjunct between TO and
LO modes, a LO mode cannot move across a TO mode,
for example when the amplitudes of TO modes change.
On the contrary, each TO and LO mode has a differ-
ent orientation for modes with Bu symmetry. In crystals
with monoclinic symmetry, the TO-LO pattern distribu-
tion is 2-dimensional. The LO mode charge oscillations
do not necessarily share the same direction with the TO
oscillations. Hence, a LO mode pattern may form at a
frequency which is larger than those from a pair of TO
modes, if the TO modes each have different angles with
each other as well as with the LO oscillation. The vec-
tors for the LO modes with Bu symmetry are shown in
Fig. 13 at ωp = 0.
Liu, Mu, and Liu studied the lattice dynamical prop-
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TABLE II: TO and LO phonon parameters for Au and Bu modes obtained from best match model analysis of εxx, εxy, εyy,
and εzz. Also shown are the eigenvector polarization angles for Bu LO modes. The last digit which is determined within
the 90% confidence interval is indicated with brackets. Also included are data from recent IR reflectance measurements and
phonon mode calculations. Data in square brackets were deduced assuming isotropic reflectance likely leading to erroneous TO
parameters.

X = Bu X = Au

Parameter k=1 2 3 4 5 6 7 8 k=1 2 3 4

AX
k [cm−2] 266.(2) 406.(5) 821.(9) 795.(7) 365.(8) 164.(1) 485.(7) 520.(7) 544.(9) 727.(1) 592.(1) 7(8).

ωTO,k [cm−1] 743.4(8) 692.4(4) 572.5(2) 432.5(7) 356.7(9) 279.1(5) 262.3(4) 213.7(9) 663.1(7) 448.6(6) 296.6(3) 154.8(4)
γTO,k [cm−1] 11.(0) 6.5(5) 12.3(6) 10.1(3) 3.8(3) 1.9(8) 1.7(5) 1.(9) 3.(2) 10.(5) 14.(9) 2.(4)
αTO,k [◦] 47.(8) 5.(1) 10(6). 21.(0) 14(4). (4). 158.(5) 80.(9) - - - -
ωLO,k [cm−1] 81(0). 77(0). 70(9). 59(5). 38(9). 30(5). 28(6). 26(9). 781.(3) 562.(8) 345.(9) 156.(3)
αLO,k [deg] 7(3). -3(0). (6). 7(3). -3(1). -4(2). 2(1). 2(7). - - - -

ωTO,k [cm−1] [779]a [737]a [631]a [537]a [372]a [298]a [276]a [223]a 660b 449b 295b ≈220b

ωLO,k [cm−1] 746.6c 728.2c 625.3c 484.7c 354.1c 283.6c 264.5c 190.5c 738.5c 510.6c 325.5c 146.5c

aIR Refl.|| c, Ref.21.
bIR Refl.|| b, Ref.21.

cTheory, Ref.28.

erties of β-Ga2O3 by using density functional pertur-
bation theory.28 The TO modes are included in Tab. I
for comparison with our theoretical calculation results.
The modes agree reasonably well, except for Au-2 (See
Tab. II.). However, for the latter mode our theoretical
results are much closer to our experimental results than
the theoretical calculation in Ref.28. We further included
calculated LO modes from Ref.28 in Tab. II, however, we
find their values are not in agreement at all with our ex-
perimental findings.

Vı́llora et al. investigated single crystals β-Ga2O3

grown by the floating zone technique.21 Polarized re-
flectance spectra with an incidence angle of about 10◦

and in the 50−1200 cm−1 spectral region revealed 12 long
wavelength active modes, and contributions due to free
charge carriers. The authors reported TO mode param-
eters and plasma parameters, and compared with mea-
surements of the electrical conductivity and the electri-
cal Hall coefficient. Platelet samples with surface (100)
orientation allowed reflectance measurements with po-
larization along axes b and c. Not all modes could
be resolved in all samples, and uncertainty limits were
not provided. The TO mode frequencies obtained in
our present work agree excellently with modes reported
for Au symmetry in Ref.21. However, the TO mode
frequencies for Bu symmetry reported by Vı́llora et al.
deviate substantially from those found in this present
work (Tab. II). We explain this substantial difference
by the fact that the authors ignored the anisotropy in
the monoclinic β-Ga2O3 samples. Instead, the authors
assumed that the measured reflectance spectra for polar-
ization along axes b and c can be analyzed individually
by using isotropic Fresnel equations for model calcula-
tions. While this assumption is correct for polarization
parallel to axis b (but valid at normal incidence only), it
is incorrect for polarization along c regardless of the an-
gle of incidence. For the latter case, the isotropic model
cannot correctly account for contributions that originate
from εxy. As a result, incorrect virtual resonance fea-
tures appear when matching Lorentzian lineshapes to the

FIG. 12: LPP coupled modes polarized within the a−c plane
as a function of isotropic plasma frequency ωp. The horizontal
lines indicate the frequencies of the Bu symmetry TO modes.
Observed here is the deviation from the so called TO-LO rule
usually observed in semiconductor materials with orthogonal
eigenpolarization systems, which is no longer valid for mon-
oclinic lattices. Symbols (diamonds) indicate the LPP mode
frequencies observed in FIR-GSE and IR-GSE spectra in this
work. Numbering of modes as shown in Tab. III. Note that
dispersion of LPP mode 8 is very small and within Bu ωTO,6

and ωTO,7.

FIG. 13: Unit eigen displacement vectors of the LPP cou-
pled modes polarized within the a − c plane as a function of
isotropic plasma frequency ωp. Note that the free plasma like
modes 1 and 2 approach x and y in Fig. 2 for ωp → ∞. Sym-
bols (diamonds) indicate vectors derived for the samples stud-
ied in this work. Numbering of modes as shown in Tab. III.

measured reflectance data. We strongly believe that this
explains the substantial deviations between the modes
reported by Vı́llora et al. and the modes reported in
this work. Bermudez and Prokes investigated β-Ga2O3

nanoribbons by infrared reflectance spectroscopy96 but
no quantitative model analysis of the reflectance spectra
were provided.
c. LPP modes: The LPP modes with Au and Bu

symmetry follow from Eqs. (26) and (25), respectively.
The general solutions of these equations provide 5 LPP
modes with Au, and 10 LPP modes with Bu symme-
try. We found an isotropic plasma frequency parameter
of ωp,x = ωp,y = ωp,z = ωp = 1058.3 cm−1 sufficient to
match all spectra εxx, εyy, and εzz (Tab. IV). This value
is used to derive the LPP modes for our samples. We
further assume that all samples investigated here share
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the same set of free charge carriers. This assumption is
reasonable since both specimens were cut from the same
bulk crystal. However, small gradients in Sn dopant vol-
ume density may exist throughout the bulk crystal due
to the directional growth method and diffusion gradients
near the solution solid interface.92,94 The resulting LPP
mode frequencies are then summarized in Tab. III.

d. LPP mode dispersion: The LPP mode coupling
for Au symmetry is trivial and equivalent to any other
semiconductor material whose unit eigen displacement
vectors are all parallel and/or orthogonal. Coupling for
modes with Bu symmetry is not trivial. Eq. (25) de-
scribes the LO plasmon coupling, and predicts the LPP
mode frequencies within a given sample as a function
of the free charge carrier properties. For β-Ga2O3, the
effective mass parameter anisotropy may need to be con-
sidered. Presently, available information suggest that the
effective mass is nearly isotropic (see below). We there-
fore select to render the effects of free charge carriers
by using an isotropic plasma frequency contribution, ωp.
We plot the resulting LPP modes with Bu symmetry in
Fig. 12 as a function of ωp. We also plot their unit eigen
displacement vectors obtained from Eq. (27) in Fig. 13.

A mode branch like behavior with phonon like and
plasma like branches similar to orthogonal eigenvector
lattice materials can be seen. For ωp → 0, the up-
per LPP branches emerge from LO mode frequencies,
and the lowest 2 branches behave like uncoupled plasma
modes. For ωp → ∞, the 2 upper LPP branches behave
like uncoupled plasma modes, and the lower branches
behave like TO modes. Each LPP mode merges with
one TO mode except for 2 high frequency plasma like
branches. The unit eigen displacement vectors of the
2 plasma like modes approach the x and y directions
for large plasma frequencies, and indicate a quasi or-
thorhombic free charge carrier response towards visible
light optical frequencies. For intermediate ωp, the LPP
coupling causes branch crossing with TO modes, which
do not occur in orthogonal eigenvector lattice materials.
The horizontal lines in Fig. 12 indicate the Bu symmetry
TO modes.

e. Free charge carrier properties: Tab. IV summa-
rizes the Drude model parameters obtained from εxx, εyy,
and εzz. For εxy no significant Drude contribution was
detected. In order to derive the free charge carrier den-
sity and mobility parameters from the plasma frequency
and broadening parameters one needs the effective mass
parameters. Unless magnetic fields are exploited and the
optical Hall effect can be measured95,97–103 long wave-
length ellipsometry requires these parameters from aux-
iliary investigations.

Experimental data on the electron effective mass in
β-Ga2O3 is not exhaustive. Early estimates suggested
0.55 me.

8 A recent calculation predicts the effective elec-
tron mass at the Γ-point of the Brillouin zone almost
isotropic with values between 0.27 me and 0.28 me, de-
pending on direction.29 These values agree with experi-
mental measurements from angular resolved photoemis-
sion spectroscopy (ARPES) on b�c�-cleavage plane of
(100) β-Ga2O3 (0.28 me, Ref.33,34). Earlier calcula-
tions using various approaches obtained 0.28 me,

104,105

0.34 me,
25 and 0.390 me.

30 Calculations that did not use
a hybrid functional approaches lead to smaller values of

(0.23 . . . 0.24) me in the local density approximation31

and (0.12 . . . 0.13)me in the generalized gradient approx-
imation.32 He et al. reported slightly anisotropic elec-
tron effective mass values with ma� = 0.123 me, mc�

= 0.124 me, and mb� = 0.130 me, along axes a�, c�,
and b�, respectively, with ratios ma�/mc� = 0.99 and
mb�/mc� = 1.05.32 Yamaguchi also reported values with
small anisotropy mxx = 0.2315 me, myy = 0.2418 me,
and mzz = 0.2270 me using first principles full potential
linearized augmented plane wave method.31 For analysis
of the FIR-GSE and IR-GSE data we assume an isotropic
effective electron mass value of 0.28 me, which appears
to be a good compromise of the experimental and theo-
retical data. We then obtain N = 3.(5)×1018 cm−3, and
anisotropic mobility parameters given in Tab. IV. We
observe similar mobility values along axes a and b and
an about 2 times smaller mobility value perpendicular to
a and b.
f. Static and high frequency dielectric constant:

Tab. IV also summarizes static and high frequency dielec-
tric constants obtained in this work. We observe no sig-
nificant contributions, with εDC,xy = −0.13 and ε∞,xy =
−0.08 for ω → 0 and ω → ∞, respectively. At DC fre-
quencies, β-Ga2O3 behaves quasi orthorhombic. We find
that εDC,xx(12.7) > εDC,zz(11.2) > εDC,yy (10.9), predict-
ing anisotropy at DC frequencies. In the high frequency
limit, which is merely above the reststrahlen range for
this work, β-Ga2O3 behaves nearly as an optically uni-
axial crystal, with εDC,xx(3.75) ≈ εDC,zz(3.71) > εDC,yy

(3.21). Data for the x-y (a - c) plane are consistent with
the generalized LST relation in Eq. (29), and for axis b
with Eq. (28). An isotropic average between all values
obtained here is εDC = 11.6 and ε∞ = 3.56. A static
dielectric constant between 9.9 and 10.2 was measured
on films deposited by electron beam evaporation and
annealing onto silicon and GaAs,22 and 10.2 was mea-
sured for single crystal β-Ga2O3 platelets in the direc-
tion perpendicular to the (100) plane at radio frequencies
(5 kHz to 500 kHz).24 Schmitz, Gassmann, and Franchy
report static and high frequency values from lineshape
analysis of electron energy loss spectroscopy data from
β-Ga2O3 films on metal substrates.26 Values obtained
previously for films agree well with our isotropic aver-
age,22,26,27 while previously reported isotropic DC values
are slightly smaller.23,24,26 Data from recent band struc-
ture calculations are included in Tab. IV and show some
agreement with our results.25,28 Because it appears that
our present work is the first comprehensive analysis of the
long wavelength dielectric function tensor of single crys-
tal β-Ga2O3 we believe that our data likely represent so
far the most accurate values for this monoclinic semi-
conductor. Finally, the effective monoclinic angles near
DC and high frequencies (above the restrahlen range),
according to Eqs. (14) and (16), respectively, approach
90◦ because εxy ≈ 0, both at ω → 0 and ω → ∞.

C. Mode nonharmonicity

In Eq. 10 we implemented simple, Lorentzian broad-
ened harmonic oscillator functions to account for the di-
electric polarizability of the individual TO resonances.
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TABLE III: LPP frequency parameters for Au and Bu modes obtained from best match model analysis of εxx, εyy, εzz, and
εxy. Also given are the eigenvector polarization angles αLPP relative to c. The last digit which is determined within the 90%
confidence interval is indicated with brackets.

Parameter k=1 2 3 4 5 6 7 8 9 10

ωLPP,k [cm−1] (Bu) 967.(1) 872.(9) 730.(7) 638.(2) 458.(1) 357.(9) 331.(8) 277.(4) 226.(4) 188.(8)
αLPP,k [deg] (Bu) 179.(3) 91.(1) 35.(4) 76.(8) 160.(8) 36.(7) 91.(7) 67.(4) 100.(8) 6.(7)
ωLPP,k [cm−1] (Au) 88(5). 60(3). 38(0). 23(9). 15(4). - - - - -

TABLE IV: Best match model parameters for free charge car-
rier contributions, static and high frequency dielectric con-
stants. From our analysis we also obtain εDC,xy = −0.1(3)
and ε∞,xy = −0.0(8) consistent with the generalized LST re-
lation in Eq. (29). Values reported from our analysis for εDC,zz

and ε∞,zz are consistent with the traditional LST relation in
Eq. (28) with TO and LO modes given in Tab. II.

εxx (a) εyy (c�) εzz(b)

γp,(j) [cm−1] this work 37(0). 69(6) 36(1).
μ(j) [cm2/(Vs)] this work 9(0). 4(8). 9(2).
ε∞,(j) this work 3.7(5) 3.2(1) 3.7(1)
εDC,(j) this work 12.(7) 10.(9) 11.(2)
ε∞,(j) Theory Ref.28 3.81a 3.85a 4.08a

εDC,(j) Theory Ref.28 10.84a 13.89a 11.49a

ε∞,(j) Theory Ref.25 2.86a 2.78a 2.84a

ε∞ Exp Ref.27 3.57b

ε∞ Exp Ref.22 3.53b

εDC Exp Ref.23 9.9-10.2b

εDC Exp Ref.24 10.2b

ε∞ Exp Ref.26 3.6b

εDC Exp Ref.26 9.57b

aCrystal axes assignment unknown.
bIsotropic average from films.

With these functions we obtained near perfect match be-
tween the point by point extracted dielectric tensor ele-
ments and our best match model parameters. In Figs. 7-
10 both data sets are nearly indistinguishable. How-
ever, subtle discrepancies remain between the two data
sets. Fig. 14 shows the real and imaginary parts of the
function εxxεyy − ε2xy, and the negated imaginary part
of the inverse of εzz using the same data sets shown in
Figs. 7-10. The inverse of the dielectric function conve-
niently reflects the spectral location of the LPP modes,
which produce maxima in the imaginary part of the di-
electric loss function. However, as can be seen in the
lower panel of Fig. 14, the agreement is less obvious for
axis b. The cause for this disagreement is likely given
in the fact that nonharmonic broadening effects were
not considered in this work. It is well known that the
harmonic oscillator model fails to correctly describe the
long wavelength response near LO frequencies in crys-
tals with multiple polar phonon modes. It was pointed
out and demonstrated by Gervais and coworkers that
interactions between normal vibration modes by non-

harmonic coupling give raise to nonharmonic dielectric
response behavior.106–109 The phonon-mode energies of
crystals with a large number of phonon branches suffer
a complex self-energy shift, which can be both frequency
and temperature dependent. Gervais and Piriou intro-
duced a simple, so-called four parameter semiquantum
(FPSQ) function to correctly model long wavelength re-
flectance of multiple phonon mode crystals.107,108 This
model suggests independent broadening parameters for
each LO and TO lattice mode. Gervais and Piriou used
this factorized form to calculate the ordinary dielectric
functions from IR-reflectivity data of c-plane α-Al2O3,
rutile TiO2, and α-SiO2. We recently used this model
to obtain highly accurate infrared dielectric model func-
tions for anisotropic materials such as corundum,53 ru-
tile,57 and antimonite.58 Similar discrepancies due to the
same subtle differences can be seen between the point
by point data set and best model calculated functions
εxxεyy − ε2xy in Fig. 14. Also shown is the best model

calculated function εxxεyy−ε2xy by setting all broadening
parameters to zero. The zero broadening function fully
envelopes the point by point data and best match model
data. It is obvious that function εxxεyy−ε2xy is governed
by the poles and zeros given by the Bu symmetry TO and
LPP modes, respectively. It can be further seen that the
poles are clearly rendered by the spectral behavior of the
point by point data while the LPP modes must be ob-
tained by a numerical root finding procedure on the zero
broadening model function. Because the harmonic oscil-
lator model functions do not precisely match the point
by point data in the spectral regions of the LPP modes,
one must anticipate that the thereby obtained LPP (LO)
modes carry larger uncertainty than the TO modes. Fu-
ture work must seek better model descriptions to account
for the nonharmonic broadening, for example by allowing
for coupling between the individual eigen resonances in
Eq. 2. Importantly, for accurate analysis of free charge
carrier properties from long wavelength investigations of
simple or complex layer structures, accurate description
of the nonharmonic lattice and free charge carrier mode
coupling in monoclinic semiconductors is a prerequisite.
In the same vain, model parameters for static and high
frequency behavior must be considered with care. At
present, these parameters may subsume small offsets not
provided by the oscillator functions currently used upon
the best match calculation procedure. Also, experimen-
tal data near the DC region or near the visible spectral
region have not yet been included into the GSE analy-
sis. Investigations at THz frequencies as well as within
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FIG. 14: Top panels: Real and imaginary parts of function
εxxεyy − ε2xy. Vertical lines indicate Bu mode TO (dashed
lines) and LPP frequencies (dash dotted lines). Bottom panel:
Imaginary part of −ε−1

zz . Vertical lines indicate Au mode LPP
frequencies.

the near-infrared spectral region may provide more ac-
curate results. Nonetheless, we believe that parameters
reported here for LO and LPP modes as well as for the
model dielectric function tensor components may serve
as a good starting point for further work.

V. CONCLUSIONS

A dielectric function tensor model approach suitable
for calculating the optical response of monoclinic and tri-
clinic symmetry materials with multiple uncoupled long
wavelength active modes was presented. The approach
was applied to monoclinic β-Ga2O3 single crystal sam-
ples. Surfaces cut under different angles from a bulk
crystal, (010) and (2̄01), are investigated by general-
ized spectroscopic ellipsometry within infared and far-
infrared spectral regions. We determined the frequency
dependence of 4 independent β-Ga2O3 Cartesian dielec-
tric function tensor elements by matching large sets of
experimental data using a polyfit, wavelength by wave-
length data inversion approach. From matching our mon-
oclinic model to the obtained 4 dielectric function tensor
components, we determined 4 pairs of transverse and lon-
gitudinal optic phonon modes with Au symmetry, and 8
pairs with Bu symmetry, and their eigenvectors within
the monoclinic lattice. We observe that the TO-LO rule
is broken for modes with Bu symmetry. We further re-
port on density functional theory calculations on the in-
frared and farinfrared optical phonon modes, which are
in excellent agreement with our experimental findings.
We derived and reported density and anisotropic mo-
bility parameters of the free charge carriers within the

tin doped crystals. We observed 5 longitudinal phonon
plasmon coupled modes in β-Ga2O3 with Au symmetry
and 10 modes with Bu symmetry. We discussed and
presented their dependence on an isotropic free charge
carrier plasma. We also discussed and presented mon-
oclinic dielectric constants for static electric fields and
frequencies above the reststrahlen range, and we pro-
vided a generalization of the Lyddane-Sachs-Teller re-
lation for monoclinic lattices with infrared and farin-
frared active modes. We observed that the generalized
Lyddane-Sachs-Teller relation is fulfilled excellently for
β-Ga2O3. The model provided in this work will estab-
lish a useful base for infrared and farinfrared ellipsometry
analysis of homo- and heteroepitaxial layeres grown on
arbitrary faces of β-Ga2O3 substrates.
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