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Abstract

An efficient phonovoltaic (pV) material requires a highly energetic optical phonon (Ep,O ≫ kBT )

with linewidth dominated by the electron-phonon (e-p) coupling and resonant with its electronic

bandgap (∆Ee,g), as discussed in Part I (this issue). No current material combines these properties.

While graphite (graphene) has the former two, it lacks a bandgap. Opening and tuning the bandgap

in graphite is challenging, due to the stability of the Dirac-point, e.g., under a uniaxial strain < 0.25.

We tune its bandgap through partial hydrogenation using extensive ab intio calculations and find

a stable graphame structure with ∆Ee,g ≃ Ep,O ≃ 200 meV, C128H1×24. We calculate the e-p

coupling in tuned C128H1×24 and graphene and show that the transition from π-π∗ (graphane)

to σ-σ∗ (graphame) bands suppresses the electron-phonon coupling, such that optical phonons in

C128H1×24 primarily downconvert, and it does not achieve a high figure of merit (ZpV < 0.1). Ab

initio phonon-phonon couplings are calculated for graphane and graphene to support this result.

Overall, we develop a material with Ep,O ≃ ∆Ee,g ≫ kBT and a method for tuning and evaluating

pV materials.
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I. INTRODUCTION

Part I1 (this issue) proposes the phonovoltaic (pV) cell shown in Fig. 1, which harvests

nonequilibrium (hot) optical phonons across a bandgap resonant with or smaller than the

optical phonon energy. The degree of local nonequilibrium (ηC), the fraction of hot optical

phonons which generate an electron rather than downconvert, (γ̇∗

e−p), and the fraction of

phonon energy (Ep,O) preserved by the bandgap (∆Ee,g) limit the pV efficiency. Part I

proposes that the figure of merit (ZpV) and efficiency ηpV are

ZpV = γ̇∗

e−p

∆Ee,g

Ep,O
≤ 1, γ̇∗

e−p =
γ̇e−p

γ̇e−p + γ̇p−p
, ηpV ≃ ηCZpV[1− 0.75 exp(−ηC

∆Ee,g

kBTc
)], (1)

where ηC is the Carnot limit given by the local electron-phonon (e-p) nonequilibrium, i.e.,

ηC = 1−Tp,O/Tc, and γ̇e−p and γ̇p−p are the e-p and phonon-phonon (p-p) interaction rates,

Tc is the cold, contact temperature, Tp,O is the hot optical phonon temperature, and kB is

the Boltzmann constant. Thus, the pV requires Ep,O > ∆Ee,g ≫ kBT and that the optical

phonon mode has a linewidth dominated by the e-p coupling (high γ̇∗

e−p).
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FIG. 1. (a) The function of a phonovoltaic cell comprised of (b) partially-hydrogenated graphite.

An excited optical phonon populations creates electron-hole pairs, and the p-n junction separates

them to generate power. The hot optical phonons also downconvert into acoustic phonons and

generate entropy. Hydrogenation opens a bandgap by transforming the sp2 hybridized graphene

into sp3 hybridized graphane.
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Few semiconductors exist with an optical phonon mode more energetic than the bandgap,

and even fewer of these exhibit an optical phonon significantly more energetic than the ther-

mal energy (kBTc) at room temperature. Energetic phonons require strong bonds between

light atoms; however, strong bonding localizes electrons and induces a large bandgap. In-

deed, in an isotropic semiconductor strong bonding typically produces a bandgap more than

an order of magnitude larger than the optical phonon energy. For example, the strong

σ-bonds in diamond produce extremely energetic optical phonon modes (164 meV) and a

bandgap exceeding 5 eV. Conversely, the weak bonds in semi-metallic Hg1−xCdxTe (MCT)

produce a narrow bandgap (0 ≤ ∆Ee,g ≤ 1 eV), but no optical phonon more energetic than

45 meV2).

Anisotropic structures enable deviation from this trend through an alternate bonding

mechanism, e.g., π- rather than σ-bonding. For example, graphene has a unique combination

of electronic and phononic properties due to its sp2 hybridized structure, wherein π and π∗-

bands form near the Fermi surface. Due to the symmetry of graphene, these bands become

degenerate at the Dirac-point (K)3,4.

While the active optical phonon modes in graphene have a linewidth dominated by the

e-p coupling (γ̇∗

e−p > 0.9)5, the lack of a bandgap ensures ZpV = 0. If tuning the bandgap

of graphite to its optical phonon energy preserved the e-p and p-p coupling properties, then

the pV figure of merit would exceed 0.8, and its efficiency would greatly exceed that of a

thermoelectric generator.

The alternate group IV 2-D crystal silicene has similarly favorable properties6, and the

bandgap in silicene has been successfully tuned7. However, the energy of the optical phonon

modes are limited in crystals comprised of second row and higher elements (due to their

weight and weaker bonding). Thus, the optical phonon modes in silicene are limited to

around 70 meV, and we focus on graphite.

In this study we tune the bandgap of graphite through its partial-hydrogenation. The

ab initio bandgap is found for partially-hydrognated graphene cells with variations in the

atomic fraction and configuration of hydrogen. A stable structure is found which tunes the

bandgap to roughly the E2ggraphene phonon mode (200 meV). Additional tuning to the Eg

graphane mode is accomplished through the application of a small, isotropic strain. Then,

the phonon and e-p properties are calculated, and compared with the e-p and p-p coupling

in graphene and graphane. The transition from π to σ-type bands is shown to inhibit the
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e-p coupling and limit the ZpV < 0.1. Finally, additional avenues of research are suggested

in the search for an efficient pV material.

II. TUNING BANDGAP OF GRAPHITE

Opening a bandgap in graphene has attracted substantial attention after its initial dis-

covery. Many methods of achieving this goal have been proposed, e.g., functionalization8,

growth on an ordered substrate9, and the application of a mechanical strain10–12, electric

field13 or magnetic field,14 or through chemical doping15. Of these methods, functionaliza-

tion is chosen for this study. Relying on a substrate to tune the bandgap restricts the pV

to a 2-D device. Using electric and magnetic fields in a pV prevents its application in, e.g.,

electronics cooling, where electromagnetic fields disrupt the electronic packages. Chemical

doping can substantially shift the Fermi-level and preclude its use as a diode. Using strain

is more attractive, due to the ease with which the strain may be adjusted. However, the

Dirac-point in graphene is highly stable, and strain induced bandgap tuning is impractical.

That is, despite the initial ab initio results by Ni et al. suggesting that arbitrary unixial

strains open a bandgap in graphene16, the tight-binding modeling of Perier et al. showed that

strains in excess of 0.2 are required to open a bandgap, and they hypothesized that that the

ab intio simulations missed the movement of the Dirac-point from the K to M point under

strain10. This supposition was confirmed by Ni et al., who additionally proposed that under

the strain requirements proposed by Periera et al., the σ∗-band becomes the lowest-energy

conduction band at M and may prevent the a bandgap from opening17.

Figure 2 presents the ab initio18 low-energy bandstructure for variations in the uniaxial

strain. It shows that strains exceeding 0.25 are required to open a gap. While the σ∗-band

does cross over the π∗-band to become the first-conduction band, a bandgap still opens at

M. However, even under strains exceeding 0.3, the bandgap remains extremely narrow, in

part due to the crossing of σ∗ and π∗-bands. Such substantial strains are impractical, at

best, and fall well beyond the elastic deformation of graphene. Moreover, the application of

a tensile strain reduces the energy of the optical phonon modes19, further limiting strained

graphene as a pV material.

In contrast, it has been shown that non-uniaxial strains induce a gauge field which in

turn opens a bandgap through the quantum hall effect11. However, this approach limits
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FIG. 2. The low-energy bandstructure of graphene for variations in the uniaxial strain (ǫx). Under

a small strain, the Dirac-point moves from K towards M and the σ band moves towards the Fermi

level at M. Around ǫx = 0.25, the Dirac-point reaches M and a bandgap opens between the π

bands. Around ǫx = 0.3, the σ∗ band becomes the first conduction band, reducing the bandgap.

the pV to a 2-D device, whereas functionalization is potentially applicable to graphite and

enables a 3-D cell. Thus, this study focuses on functionalization, and in particular, the

partial hydrogenation of graphite.

III. PARTIALLY-HYDROGENATED GRAPHITE

Theoretical investigations of graphane (fully-hydrogenated graphene) began before that

of graphene20. Two stable conformations were discovered, the most stable of which is the

chair conformation [Fig. 3(a)], wherein the hydrogen atoms alternately bind above and be-

low carbon atoms in the graphene plane21. During hydrogenation, out-of-plane hydrogen

atoms transform the local, sp2 hybridized graphene structure into a sp3 hybridized graphane

structure. The resulting planar sp3 structure localizes electrons within the σ-bond and opens

a bandgap. Theoretical studies predicted a bandgap as high as 3.5-3.7 eV in graphane, de-

pending on the conformation22. Although full hydrogen coverage has not been achieved

experimentally, experimental and reversible hydrogenation of graphene has provided evi-

dence for graphane23 and its phonon properties, which are supported theoretically24.

As the structural stability of graphame (partially-hydrogenated graphene) increases with

hydrogen coverage, it is predicted that islands of hydrogenated carbon forms in a particular
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conformation and that these islands expand as hydrogenation continues20,22. An example of

such an island is shown in Fig. 3(d). As the hydrogenation progresses, the bandgap opens

until full coverage is achieved. Thus, the bandgap of graphite is tuned by controlling the

extent of the hydrogenation.
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FIG. 3. (a,b) Graphane in the chair configuration and (c) graphene and (d) partially hydrogenated

graphene. Hydrogenation opens a bandgap by altering the sp2 hybridized structure of graphene

and transforming it into a sp3 structure.

For the ab initio calculations to follow, the initial configuration chosen for the simula-

tions within the density functional theory (DFT) and the density functional perturbation

theory (DFPT) have a substantial impact on the resulting predictions. Thus, constructing

a graphame supercell requires care. Indeed, the location of added hydrogen atoms, their

conformation, and the number of hydrogen atoms compared to the number of carbon atoms

all influence the resulting electronic and phononic properties.

The pV cell requires a non-negligible volume to generate substantial current and power1.

Thus, a practical pV cell requires the 3-D structure of partially hydrogenated graphite

rather than the Angstrom thickness, 2-D structure of graphame. However, accurate ab initio

simulation of partially hydrogenated graphite offers a significant challenge. Restricting the

simulations to 2-D structures (graphame) significantly reduces the computational demand

and number of structural variants. Fortunately, as the in-plane bonds dominate the cross-

plane van der Waals interactions, the graphame simulations accurately approximate the
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electronic and phononic properties of partially-hydrogenated graphite.25 Thus, this study is

restricted to the simulation of graphame.
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FIG. 4. (a) Formation energy of graphame structures for an increasing number of hydrogen in a

chair configured island. Each island tested has fully hydrogenated carbon rings (C6H1×6). Nearly

complete concentric rings (22 H) or complete concentric rings (24 H) are required for stability. (b)

Graphame cells C128H1×6 and C128H1×24 are shown.

A rectangular graphene supercell of 128 carbon atoms (C128) forms the scaffolding for

the simulated graphame cells. Hydrogen atoms are placed onto this scaffold in the chair

configuration in fully-hydrogenated rings (C128H1×6), as these are expected be more stable

than a partially-hydrogenated carbon ring. Structures involving multiple rings (C128HNR×6)

and larger hydrogenated islands are tested C128H1×NH
, where NR and NH are the number of

rings and atoms. For example, two or three conjoined rings create a 10 H island (C128H1×10)

or 13 H island (C128H1×13). C128H1×6 and C128H1×24 are shown in Fig. 4(b). These structures

are relaxed within DFT26, and their formation energies are shown in Fig. 4(a).

While a single hydrogen ring (C128H1×6) is unstable, further and adjacent hydrogenation

increases stability (while additional, non-adjacent rings do not). Thus, it remains likely

that islands of hydrogen form and then expand outward. These results additionally suggest

that the hydrogen prefers to form in even-numbered clumps such that all electrons pair.

As expected, stability increases as the internal sp3 structure grows larger than the strained

sp3-sp2 interface at the graphene-graphane border.
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) for variation in the number of islands (NR) and number of hydrogen atoms per

island (NH). (a) At low hydrogen concentrations, no bandgap opens but the Dirac-point moves

towards X along the Γ-X high-symmetry line. (b) A trap band forms for an uneven number of

hydrogen atoms. (c) At large hydrogen concentrations, however, a narrow bandgap opens at X.

Some discontinuities arise from the crossing of the π and σ bands.
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FIG. 6. Electron density of states for graphene and graphame. The density of states is not affected

significantly at (a) low hydrogen concentrations, (b) unless an unpaired electron is left in the

structure (C128H1×13, C128H1×19). (c) A significant bandgap is not formed until the structures

become stable (C128H1×22), at which point a 250 meV bandgap opens.

IV. ELECTRON PROPERTIES

The ab initio electronic properties of graphame are presented in Figs. 5 and 627 for a small

(a), odd (b), and large (c) number of H atoms. When a small and even number of hydrogen
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are present, no bandgap opens, but the Dirac-point moves along the Γ-X line towards X.

Only after the hydrogen island occupies a substantial portion of the graphame unit cell does

a bandgap open (at X), and this bandgap exceeds 200 meV, i.e., the most energetic phonon

mode in graphite. When an odd number of hydrogen are present, the un-paired electron is

trapped at the Fermi surface with a substantial energy gap between this trapping band and

the valence and conduction bands.

These results, in addition to the substantial strains required to open a bandgap (see

Section II), demonstrates the stability of the Dirac-point, which has been linked to trans-

lation and time invariance (i.e., its symmetry)28. This presents a challenge when tuning

the bandgap to resonate with the optical phonons. However, once sufficient hydrogenation

opens a bandgap and shifts the topology, arbitrary perturbations tune the bandgap.

Indeed, the bandgap becomes highly sensitive to the lattice constant (i.e., isotropic strains

or thermal expansion) and the addition of additional hydrogen atoms. For example, the

bandgap in C128H1×24 changes from a 250 to a 175 meV bandgap under a isotropic strain

of -0.02, while the bandgap of C128H1×24 is 15 meV larger than C128H1×22. Fine-tuning

the bandgap of graphame through hydrogenation in ab initio simulation is challenging, as

large structures (e.g., C512H2×16,2×22) are required to achieve ∆Ee,g ≃ Ep,O. Evaluating the

phonon and e-p properties in a 600 atom cell is computationally impractical. Thus, this

study utilizes small and isotropic strains to fine-tune the bandgap of C128H1×24 to resonate

with the desired optical phonon mode.

V. PHONON PROPERTIES

The phonon hamiltonian discussed in part I1 is29,30,

〈ϕ〉 = 〈ϕ〉◦ +
1

2!

∑

ijxy

Γxy
ij d

x
i d

y
j +

1

3!

∑

ijkxyz

Ψxyz
ijk d

x
i d

y
jd

z
k + ..., (2)

where 〈ϕo〉 is the potential at equilibrium, dxi is the displacement of atom i from equilibrium

in the x-direction (Cartesian), and Γ and Ψ are the second (harmonic) and third-order

(anharmonic) force constants. The harmonic interactions form the dynamical matrix which

determines the phonon frequencies ωkp,α and displacement vector ǫkp,α for a phonon with
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polarization α at wavevector kp, where the dynamical matrix is

Dxy
ij (kp) =

1

(mimj)1/2
Γxy
ij exp[ıkp · (ri − rj)], (3)

and ri and mi are the position and mass of atom i, and its eigenvalues and eigenvectors are

ω2
kp,α

and ǫkp,α. The amplitude of the resulting atomic displacement for atom i is

ui
kp,α = (

~

2miωkp,α
)1/2. (4)

In comparison, the anharmonic forces are responsible for the p-p interactions, e.g., the

upconversion of two acoustic phonons into an optical phonon and the downconversion of an

optical phonon into two acoustic phonons (hereafter referred to as up- and downconversion).

These are evaluated for graphene and graphane zone-center phonons in Section VI.B.

The ab initio dynamical matrices are evaluated within DFPT31 on a rough mesh of

kp points32. These dynamical matrices are Fourier transformed into real-space and then

interpolated to an arbitrary point in kp space. The resulting phonon dispersion and density

of states for graphene, graphane, and C128H1×24 are shown in Fig. 7.

The active optical phonon modes in graphene are the E2gand A′

1 modes, where the A′

1

mode is at a Kohn anomoly and couples most strongly to the electronic system. The hy-

drogenation of graphene substantially changes the phonon properties. Graphane exhibits an

extremely energetic optical phonon mode per Hydrogen atom: The out-of-plane vibration

of hydrogen, as well as the less energetic Eg (rather than E2g) mode. Moreover, the optical

modes in graphane tend to have lower group velocities. Graphame exhibits a mix of these

modes, some smeared and distorted by the graphene-graphane border.

VI. E-P AND P-P COUPLING

As discussed in Part I1, the relaxation of hot optical phonons through the generation of

new electrons or acoustic phonons largely determines the performance of a pV cell. The e-p

and anharmonic p-p couplings drive these phenomena. This section presents the ab initio

coupling and kinetics from perturbation theory for both coupling mechanisms.
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FIG. 7. Phonon dispersion and density of states (Dp) for (a) graphane, (b) graphene, and
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C128H1×24 phonon density of states shows a combination of the graphene and graphane optical

phonon modes. These include (in order of energy) the energetic A1g and A2u graphane modes

(out-of-plane hydrogen vibration), the E2gmode (graphene), the A′
1 mode (graphene mode - Kohn

Anomaly), and Eg (graphane).

A. e-p coupling and kinetics

The e-p hamiltonian is presented in Part I1, and a brief description of the resulting e-p

matrix element follows. When a phonon with momentum kp and polarization α scatters

with an electron of momentum ke in band i (|kei〉), it annihilates that electron and creates

an electron in band j with momentum k
′

e (|k
′

ei〉). The e-p coupling element Mkei,k′

ej,α which

follows from this hamiltonian is

Mkei,k′

ej,α = 〈ke, i|
∂ϕKS

∂ukp,α
|k′

e, j〉(
~

2〈m〉ωkp,α
)1/2δke,k′

e±kp
, (5)

where ϕKS is the Kohn-Sham potential31. The δ-function conserves momentum during

phonon absorption (+) and emission (−), such that k′

e = ke ± kp.
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The interaction rate follows from the Fermi golden rule29

γ̇e−p(kp, α) =
1

ke

∑

ke,i,j

2π

~
|Mkei,k′

ej,α|
2δ(Ee ± ~ωkp,α − E ′

e)[fe(Ee)− fe(Ee ± E ′

e)], (6)

where the δ-function conserves energy such that E ′

e = Ee±~ωkp,α, and fe(Ee) is the electron

occupancy at energy Ee.

Typically, the Fermi-Dirac occupancy applies, i.e.,

fe = [exp(
Ee −EF

kBT
) + 1]−1, (7)

where EF is the Fermi energy and T is the temperature. When ∆Ee,g ≫ kBT , the electron

occupancy in valence states approaches unity, and the occupancy in conduction states van-

ishes. This greatly inhibits the e-p interaction rate between two valence (fe ≃ f ′

e) or conduc-

tion (fe ≃ 0) states. Thus, when Ep,O > ∆Ee,g, this ensures that the valence-to-conduction

transitions (i.e., generation and recombination events) dominate the valence-to-valence and

conduction-to-conduction transitions. Thus, the summation over i and j is restricted to

generation events, i.e., i = v and j = c, and the remaining interactions are neglected.

The interaction elements for the Γ-point phonon modes in a C128H1×24 cell are evaluated

within DFPT using Quantum Espresso on a 6× 6× 1 ke mesh, wherein the matrix elements

are calculated as

|Mkev,kec,α|
2 =

∑

ij,xy

uxi
Γ,αM

∗

xiMyju
yj
Γ,α, (8)

where ∗ denotes the complex conjugate, uxi
Γ,α = (uǫ)xiΓ,α, and Mxi is the e-p matrix element

associated with a perturbation on atom i in direction x, i.e.,

Mxi = 〈ke, v|
∂ϕKS

∂xi

|ke, c〉. (9)

These elements, along with the ground state conduction and valence energy surfaces are

interpolated onto a 2000 × 2000 × 1 ke mesh in the first BZ. This fine ke mesh enables an

accurate calculation of Eq. (6) using a Lagrangian δ-function with 1 meV of smearing.

Figure 8 shows the e-p coupling between the lowest conduction and highest valence bands
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in (a) graphene for the E2gand (b) C128H1×24 for the Eg optical phonon modes. After hydro-

genation, the interband e-p coupling is substantially reduced near the band-edge. Indeed,

Fig. 8(c) shows the weak interband coupling in graphame for all optical phonon modes

at the bandedge (X), and that the e-p lifetime increases from 0.5 ps in graphene to over

100 ps in graphame. However, the intraband coupling elements shown in Fig. 8(d) are not

substantially weakened by the hydrogenation.

The poor overlap between σ and σ∗ bands explains these results. Note that near the

Γ-point in graphene, the σ-bands are nearest the Fermi surface, and Fig. 8(a) shows the

weak coupling in this region. In comparison, the π-π∗ band coupling near K and M is strong,

as these bands overlap significantly.
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Hydrogenation opens a bandgap by transforming graphene from a sp2 to sp3 hybridized

structure. During this transition, the σ bands approach the Fermi surface and replace the

π bands as the lowest energy bands. At this point, a bandgap opens. As the coupling

between the σ-σ∗ bands remains weak, so too does the interband coupling in graphame.

In contrast, two conduction or valence states overlap completely, such that the intraband

coupling remains strong. Thus, the e-p coupling of the E2gmode in graphame is reduced

from its value in graphene by approximately the atomic hydrogen fraction, rather than an

order of magnitude.

A pV material must achieve stronger e-p coupling in order to succeed as a pV material.

As functionalized graphene variants often transition from sp2 to sp3 hybridization, these

materials, like graphame, will not achieve a high figure of merit due to the poor overlap

between their σ and σ∗ bands. An efficient pV material must achieve stronger e-p coupling,

as the anharmonic phonon couplings, in comparison, do not change substantially. This is

discussed in the following sections.

B. p-p coupling and kinetics

As discussed in Section V, the anharmonic (third-order and higher) interactions are re-

sponsible for phonon downconversion. However, fourth-order and higher interactions are

typically masked by the third-order coupling33. The rate at which a phonon (kp, α) down-

converts into two phonons (k′

p, α
′ and k

′′

p , α
′′) follows from Eq. (2) and the Fermi golden

rule, i.e.,

γ̇p−p(kp, α) =
1

Nk

π~

16

∑

α′α′′k′

pk
′′

p

|Ψ
kpk

′

pk
′′

p

αα′α′′ |2δ(ωkp,α − ωk′

p,α
′ − ωk′′

p ,α
′′)(f ′

p + f ′′

p + 1), (10)

where fp is the phonon occupancy, Nk is the number of k′

p points used in the integration34,

and the interaction element Ψ
kpk

′

pk
′′

p

αα′α′′ is

Ψ
kpk

′

pk
′′

p

αα′α′′ =
∑

ijk

∑

xyz

Ψxyz
ijk u

xi
kp,αu

yj
k′

p,α
′′u

zk
k′

p,α
′′δkpk

′

pk
′′

p
. (11)

For a Γ-point phonon, Eq. (10) is simplified, as momentum conservation dictates k
′

p =
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−k
′′

p , i.e.,

γ̇p−p(Γ, α) =
1

Nk

~π

16

∑

α′α′′k′

p

|Ψ
Γk′

p−k′

p

αα′α′′ |2δ(ωΓ,α − ωk′

p,α
′ − ωk′

p,α
′′)(f ′

p + f ′′

p + 1). (12)

Restricting the calculation to the lifetime of the zone-center phonon modes greatly reduces

the number of third-order coupling elements required to evaluate the downconversion rate

and simplifies their calculation. As the third-order force constant calculations are compu-

tationally costly, this is extremely important, especially in crystals with more than a few

atoms per unit cell.

However, evaluating the third-order force constants in C128H1×24 remains unreasonable

even under this restriction. Thus, the p-p lifetimes are evaluated from pure graphene and

graphane crystals to estimate the lifetimes of the various targeted optical phonon modes.

For both of these structures, the third-order force constants are evaluated within DFPT

using the 2n + 1 formula35, as implemented within Quantum Espresso on a 18× 18× 1 kp

point mesh. These dynamical matrix derivatives are fourier transformed into real space and

then interpolated onto a 200× 200× 1 mesh of kp points. Then, the integration in Eq. (12)

is calculated using a Lagrangian δ-function with 20 K smearing.

Figure 9(a) shows the the downconversion paths for the graphene E2gand graphane Eg

phonon modes, (b) the energy of the phonon modes created, and (c) their lifetimes. Due to

the high energy of these modes, the phonon lifetimes begin to change significantly around

500 K. Also shown in Fig. 9(c) is the increased downconversion rates of the zone-center

optical phonon modes in graphane, as compared to those in graphene. Indeed, even without

the degradation of the electron-phonon coupling, hydrogenation enhances the optical phonon

downconversion rates and reduces the promising γ̇∗

e−p of graphene.

C. Figure of merit

Using the results from Sections VIA and VIB, γ̇∗

e−p is calculated for the zone-center

modes in C128H1×24, where γ̇∗

e−p is

γ̇∗

e−p(Γ, α) =
γ̇e−p(Γ, α)

γ̇e−p(Γ, α) + γ̇p−p(Γ, α)
. (13)

15



MB
Z

Γ
K

k
p,x 

/ 2πa
o

T (K)

k p
,y

 / 
2
π

a
o

1/31/2

-1/31/2

-2/3 2/3

0

0 -2/3 2/30

Graphene: E
2g

Graphane: E
g

Major Pathways

0 1/2
0

0.2

1

500 750250 10000
0.0

2.5

2.0

1.5

1.0

0.5

γ p
-p

 (
 E

p

' 
) 

/ 
γ p

-p
1
/ 

γ p
-p

 (
p
s) Graphene: E

2g

Graphene: E
2g

Graphane: E
g

Graphane: E
g

E
p

'  / E
p

(a)

(b)

(c)

FIG. 9. (a) Active downconversion pathways, (b) energy of the phonon modes produced, and

(c) the scattering rate as a function of temperature for graphene E2gand graphane Eg modes.

Graphane exhibits significantly enhanced optical phonon downconversion rates.

The results are shown in Fig. 10. Note that the γ̇p−p(Γ, α) used here are from the graphane

and graphene calculations.

As shown in Fig. 10, the weak e-p coupling in partially-hydrogenated graphite prevents it

from achieving a large γ̇∗

e−p and ZpV. This weak coupling is due to the small overlap between

its valence (σ) and conduction (σ∗) bands. No similar effect reduces the p-p interaction

strength, such that the γ̇∗

e−p achieved by C128H1×24 is less than 0.1. As the bandgap is tuned

to resonate with the optical phonon modes, ZpV = γ̇∗

e−p < 0.1.

In graphene, the overlap of π and π∗ bands enables a large γ̇∗

e−p > 0.9, but the gapless

electronic structure ensures ZpV = 0. If the e-p and p-p couplings were to remain unchanged

as the bandgap opened, however, graphene would achieve a ZpV > 0.8. In such a pV cell, the

efficiency significantly exceeds that of a TE, even at room temperature and under negligible

e-p nonequilibrium. However, it is challenging to tune the bandgap of graphene without

transitioning from π-π∗ to σ-σ∗ low-energy bands.

For example, hydrogenation, flourination and other functionalization methods which cre-
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figure of merit (ZpV) for graphene and tuned C128H1×24 cells. Also shown is the graphene figure of

merit if the e-p and p-p couplings remained constant as the bandgap opens. This figure of merit

is substantially larger than that of C128H1×24, as the interaction between the σ and σ∗ bands is

much weaker than that between the π and π∗ bands in Graphene.

ate a sp3 structure rely on this transition to open a bandgap. If a similar decrease in the

interband e-p coupling occurs across all sp3 hybridized structures, as suspected, few op-

tions remain36. Thus, it is crucial to confirm this hypothesis. However, other unusual and

anisotropic materials may combine the material properties crucial to pV operation: a highly

energetic optical phonon mode resonant with the bandgap and with a lifetime dominated

by the e-p coupling.

VII. CONCLUSIONS

In Part I1, a pV cell is proposed that harvests a hot population of optical phonons

resonant with the bandgap and much more energetic than kBT . For efficient harvest, the e-

p coupling must dominate the p-p coupling. No current material exists with this combination

of properties.

Graphite (graphene), which has energetic optical phonon modes that couple strongly to

the electron system, is proposed as a candidate, provided that its bandgap is tuned to the

optical phonon energy. Uniaxially strained graphene is confirmed to require extreme strain

in order to open a bandgap via a series of ab initio calculations, wherein the movement of the

Dirac-point along the K-M symmetry line must be carefully tracked. However, the bandgap

17



in graphite may be tuned to its optical phonon modes through its partial-hydrogenation.

Here, this tuning is accomplished through the systematic ab initio simulation of partially-

hydrogenated graphite layers with variations in the atomic fraction and placement of hydro-

gen. The C128H1×24 structure is shown to have a bandgap around 250 meV and the arbitrary

and isotropic strains enable the fine-tuning to the desired optical phonon mode, e.g., the

graphene E2g(200 meV) and the graphane Eg (174 meV) modes.

However, the e-p coupling between the σ-σ∗ bands in graphane is significantly weaker

than the π-π∗ band coupling in graphene. In comparison the p-p interactions in graphane are

similar to or stronger than those in graphene, as shown through the ab initio evaluation of

graphene and graphene Γ-point phonon lifetimes. Thus, the pV figure of merit for partially-

hydrogenated graphite is limited to below 0.1.

The transition of from the π to σ-type bands near the Fermi level as a bandgap opens

in graphene due to, e.g., the application of a uniaxial strain or functionalization is pro-

posed to limit alternate graphene derivatives. However, the reduced-dimensioned graphene

structures, e.g., quantum-dots and nano-ribbons, preserve the π and π∗ bands and may

overcome this trend. Additional study remains for other functionalized graphene structures,

e.g., flourographane, and a theoretical explanation of the weak σ-σ∗ e-p coupling is required,

and finding alternate pV materials is crucial.
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