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We define a ‘hyperconductor’ to be a material whose electrical and thermal DC conductivities are infinite at

zero temperature and finite at any non-zero temperature. The low-temperature behavior of a hyperconductor

is controlled by a quantum critical phase of interacting electrons that is stable to all potentially-gap-generating

interactions and potentially-localizing disorder. In this paper, we compute the low-temperature DC and AC

electrical and thermal conductivities in a one-dimensional hyperconductor, studied previously by the present

authors, in the presence of both disorder and umklapp scattering. We identify the conditions under which the

transport coefficients are finite, which allows us to exhibit examples of violations of the Wiedemann-Franz law.

The temperature dependence of the electrical conductivity, which is characterized by the parameter ∆X , is a

power law, σ ∝ 1/T 1−2(2−∆X ) when ∆X ≥ 2, down to zero temperature when the Fermi surface is com-

mensurate with the lattice. There is a surface in parameter space along which ∆X = 2 and ∆X ≈ 2 for small

deviations from this surface. In the generic (incommensurate) case with weak disorder, such scaling is seen at

high-temperatures, followed by an exponential increase of the conductivity ln σ ∼ 1/T at intermediate tem-

peratures and, finally, σ ∝ 1/T 2−2(2−∆X ) at the lowest temperatures. In both cases, the thermal conductivity

diverges at low temperatures.

I. INTRODUCTION

A. Goal of this paper

In this paper, we study transport in the one-dimensional
non-Fermi liquid introduced in Ref. [1]. This metallic phase
is very different from a Fermi liquid: in addition to anoma-
lous single-electron properties, it is a perfect metal at zero-
temperature, with infinite DC conductivity even in the pres-
ence of impurities, unlike a Fermi liquid. We call such a
material a “hyperconductor,” to distinguish it from a super-
conductor, since a hyperconductor does not have a Meissner
effect at zero temperature; its electrical conductivity is finite
at any non-zero temperature; and its thermal conductivity di-
verges as the temperature approaches zero. The goal of this
paper is to compute the temperature and frequency depen-
dence of the electrical and thermal conductivity of a hyper-
conductor at low temperature. The temperature dependence
of the conductivities is characterized by the parameter ∆X

and depends on whether the Fermi surface is commensurate
with the lattice. In the commensurate case, both the electri-
cal σ and thermal κ conductivities behave as a power law:
σ, κ ∝ 1/T 1−2(2−∆X) with the special case ∆X = 2 oc-
curring along a surface in parameter space. This constitutes
a violation of the Wiedemann-Franz “law,” which states that
the ratio κ/σT is constant, and is due to differing relaxation
mechanisms of the electrical and thermal currents. In the
incommensurate case, there is a range of temperatures over
which both σ and κ diverge exponentially, although with dif-
fering algebraic prefactors, as T → 0; at the lowest temper-
atures, σ ∝ κ/T ∝ 1/T 2−2(2−∆X). The above temperature
dependences reflect the non-Fermi liquid physics of this hy-
perconductor. As a concrete and well-controlled example of
transport in a non-Fermi liquid, these results may shine light
on general principles regarding non-Fermi liquids and trans-
port in strongly-correlated electron systems.

B. General remarks about metallic transport

Transport provides one of the most important characteriza-
tions of a physical system. It is often said that the DC elec-
trical conductivity is the first property to be measured when
a new material is investigated. However, this is usually fol-
lowed by noting that it is often the last property to be under-
stood, highlighting the subtle nature of transport properties,
when compared with thermodynamic ones.2 This is one of the
difficulties involved in understanding metallic states whose
low-temperature behavior is not controlled by the Fermi liquid
fixed point but by some other fixed point – generally called a
‘non-Fermi liquid’. Experimental systems that are candidate
non-Fermi liquid metals have primarily been identified by the
occurrence of DC conductivity exhibiting unusual tempera-
ture dependence. Perhaps the most famous example is the nor-
mal state of the cuprate high-temperature superconductors3,4

around optimal doping, where the DC electrical conductiv-
ity σ ∼ 1/T over a large range of temperatures T . It is
difficult to construct models that show such behavior; non-
Fermi liquids5–26 (e.g., fermion-gauge field systems) often
have more pronounced anomalies in single-particle properties,
but more conventional behavior in transport.27 See Refs. [28]
and [29] for two counterexamples.

The rate at which the conductivity of a metal approaches
its zero-temperature value is determined by the available re-
laxation mechanisms, which are, in turn, reflective of the
nature of the zero-temperature metallic state. In a clean
Fermi liquid, umklapp scattering provides the leading low-
temperature momentum-relaxation mechanism and results in
the familiar contribution, δρxx(T ) ∝ T 2, in spatial dimen-
sions D > 1,30,31 to the DC electrical resistivity.32 In 3D, an
electron-phonon interaction contributes δρxx ∝ T 5 below the
Debye temperature, while ρxx(T ) ∝ T is found above the De-
bye temperature.31 Similar behavior is found for the scattering
of electrons by other collective bosonic modes. However, at
the lowest temperatures, which is inevitably below the De-
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bye temperature or its analogues for other collective bosonic
modes, the resistivity vanishes faster than linearly in almost
all theoretical models.

One way to understand this is as follows. In a metal, the re-
sistivity generally vanishes at low temperatures as ρ ∼ 1/τtr,
where τtr is the decay rate for the current, usually called
the transport lifetime. On dimensional grounds, 1/τtr ∝
(gT−∆g)2 · T where g is the coupling constant that domi-
nates the relaxation of the current and ∆g is its scaling dimen-
sion. (For umklapp-dominated relaxation, g is the strength of
umklapp scattering process and ∆g is its scaling dimension,
with ∆g = 2 − ∆X if X is the umklapp scattering opera-
tor specified in Eq. 24. For disorder-dominated relaxation,
g2 is the variance of the disorder and 2∆g is its scaling di-
mension, with 2∆g = 3 − 2∆X if X is the operator that is
coupled to disorder in Eq. 27.) If the coupling g is an irrele-
vant perturbation,∆g < 0, (including the case of a marginally
irrelevant perturbation) at the zero-temperature metallic fixed
point, then the resistivity vanishes faster than linearly with T ,
which is the usual case. If, on the other hand, g is a relevant
or marginally relevant perturbation, ∆g > 0, then the fixed
point is not stable, and the ultimate low-temperature behavior
is determined by some other fixed point. Hence, ρ ∝ T can
only occur in a model that contains a strictly marginal oper-
ator, ∆g = 0, that relaxes the current. This, in turn, implies
that an observed ρ ∝ T is either an intermediate temperature
behavior that does not survive to the lowest of temperatures,
as in the case of electron-phonon scattering above the Debye
temperature, or it is a consequence of physical processes en-
capsulated by a strictly marginal operator. See Refs. [33–35]
for related scaling arguments.

The 23-channel Luttinger liquid parameter regime that was
called the ‘asymmetric shorter Leech liquid’ in Ref. [1] has
many such marginal operators. This model is a 1D hyper-
conductor, in the sense defined above: its electrical and ther-
mal conductivities diverge at zero temperature in the pres-
ence of arbitrary (perturbative) electron-electron and disorder-
mediated interactions. However, the temperature and fre-
quency dependence of these transport coefficients is interest-
ing because of the presence of these marginal operators. The
purpose of this paper is to explore this dependence.

In the presence of conservation laws, there is an impor-
tant caveat to the scaling considerations given above.36–42

Some theoretical models may have conservation laws that
prevent the electrical and/or thermal currents from fully re-
laxing, thereby leading to infinite conductivities. Some care
is required in these cases, since approximate calculations of
transport relaxation times τtr may give finite answers due to
the failure of these approximations to properly account for
these conservation laws. An additional complication is that
the Fermi momentum kF and the reciprocal lattice vectors G
enter into (pseudo)-momentum conservation for low-energy
excitations. As a result, these momentum scales, which are
nominally short-distance or ultraviolet scales, may enter into
the low-temperature, low-frequency response.43 Conservation
laws, together with these momentum scales, may conspire to
modify the simple scaling form 1/τtr ∝ (gT−∆g)2 · T to
1/τtr ∝ (gT−∆g)2 · T · f(p/T ), where f(x) is a scaling

function that could have, for instance, the asymptotic form
f(x) ∼ e−x for large x and p is some characteristic momen-
tum (e.g. a combination of the Fermi momentum and recip-
rocal lattice vectors) that is relevant to the relaxation of the
current. One possible consequence is that the Wiedemann-
Franz law may be implied by scaling, but need not be realized
because of symmetry considerations.

C. Organization of this paper

The remainder of this paper is organized as follows. In Sec.
II, we review the construction of the hyperconductor of Ref.
[1]. In Sec. III, we discuss the relation between conservation
laws and dissipative transport with an eye towards the appli-
cation to the hyperconductor phases. In Sec. IV, we calculate
the electrical and thermal conductivities of the hyperconduc-
tor at both commensurate and incommensurate filling for a
pure system with umklapp scattering and a weakly disordered
system. The memory matrix formalism provides the calcu-
lational tool of this section. We conclude and outline future
plans in Sec. V. We include three appendices that provide
details for the calculations underlying the results presented in
Sec. IV.

II. REVIEW OF THE 1D HYPERCONDUCTOR

In this section, we give a highly condensed review of the
derivation of the hyperconductor of Ref. [1] in order to estab-
lish notation that is used in the remainder of this paper. For
the most part in this paper, when we use the term, hypercon-
ductor, we specifically have in mind the example previously
called the 1D ‘asymmetric shorter Leech liquid,’ however, we
emphasize that the notion is more general and we are merely
studying one particular realization. The reader interested in
the details of this construction is directed to Ref. [1].

The 1D hyperconductor that is the subject of this paper ob-
tains from the low-energy effective theory of a particular in-
teracting model of electrons in a 1D quantum wire. We can
regard the bands with different values of the transverse mo-
mentum, as well as the two spin states of the electron, as sepa-
rate channels. The simplest example then, and the one we will
study in this paper has N = 23 channels of spinless fermions
ΨI .

At low energies, the non-relativistic fermions can be lin-
earized into a theory of N = 23 channels of chiral linearly-
dispersing spinless (Dirac) fermions, with a left and a right
mover in each channel. Their complete action is given by:

Slin = S0 + Sint (1)

S0 =

∫

t,x

[

ψ†
R,I i(∂t + vI∂x)ψR,I

+ ψ†
L,Ii(∂t − vI∂x)ψL,I

]

(2)
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Sint =

∫

t,x

[

UI,Jψ
†
R,IψR,Iψ

†
R,JψR,J

+ UI+N,J+Nψ
†
L,IψL,Iψ

†
L,JψL,J

+ 2UI,J+Nψ
†
R,IψR,Iψ

†
L,JψL,J

]

(3)

where the operator ψ†
R,I (ψ†

L,I) creates a right-moving (left-
moving) fermion excitation about the Fermi point kF,I

(−kF,I) in channel I = 1, . . . , N and we have used the short-
hand

∫

t,x ≡
∫

dtdx. The velocity of the I th channel of

fermions is vI . It is important to keep in mind that the lin-
ear regime only includes momenta smaller than some cutoff
Λ, where Λ ≪ kF

As the real symmetric matrix UI,J for I, J = 1, . . . , 2N
specifying the density-density interaction is varied, the system
explores the parameter space of a 23-channel Luttinger liquid.
As discussed in Ref. [1], there is an open set ofUI,J for which
all potentially-gap-opening or potentially-localizing perturba-
tions to Eq. 1 are irrelevant; this entire parameter regime is
the hyperconductor phase. The calculations of Ref. [1] that
establish the existence of this phase as well as the following
transport calculations rely on the bosonic representation of Eq.
(1):

Sb =
1

4π

∫

t,x

[

KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

]

. (4)

with K = Kferm = −IN ⊕ IN , VIJ = vIδIJ + UIJ ,
IN the N × N identity matrix, and I, J = 1, . . . , 2N

in Eq. (4). The operators ψ†
I,R = 1√

2πa
eiφIγI and

ψ†
I,L = 1√

2πa
e−iφI+NγI+N create, respectively, right- and

left-moving fermions in the Ith channel; a is a short-distance
cutoff, and the Klein factors γI satisfy γJγK = −γKγJ for
J 6= K . The bosonic fields satisfy the equal-time commu-
tation relations [φI(x),ΠJ (y)] = iδI,Jδ(x − y), where the
canonical momenta ΠI = 1

2πKIJ∂xφJ . (The index on the
fields ΨI,R/L runs from 1, . . . , N , while the index on the
bosonic fields φI runs from 1, . . . 2N .)

The hyperconductor construction is based on the observa-
tion that under an SL(2N,Z) basis change, φI ≡ WIJ φ̃J ,

it is possible to transform K to the Gram matrix K̃ =
WTKW = −K̃R ⊕ K̃L of a signature (N,N) lattice of

the form −Λ̃R ⊕ Λ̃L where Λ̃R, Λ̃L are positive-definite
unimodular44 N -dimensional lattices. For N ≥ 23, there
exist non-root positive-definite unimodular lattices – i.e., lat-
tices such that all vectors v in the lattice satisfy |v|2 > 2 –
and there exist matrices W that transform Kferm to the cor-
responding Gram matrices. If, in this basis, Ṽ = WTVW
is block diagonal (i.e., does not mix right-movers and left-
movers), then all potentially gap-opening or localizing oper-
ators cos(m̃I φ̃I) are irrelevant when Λ̃R or Λ̃L is non-root,
where m̃J = mIWIJ . Stability persists for a small but finite
range of values of any parameters in the model (i.e., away
from block diagonal Ṽ ), including the chemical potentials
in each channel, the velocities, and all the inter-channel and
inter-spin interactions. In the hyperconductor phase consid-
ered in this paper, Λ̃R is the so-called shorter Leech lattice,

the unique non-root unimodular integral lattice in 23 dimen-
sions, while Λ̃L is Z23, the ordinary hypercubic lattice, which
is not a non-root lattice. This phase was called the asymmet-

ric shorter Leech liquid. (See Refs. 45 and 46 for a fuller
discussion of the mathematical technology underlying the hy-
perconductor construction.)

For simplicity, we perform the calculations in this paper
using an interaction matrix ṼIJ in the transformed basis that
is simply proportional to the positive-defined matrix K̃R ⊕
K̃L, so that all of the eigenmodes have equal velocities v. We
similarly assume, for simplicity, that kF,I = kF for all I .

The salient feature of the asymmetric shorter Leech hy-
perconductor that is relevant to this paper is the existence
of a large number of marginal backscattering operators of

the form cos
(

m̃I φ̃I

)

when Ṽ = WTVW is block diago-

nal and Λ̃R and Λ̃L are, respectively, the shorter Leech lat-
tice and Z

23. In conformal field theory47 (CFT) terminology,
these operators have different right and left scaling dimen-
sions (∆R,∆L) =

(

3
2 ,

1
2

)

. If Ṽ is moved slightly away from
block diagonal, then the scaling dimensions of any such oper-
ator will be shifted to (∆R,∆L) =

(

3
2 + y, 12 + y

)

, where
y will depend on the particular operator in question. For
block diagonal Ṽ , these scaling dimensions are protected by
their chirality: their RG equations do not contain higher-order
terms.48 (See Appendix D for a review of this argument.) As a
result, transport coefficients exhibit anomalous power-law de-
pendence all the way to zero temperature. For block diagonal
Ṽ , this is manifested as DC electrical resistivity ρDC ∝ T all
the way to zero temperature.

III. SYMMETRY AND TRANSPORT

In this section, we describe some of the complications asso-
ciated with computing the transport properties of a 23-channel
Luttinger liquid. Most of the material in this section has been
described elsewhere (see below for references) but, for the
sake of completeness, we give a review of transport that is
tailored to the application of the formalism described in the
next section. The reader that is interested primarily in our re-
sults may wish to skip this rather technical section on a first
reading of this paper.

A. Conservation Laws

The conservation of total electrical charge and total energy,

d

dt
Q =

d

dt
H = 0, (5)

(where Q and H are the total electrical charge and energy
operators) make it possible for those quantities to diffuse,
thereby leading to finite electrical and thermal conductivities.
If, however, the charge or energy currents, respectively J

e or
J
T , were conserved,

d

dt
J
e = 0 or

d

dt
J
T = 0, (6)
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then the electrical or thermal conductivity would be infinite.
Even if the charge and energy currents were not themselves
conserved, the electrical or thermal conductivity would still
be infinite, if there were some other conserved quantities with
non-zero ‘overlap’ (in a sense to be made precise in Eq. (29))
with the charge or energy current. Hence, finite conductivities
only occur when the corresponding currents have no overlap
with any conserved quantities.38,49,50

In addition to total charge and energy there are other glob-
ally conserved quantities (we will interchangeable call them
charges) for the fixed point action of a hyperconductor in Eq.
(4). There are 47 conservation laws at the asymmetric shorter
Leech fixed point that are important for transport: the charges
of the right- and left-movers in each channel as well as the to-
tal energy.51 We now discuss these conservation laws, as well
as the relaxation mechanisms due to irrelevant perturbations
of the fixed point that are required to make these conductivi-
ties finite.

Continuous translation symmetry of the parent non-
relativistic theory, whose low-energy effects are captured by
Slin, gives a globally conserved charge (total momentum),
here written in fermionic language:

P = P0 + PD, (7)

P0 = kF
∑

I

(

NR
I −NL

I

)

, (8)

PD =

∫

x

[

ψ†
R,I(i∂xψR,I) + ψ†

L,I(i∂xψL,I)
]

, (9)

where NR
I , NL

I are, respectively, the number operators of the
right-moving and left-moving Dirac fermions in channel I:

NR,L
I =

∫

x

ψ†
R/L,IψR/L,I . (10)

PD , as suggestively named, is the momentum of a Dirac

fermion theory also described by Slin, but whereψ†
R,I

(

ψ†
L,I

)

creates a right-moving (left-moving) fermion about zero mo-
mentum instead of the Fermi point kF,I (−kF,I). From the
perspective of the low-energy theory, the total momentum op-
erator P arises from two separately conserved emergent sym-
metries of Slin: the first is generated by a chiral rotation of
the right- and left-moving fermions by the “angle” kF while
the second is generated by continuous translations in the lin-
earized Dirac theory. P0 accounts for the large momenta
∼ kF , while PD accounts for deviations from the Fermi sur-
face.

These expressions can be rewritten in bosonic form:

NR
I =

1

2π

∫

x

∂xφI , (11)

NL
I =

1

2π

∫

x

∂xφN+I , (12)

and

PD =
1

4π

∫

x

KIJ∂xφI∂xφJ . (13)

The fermionic and bosonic expressions for P = P0 + PD

are the integrals over all space of the component T tx of
the energy-momentum tensor derived via Noether’s theorem
from, respectively, the fermionic Eq. (1) and bosonic Eq. (4)
forms of the effective action.

The fixed point action Sb has emergent U(1)NL × U(1)NR
chiral symmetries (φI → φI + cI ) generated by the charges

Q
R/L
I :

QR,L
I = eN

R/L
I . (14)

The continuity equation for each chiral charge and the equa-
tions of motion for the bosonic fields allow us to obtain the
corresponding currents:

Je
R,I =

e

2π
VIJ

∫

x

∂xφJ , (15)

Je
L,I = − e

2π
VN+I,J

∫

x

∂xφJ . (16)

The total electrical and thermal currents are then given by:

Je =

N
∑

I=1

(

Je
R,I + Je

L,I

)

, (17)

JT = − 1

4π

2N
∑

I,J,L=1

VIJKIIVIL

∫

x

∂xφJ∂xφL, (18)

where the Hamiltonian,

H =
1

4π

∫

x

VIJ∂xφI∂xφJ , (19)

and corresponding thermal continuity equation gives JT . We
study the case when all of the eigenvalues of VIJ are the same,
so that the Dirac momentumPD is equal to the thermal current
JT .

Particle-hole symmetry breaking band-curvature effects
couple the electrical and thermal currents to one another. For
completeness, we give, in fermionic form, the corresponding
corrections to the expressions for the currents:

δJe = g
e

m
PD, (20)

δJT =
g

m

∑

I

∫

x

[ (

∂tψ
†
R,I

)

∂xψR,I +
(

∂xψ
†
R,I

)

∂tψR,I

+
(

∂tψ
†
L,I

)

∂xψL,I +
(

∂xψ
†
L,I

)

∂tψL,I

]

. (21)

In an operator formalism, the time derivative of the fermion
operator above is computed by taking the commutator of the
fermion operator with the Hamiltonian H . If the fermions
have quadratic dispersion, so that there are no higher-order
corrections to these expressions for the currents, the action
is Galilean-invariant. The band curvature corrected electrical
current then gives the expected relation between the total elec-
trical current and total momentum, Je + δJe = e

mP . Band
curvature effects that do not break particle-hole symmetry in-
troduce corrections to Je that are odd in the φI and correc-
tions to JT that are even in the φI . These and other correc-
tions due to band curvature are interesting and deserve further
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study (see Ref. 52 for a review), however, we focus upon the
linearly dispersing regime in this paper.

To summarize, the fixed point action Sb has 47 individually

conserved quantities, QR,L
I and PD , that generally have non-

zero overlap with the electrical and thermal currents. One lin-
ear combination of these conserved quantities, the total elec-

trical charge Q =
∑

(QR,
I + QL

I ), will always53 remain con-
served, but it has no overlap with either the electrical or ther-
mal currents and so it does not prevent their decay. The other
46 conservation laws must be broken in order for the system
to have finite electrical and thermal conductivities.

B. Relaxation Mechanisms

To see the relation between the conductivity and conserva-
tion laws, it is helpful to consider the most general expression
for the real part of the optical conductivity:41

σ′(ω, T ) = 2πD(T )δ(ω) + σreg(ω, T ), (22)

where D(T ) is the so-called Drude weight. If D(T ) is finite,
it signals that the DC conductivity is infinite. Using Mazur’s
inequality,49,50 Zotos, Naef, and Prelovsek pointed out in Ref.
38 the following implication of conserved charges for electri-
cal charge transport:

D(T ) ≥ 1

2LT

∑

k〈JeQk〉2
〈Q2

k〉
, (23)

where L is the length of the system. The angled brackets de-
note the thermodynamic average and the right-hand side of
Eq. (23) is independent of time because the Qk are conserved
quantities. This inequality says that in the presence of con-
served charges Qk which have non-zero overlap with Je, the
electrical current does not completely relax, and the system
has dissipationless charge flow even at finite temperature T .
(See Eq. (29) for an equivalent notion of an ‘overlap’ which
is the one that we adopt in this paper.) A similar inequality
and conclusion applies for the thermal current JT .

It follows that to fully relax the electrical and thermal cur-
rents a system must break all conservation laws, apart from
the conservation of total charge and total energy, which have
vanishing overlap with the electrical and thermal currents. At
zero-temperature and zero frequency, the fixed point theory
Sb determines the response of the system. Since this the-
ory has the 47 conservation laws described above, it has in-
finite conductivity. Note that, in a time-reversal invariant 23-
channel Luttinger liquid, we would only need to break 24 con-
servation laws since the time-reversal symmetric conserved
quantities would ordinarily have vanishing overlap with the
electrical current; but the asymmetric Leech liquid hypercon-
ductor is not time-reversal invariant.

At finite temperature and frequency, irrelevant perturba-
tions can have an effect on the response functions of the sys-
tem. The bulk of this paper is a discussion of the effects of
such perturbations. In particular, we answer two questions:
Which operators can relax the currents? Which are the most
important ones?

In order to break the conservation of the Dirac momentum
PD and the chiral electrical currents {Je

R/L,I}, we need to

include physical processes that (1) break continuous transla-
tion symmetry with respect to the low-energy effective theory
Sb and (2) break particle number conservation within each
channel, but (3) conserve total charge and energy. Umklapp
scattering at incommensurate fillings and disorder break con-
tinuous momentum conservation and generally break the con-
servation of the chiral currents in individual channels, and so
we focus on them here.

Umklapp processes scatter some number of right-movers
into left-movers so that the total momentum change is a recip-
rocal lattice vector. The most general umklapp term is speci-

fied by a vector of integers m
(α)
I , I = 1, . . . , 2N :

Hu =
∑

α

Hu
α

=
∑

α

[

huα + h.c.
]

=−
∑

α

λα

∫

x

[

1

a2
eim

(α)
I kF,Ix−ip(α)Gxeim

(α)
J φJ + h.c.

]

,

(24)

where λα is the coupling constant, G is a basis vector of the
reciprocal lattice, a is a short-distance cutoff,54 and the Ein-
stein summation convention is employed. Here, the operator
X to which we referred in our general remarks in Sec. I B is

X = eim
(α)
J

φJ . The most important umklapp processes at low
energies are those for which the corresponding operatorsX =

eim
(α)
J φJ have the lowest scaling dimension. In the asymmet-

ric shorter Leech hyperconductor studied in this paper, such
operators have scaling dimension (∆R,∆L) = (3/2, 1/2), so
they are marginal. The integer p(α) is the “order” of the umk-
lapp process, or the number of Brillouin zone foldings after

which the momentum m
(α)
I kF,I is again in the first Brillouin

zone. Thus, p(α) is actually fixed bym
(α)
I kF,I , but we will re-

tain it as a formally free parameter. At commensurate filling,

there is always a p(α) such that m
(α)
I kF,I = p(α)G, but we

work more generally. Without loss of generality, we may take

the difference m
(α)
I kF,I − p(α)G ∈ [0, 2π) where the lattice

constant has been set to unity. Charge conservation is main-
tained by requiring equal numbers of creation and annihilation

operators:
∑N

I=1m
(α)
I =

∑N
I=1m

(α)
N+I .

While any single umklapp processHu
α might break the con-

servation of individual currents (e.g., [Hu
α, J

e
R/L,I ] 6= 0), a lin-

ear combination of currents might still be conserved.40 (The
linear combination corresponding to total charge is always
conserved, however, it has no overlap with the total electrical
current.). That is why our model generally requires at least

46 carefully chosen umklapp processes, i.e., m
(α)
I vectors to

break all conservation laws. Such a requirement is not unrea-
sonable. In the spirit of effective field theory, we expect all
operators consistent with symmetry to be present in the low-
energy effective action. We simply focus on the minimal set
of scattering processes that dominate the low-energy physics.
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See the accompanying Mathematica file for explicit expres-

sions of the m
(α)
I that we choose to study.

To study whether some linear combination (other than the
total charge) aIJI with JI = Je

R,I for I = 1, . . . N and Je
I =

Je
L,I−N for I = N+1, . . . , 2N is also conserved, we compute

the equal-time commutators:

[Hu
α, aIJ

e
I ] =iaIb

α
I h

u
α + h.c., (25)

where the vectors bαI are defined by,

bαI =
(

eλαsgn(N − I)sgn(N − J)VIJ

)

m
(α)
J , (26)

and we define sgn(X) = +1 for X ≥ 0 and sgn(X) = −1
for X < 0. We ask whether there exist solutions aI = ~a ∈
R

2N − {0}, such that ∀α, aIbαI = 0. All umklapp opera-
tors preserve total U(1) electrical charge, therefore the vec-

tors m
(α)
I specifying them can span at most a 2N − 1 di-

mensional space. The linear equations, aIb
α
I = 0, say that

~a is orthogonal to this space. It follows that when the number
of linearly independent umklapp terms NU (α = 1, . . . , NU )
equals 2N − 1, ~a lies in the 1-dimensional space correspond-
ing to total charge, and so no non-trivial conserved linear com-
bination of the currents exists.

Disorder can also relax the electrical and thermal currents
by violating conservation laws. A generic disorder-mediated
backscattering term takes the form:

Hdis =
∑

α

λdisα Hdis
α

=
∑

α

λdisα

∫

x

[

ξα(x)
1

a2
eim

(α)
I

φI + h.c.
]

, (27)

where α indexes the various backscattering terms specified by

m
(α)
I ∈ Z. At low temperatures, the most important backscat-

tering processes are again due to the dimension (32 ,
1
2 ) oper-

ators eim
(α)
I

φI introduced in Eq. (24). However, due to ran-
domness in ξα(x), their effect is weaker than that of uniform
umklapp terms. (In the general remarks in Sec. I B, the oper-

ator X = eim
(α)
I

φI in Eq. (27).)
For simplicity, we will take all the couplings λdisα = λdis

equal and ξα(x)ξ∗β(x
′) = δαβDδ(x − x′) with ξα(x) = 0,

where the overline denotes disorder averaging. Then, we use
the replica trick to integrate out the disorder, thereby obtaining
the following term in the replicated action:

Sdis−avg = (λdis)2D
∑

A,B

∑

α

∫

t,t′

∫

x

1

a4
eim

(α)
I (φA

I (t)−φB
I (t′)).

(28)

For a dimension (32 ,
1
2 ) operator eim

(α)
I

φI , the coupling

(λdis)2D of the interaction in the replicated theory has scal-
ing dimension equal to −1. Hence, the interaction is irrele-
vant and its effects are formally subleading compared to the
uniform umklapp terms considered above. However, in the
commensurate case, umklapp terms commute with PD; dis-
order is the leading effect that violates conservation of PD ,

thereby leading to finite thermal conductivity. Meanwhile,
in the incommensurate case, the effects of uniform umklapp
terms are exponentially-suppressed at low temperatures, and
disorder becomes the leading effect that relaxes both electrical
and thermal currents at low temperatures.

In summary: for a pure system at commensurate filling,
the Dirac momentum PD is not relaxed, however, there is
no overlap between the chiral electrical currents Je

I and PD

when particle-hole symmetry is preserved. Thus, we need
45 umklapp operators to relax the electrical current. When
particle-hole symmetry is broken by band-curvature correc-
tions at commensurate filling, 〈JePD〉 6= 0, so both the elec-
trical and thermal conductivities diverge. When the filling is
incommensurate or disorder is present, particle-hole symme-
try is broken, so there is generally an overlap between the
electrical currents and the Dirac momentum. However, PD

does not generally commute with an umklapp process at in-
commensurate filling or a disorder-mediated scattering inter-
action, thereby allowing momentum relaxation. In this case,
both the electrical and thermal transport coefficients can be
finite in the presence of 46 scattering interactions. The addi-
tional interaction arises from the additional conserved charge
PD. To see this one must generalize the previous argument by
writing the commutator in Eq. (25) as a total derivative.

C. Memory Matrix

The details of the memory matrix formalism can be found
in Refs. [40, 55–58]; we merely observe that it is well-
suited for computing transport coefficients in the hydrody-
namic regime: when there are globally conserved quantities
(energy, electrical charge) that propagate diffusively. Unlike
a direct application of the Kubo formulae it makes the role of
these conservation laws transparent. In essence, it is a reorga-
nization of the perturbative expansion of the current-current
correlation functions of interest.41

We choose as a complete basis of conserved quantities the
set {Qp} = {Je

R,1, ...J
e
R,N , J

e
L,1, ...J

e
L,N−1, PD}. Je

L,N can
be excluded because total charge is always conserved, so a
correlation function involving JL

N can be obtained from an
expression involving the other currents. There is a notion of
a symmetric inner product on the vector space of conserved
quantities provided by the static susceptibility matrix:

χ̂pq =(Qp|Qq)

≡ 1

L
GR

QpQq
(ω = 0). (29)

The retarded Green’s functions GR
QpQq

(ω) are calculated at

temperature T (left implicit in the definitions below) and eval-
uated at real frequency ω. (Recall that there is no momentum
dependence in the static susceptibility matrix χ̂pq because the
conserved charges are obtained by integrating densities over
all space.) Thus, the static susceptibility may be used to define
the notion of an ‘overlap’ between two conserved quantities.
Note that the real-time thermodynamic correlation functions
involved in Mazur’s inequality Eq. (23) are non-zero if and
only if the corresponding static susceptibilities are non-zero.
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The memory matrix M̂(ω) has contributions from each sep-
arate umklapp and disorder-mediated scattering process, both
labeled by α. We schematically write this as:

M̂(ω) =
∑

α

(

λ2αM̂u
α(ω) + (λdisα )2DM̂dis

α (ω)
)

, (30)

(M̂u)pqα =
1

L

〈F u
p,α;F

u
q,α〉ω − 〈F u

p,α;F
u
q,α〉ω=0

iω
, (31)

(M̂dis)pqα =
1

L

〈F dis
p,α;F

dis
q,α〉ω − 〈F dis

p,α;F
dis
q,α〉ω=0

iω
. (32)

Here, F u
q,α = i

λα
[Hu

α,Qq], F
dis
q,α = i

λdis
α

√
D

[

Hdis
α ,Qq

]

, and

Qq is a conserved charge (either Je
R/L,I orPD). 〈F u

p,α;F
u
q,α〉ω

and 〈F dis
p,α;F

dis
q,α〉ω are retarded finite-temperature Green’s

functions evaluated to leading order using Sb in Eq. (4). λα
and λdisα parameterize the umklapp scattering and coupling
to disorder, respectively, and D is the disorder variance of
Gaussian-correlated disorder. As mentioned above, we take
λα = λ and λdisα = λdis for all α for simplicity. M̂u contains
the contributions to the memory matrix from umklapp scatter-

ing, while M̂dis contains the contributions from the disorder-
mediated interaction. We stress that the form of the memory
matrix given above is correct to leading order in the scattering
interaction. See Refs. [40, 55–58] for further discussion.

The label α also specifies the momentum mismatch of an
incommensurate scattering process,

∆kα ≡ m
(α)
I kF,I − p(α)G ∈ [0, 2π), (33)

for unit lattice constant, and the vector of integers m
(α)
I that

defines the umklapp process. The vectors m
(α)
I , in turn, help

determine, along with the matrix VIJ , the right and left scal-
ing dimensions (∆R,∆L) of the operators entering scattering
interactions in Eqs. (24) and (27). Recall that we choose to
take the Fermi vectors in all channels to be equal, kF,I = kF .

The conductivities associated to the various charges Qp are
encoded in the matrix,

σ̂(ω) = χ̂
(

N̂ + M̂(ω)− iωχ̂
)−1

χ̂, (34)

where

(N̂)pq ≡ χ̂pq̇ =
(

Qp, i[
∑

α

(Hu
α +Hdis

α ),Qq])
)

. (35)

We show in Appendix C that, at least to quadratic order in the

umklapp λ and disorder λdis couplings, N̂ = 0.

The electrical conductivity σ is determined by the (2N −
1) × (2N − 1) submatrix σ̂Je

I
,Je

J
. The thermoelectric con-

ductivity α̃ is determined by the (2N −1)-dimensional vector

σ̂Je
I
,PD

/T . The thermal conductivity κ =
σ̂PD,PD

T − α̃2T
σ . For

commensurate fillings and in the disorder-dominated regime,
the thermoelectric conductivity can be ignored to leading or-
der so that the thermal conductivity is equal to the PD − PD

component of σ̂.

IV. HYPERCONDUCTOR TRANSPORT

We now assemble the conductivity matrix σ̂. The first in-
gredient is the static susceptibility matrix, which takes the fol-
lowing form:

χ̂Je
I
Je
J
=
e2

4π
sgn(N − I)sgn(N − J)VIJ , (36)

χ̂Je
I
PD

=0, (37)

χ̂PDPD
=
Nπ2T 2

6
, (38)

where there is no sum over I and J and we have computed
to zeroth order in any perturbation to Sb. See Appendix A
for details on the calculation of the static susceptibilty matrix
and the auxiliary Mathematica file for the explicit expression
for VIJ . See Appendix B for details on the evaluation of the
memory matrix elements.

In the following two sections, we study the contributions to
the conductivity in systems at commensurate and incommen-
surate fillings in the presence of both umklapp scattering and
disorder. For the most part, we focus upon the decoupled sur-
face subspace within the hyperconductor phase, however, we
provide the more general expressions for the DC conductivi-
ties where appropriate.

A. Commensurate Fillings

If the electron filling is commensurate with the lattice, kF
divided by the reciprocal lattice basis vector is a rational frac-
tion, and so the momentum mismatch ∆kα in any umklapp
scattering process may vanish. Umklapp scattering interac-
tions with ∆kα = 0 provide the dominant contribution to the
electrical conductivity matrix. Thus, we consider Sb together

with 45 umklapp terms, all with ∆k
(α)
p = 0. As argued ear-

lier, the most important umklapps are those with total scaling
dimension (∆R,∆L) = (3/2, 1/2).

1. DC Conductivity

We first note that F u
PD ,α vanishes when ∆k(α) = 0 , along

with all the memory matrix elements involving it. This tells
us that the dynamics of the electrical current-carrying exci-
tations decouple from the thermal carriers (with PD remain-
ing conserved) at commensurate fillings without disorder. In
computing the electrical conductivity, it is sufficient to choose
{Je

I } as the complete basis of hydrodynamic modes. The con-
servation of PD in the linearly-dispersing regime also implies
that the thermal conductivity κ is infinite in a pure system
since

(

PD|JT
)

6= 0. At commensurate fillings, disorder is
the leading effect that causes finite thermal conductivity, as
we discuss.

To obtain the DC conductivity at commensurate fillings, we
need the memory matrix elements obtained in Appendix B 2 a:

(M̂u)
Je
I J

e
J

α (T ) =
π4

32
UJe

I
,αUJe

J
,αT, (39)
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where the finite, non-zero coefficients, UJe
I
,αUJe

J
,α ∝ e2 are

defined in Eq. (B10). This immediately gives the DC electri-
cal conductivity,

σ(T ) ∝ e2

λ2
1

T
. (40)

As promised, the electrical resistivity vanishes linearly in tem-
perature. Note that the dimensionless proportionality con-
stants in Eq. (40) and in subsequent conductivity formulas
are finite and non-zero.59

We have neglected band curvature terms in the preceding
and subsequent calculations by working with the linearized
action in Eq. (4). Their inclusion does not lead to finite ther-
mal conductivity since any non-oscillatory term will commute
with PD. However, particle-hole symmetry-breaking band
curvature terms will mix PD and Je

I , thereby leading to in-
finite electrical conductivity so long as PD is conserved.

Disorder, on the other hand, does cause PD to decay. While
it gives a subleading contribution to the electrical conductivity
in the commensurate case – disorder contributes the O(T 2)
correction in Eq. (B25) to the DC electrical memory matrix
elements – it is the leading contribution to the relaxation rate
of the thermal conductivity:

κ(T ) ∝
(

1

D(λdis)2

)

1

T
, (41)

where we have used the static susceptibility matrix in Eq.
(38), the disorder memory matrix elements in Eq. (B27), and
the fact that κT is equal to the PD − PD component of the
conductivity tensor σ̂ when the thermoelectric coefficient van-
ishes (to leading order).

Eqs. (40) and (41) constitute a violation of the Wiedemann-
Franz “law.” Marginal umklapp scattering is the leading low-
temperature relaxation mechanism for the electrical current,
while O(1) irrelevant disorder is the leading relaxation mech-
anism for the thermal current at commensurate fillings. In this
case, the Lorentz ratio,

L =
κ

σT
∝ λ2

e2D(λdis)2
1

T
(42)

diverges as T → 0.
Remaining within the hyperconductor phase, but departing

from the decoupled surface, the exponents for the electrical
and thermal conductivities will generally be modified to the
form: σ ∝ 1/T 1−2(2−∆X) and κ ∝ 1/T 1−2(2−∆X), where
deviations of ∆X from 2 encode the shift of the scaling di-
mensions of the scattering processes away from marginality.

2. AC Conductivity

The AC conductivities at commensurate fillings are found
similarly. From Appendix B 2 a,

(M̂u)
Je
I J

e
J

α (ω) = UJe
I
,αUJe

J
,α

[π2

32
ω + i

π

16
ω log(a2ω)

]

,

(43)

where a2 is proportional to the short-distance cutoff a. There-
fore, the AC electrical conductivity at T ≪ ω takes the form:

σ(ω) ∝ e2

iω
(

c1 + c2 log(a2ω)
)

+ c3ω
, (44)

for constants c1, c2 and c3. The finite contribution to the real
part of the electrical AC resistivity has given the Drude peak
finite width.

Disorder is required for finite AC thermal conductivity. Us-
ing the memory matrix element in Eq. (B27), we find:

κ(T/ω ≪ 1) ∝ T 3

ic4ωT 2 + c5Dω4
, (45)

for constants c4 and c5.

B. Incommensurate Fillings

When the filling is incommensurate, there is no scat-
tering process for which ∆kα = 0. In this case
both the electrical and thermal conductivities are gener-
ally finite and so we use the charge basis {Qp} =
{Je

R,1, ...J
e
R,N , J

e
L,1, ...J

e
L,N−1, PD}. Band-curvature correc-

tions contribute subleading terms to the temperature depen-
dence and will not be considered.

The ∆kα associated to the 46 umklapp scattering processes

defined by the m
(α)
I vectors are all generally different from

one another. Nevertheless, we set ∆kα = ∆k for all α in the
presentation of the results below.

1. DC Conductivity

The memory matrix elements for umklapp scattering at in-
commensurate filling is provided in Appendix B 2 b whose re-
sults we quote below.

Infinitesimally close to commensurate filling, ω ≤ ∆k ≪
T , we may borrow our previous results computed precisely at
commensurate filling with the understanding that ∆k 6= 0 in
the expression for F u

PD ,α in Eq. (B6). The leading contribu-
tion to the electrical conductivity is unchanged from Eq. (40).
However, the thermal conductivity is now finite even in the
absence of disorder,

κ(T ) ∝ T 2

λ2∆k2
. (46)

As expected, the thermal conductivity is divergent as com-
mensurability is restored, ∆k → 0. The Lorentz ratio is a
decreasing function of T 2 in the regime ∆k ≪ T as the tem-
perature is decreased.

As the temperature is lowered, we enter the regime T ≪
∆k in which the DC electrical and thermal memory matrix
elements take the asymptotic low-temperature form:

(M̂u)pqα (T ) =
π2

32
Up,αUq,α

∆k2

T
e−

∆k
2T . (47)
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The resulting DC electrical and thermal conductivities for
T ≪ ∆k:

σ(T ) ∝ e2

λ2
T

∆k2
e

∆k
2T ,

κ(T ) ∝ 1

λ2
T 4

∆k4
e

∆k
2T . (48)

In this case, the Lorentz ratio,

L ∝ T 2

e2∆k2
, (49)

vanishes as T → 0 in the absence of disorder. If we had
considered instead a more generic model in which the Fermi
momenta were not identical, the ∆k would then no longer
be same. This would imply that the leading contribution to
the memory matrix in Eq. (47) would be dominated by the
contribution with minimal ∆k.

Disorder, if present, eventually dominates the low-
temperature transport. The disorder DC electrical and thermal
memory matrix elements derived in Appendix B 3:

(M̂dis)
Je
I J

e
I

α =
2π3

3
ŨJe

I
,αŨJe

J
,αT

2, (50)

(M̂dis)
Je
IPD

α =0, (51)

(M̂dis)PDPD
α =

8π5

5
ŨPD,αŨPD ,αT

4, (52)

where the coefficients Ũp,αŨq,α are defined in Eqs. (B18).
For generic, perturbative values of the couplings, the disorder-
dominated regime occurs when the exponentially-vanishing
contribution to the memory matrix in Eq. (47) is overcome
by the disorder-dominated contribution above. The resulting
electrical and thermal conductivities in the presence of disor-
der for temperatures T ≪ ∆k:

σ(T ) ∝ e2

D(λdis)2
1

T 2
,

κ(T ) ∝ 1

D(λdis)2
1

T
. (53)

Away from the decoupled surface, the low-temperature results
will be modified as follows: σ = κ/T ∝ 1/T 2−2(2−∆X). In
this regime, the Lorentz ratio,

L ∝ 1

e2
, (54)

is constant, although the gapless metallic phase is certainly not

a Fermi liquid. The Wiedemann-Franz law is satisfied at the
lowest of temperatures for incommensurate fillings because
disorder is the dominant relaxation mechanism at incommen-
surate fillings for both the electrical and thermal currents.

2. AC Conductivity

The AC conductivity at incommensurate filling follows
straightforwardly from the previous analysis. For T ≤ ∆k ≪

ω, the AC electrical conductivity is unchanged from the previ-
ous result in Eq. (44). In fact, the real part of the AC electrical
resistivities can be found from inversion of the DC electrical
conductivities in Sec. IV B 1 by the replacement T → ω in
all algebraic prefactors and so we shall not write them out ex-
plicitly.

Let us now concentrate on the real part of the AC thermal
conductivities. For T ≪ ∆k ≪ ω,

κ(ω) ∝ 1

λ2
T 3

∆k2ω
. (55)

For T < ω ≪ ∆k with T ≪ (∆k2/ω) exp(ω−∆k
2T ) and in the

absence of disorder the thermal conductivity is dominated by
incommensurate umklapp scattering,

κ(ω) ∝ 1

λ2
T 3ω

∆k4
e

∆k−ω
2T , (56)

where we used Eq. (B17). Notice the divergent thermal con-
ductivity as T → 0. Finally, in the disorder-dominated regime
with T 2 ≪ Dω3,

κ(ω) ∝ 1

D

T 3

ω4
. (57)

V. CONCLUSIONS

In this paper, we have determined the DC and AC electri-
cal and thermal conductivity of the one-dimensional hyper-
conductor phase introduced in Ref. [1] in the presence of
umklapp and disorder-mediated scattering. For instance, we
have shown that this metallic phase exhibits a DC conduc-
tivity σ ∼ 1/T 1−2(2−∆X)) down to T = 0 without fine-
tuning at commensurate fillings, thereby manifesting the non-
Fermi liquid nature of the phase. In addition, we have dis-
cussed the relation between conservation laws and transport
which has allowed us to provide examples of violations of the
Wiedemann-Franz law. As a simple example, the thermal con-
ductivity is only finite in the presence of disorder, while the
electrical conductivity can be finite in a pure system at com-
mensurate filling with only umklapp scattering. More gener-
ally, we have seen how differing relaxation mechanisms for
the electrical and thermal currents can result in violations of
the Wiedemann-Franz law.

The power-law σ ∼ 1/T obtains along the ‘decoupled sur-
face’ of the hyperconductor when the interactions determined
by ṼIJ – see Sec. II – are block diagonal at commensurate
fillings. On this surface, ∆X = 2. The hyperconductor phase
survives within a finite window off the decoupled surface by
the addition of off-diagonal terms to ṼIJ mixing right-moving
and left-moving hyperconductor excitations. Departing from
the decoupled surface, but remaining within the hypercon-
ductor phase, the relaxation of the current is controlled by
46 umklapp scattering operators with conformal dimensions
(

3
2 + δ, 12 + δ

)

so that ∆X = 2 + 2δ, with δ determined
by the distance from the decoupled surface. The conductiv-
ity will generally behave σ ∼ 1/T 1−2(2−∆X) with ∆X > 2
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down to T = 0. For ∆X < 2, the zero-temperature per-
fect metal fixed point is unstable. However, the relevant per-
turbations are chiral and, therefore, cannot open a gap. At
low temperatures, they may strongly renormalize the veloci-
ties, shift the Fermi momenta, or otherwise modify the ground
state (without opening a gap) in such a manner that the dan-
gerous processes can no longer occur. In the marginal case,
∆X = 2, such an instability presumably occurs at sufficiently
large marginal coupling.

The large marginal coupling limit of this hyperconduc-
tor regime is an interesting testing ground for Hartnoll’s re-
cently conjectured60 lower bound on the diffusion constant,
D ≥ ~v2F /(kBT ). This bound applies to systems in the “in-
coherent” metallic regime where there is no overlap between
the electrical current and momentum operator. If satisfied, this
lower bound implies an upper bound on the coefficient of the
linear in temperature DC electrical resistivity that we found at
commensurate fillings.

The distinction between a hyperconductor and a supercon-
ductor is that a hyperconductor does not have long-ranged
order.61 This distinction is not apparent in zero-temperature
electrical transport, which is infinite in both cases. (It
does manifest itself in the differential tunneling conductance,
which vanishes algebraically with voltage in the hyperconduc-
tor but is strongly suppressed at voltages below the energy
gap in a superconductor – it would be zero but for Andreev
reflection.) However, the difference between a hyperconduc-
tor and a superconductor is clearer in low-temperature trans-
port. In a superconductor, the electrical resistivity vanishes
for all temperatures below the critical temperature, but in a
hyperconductor, the resistivity increases smoothly, with the
temperature dependence described above. In the incommen-
surate case, the resitivity is exponentially-small in tempera-
ture over a wide range of temperatures, has the feature of very
small (albeit not vanishing) resistivity without the threat of
a sudden large jump at a critical temperature. While a super-
conductor conducts electrical current without dissipation even
in the presence of impurities for T < Tc, a hyperconductor
has non-zero resistivity for T > 0, but strongly suppressed
– in the hyperconductor studied here, the impurity contribu-
tion is suppressed by a factor (T/TF )

2∆X−2 with ∆X ≥ 2.
Meanwhile, a hyperconductor has radically different thermal
transport than a superconductor. In a superconductor, ther-
mal currents are only carried by excited quasiparticles and
phonons. Therefore, the thermal conductivity divided by the
temperature vanishes with decreasing temperature. In partic-
ular, the electronic contribution to the thermal conductivity of
an s-wave superconductor has activated form. In a hypercon-
ductor, on the other hand, the thermal conductivity diverges
as a power-law at the lowest temperatures and diverges expo-
nentially with inverse temperature over a wide range of tem-
peratures. Thus, the hyperconductor phase, though neither a
superconductor nor a superfluid, has an electrical conductivity
that approaches that of the former and a thermal conductivity
that approaches that of the latter.

In the future, we plan to understand the 2D metallic phase
that emerges from an array of hyperconductor wires. This
wire array should exhibit diffusive finite-temperature trans-

port both along and transverse to the wires and be stable to
weak disorder. This paper makes clear the reason why finite
conductivities obtain along the wires. To understand the latter
two statements, we need only observe that such an array forms
a sort of ‘chiral transverse Fermi liquid’ in the sense that only
half of the Fermi surface excitations can hop between wires at
the lowest of energies, reminiscent of the chiral metals stud-
ied in Refs. [62–64] (see Ref. [65] for related work). In these
works62–64, it was found that a collection of wires, each host-
ing a chiral Fermi liquid (obtained from the edge excitations
of a collection of integer quantum Hall systems layered in a
transverse direction), exhibits diffusive transport transverse to
the wires and does not localize. One important difference be-
tween these constructions and the 2D hyperconductor is the
diffusive, as opposed to ballistic, finite-temperature transport
exhibited by the hyperconductor along the wires.
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Appendix A: Static Susceptibility Matrix

The static susceptibility matrix χ̂pq = 1
LG

R
QpQq

(ω = 0)

where the conserved charges Qp and Qp of the action Sb in-
volved in the retarded Green’s functionGR

QpQq
are either one

of the chiral electrical currents,

Je
I =

e

2π
sgn(N − I)

∫

x

VIJ∂xφJ

=
e

2π
sgn(N − I)

∫

x

VIJOJa∂xXa, (A1)

or the Dirac momentum,

PD =− 1

4π

∫

x

sgn(N − I)∂xφI∂xφI

=− 1

4π
sgn(N − a)

∫

x

∂xXa∂xXa. (A2)

In the above equations, x ∈ (−L,L) with the length of the
system L → ∞, sgn(Z) = +1 for Z ≥ 0 and sgn(Z) = −1
for Z < 0, and Je

I = Je
R,I for I = 1, . . . , N and Je

I =
Je
L,N−I for I = N + 1, . . . , 2N with N = 23. Note that I is

not summed over on the right-hand side of Eq. (A1). We have
introduced the fields φI = OIaXa with OIa ∈ SO(23, 23)
that diagonalize the action Sb, tuned via the interaction matrix
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VIJ to the asymmetric Leech liquid point,

Sb =
1

4π

∫

t,x

[

sgn(N − I)∂tφI∂xφI − VIJ∂xφI∂xφJ

]

=
1

4π

∫

t,x

[

sgn(N − a)∂tXa∂xXa − v∂xXa∂xXa

]

.

(A3)

Henceforth, we set the velocity v = 1. To isolate the lead-
ing temperature and frequency dependence of the conductiv-
ity, we need only compute the static susceptibility with respect
to Sb.

The bosonic action Sb enjoys the particle-hole symmetry
φI → −φI , Xa → −Xa. Thus, the retarded Green’s func-
tions GR

Je
I
PD

= 0 when computed with respect to Sb and so

we focus upon the Je
I − Je

J or PD − PD static susceptibil-
ities. Scattering interactions at incommensurate fillings, in-
teractions mediated by disorder, and higher-derivative band
structure corrections to Sb generally break particle-hole sym-
metry and, thus, induce a non-zero overlap between the elec-
trical currents and the momentum. We ignore such overlaps
as they contribute higher-order corrections to the conductiv-
ity than that to which we choose to work. At commensurate
fillings and in the absence of higher-derivative corrections,
particle-hole symmetry is preserved.

To compute the retarded correlator, we exploit the relation
GR

QpQq
(ω) = GE

QpQp
(iωE → ω + iδ) with the infinitesi-

mal δ > 0 between the retarded Green’s function and the
Euclidean Green’s function at Euclidean frequency ωE . The
frequency ω of the retarded correlator has been analytically
continued to the upper-half plane. We shall often simply

set δ = 0 without mention. Thus, the static susceptibility
χ̂pq = 1

LG
E
QpQp

(ωE = 0).

We begin with the Je
I − Je

J components of the static sus-
ceptibility,

χ̂Je
I
Je
J
≡ 1

L
lim

ωE→0

∫

τ

eiωEτ
〈

Je
I (τ)J

e
J (0)

〉

=
e2Mab

IJ

4π2L
lim

ωE→0

∫

τ,x,y

eiωEτ
〈

X ′
a(τ, x)X

′
b(0, y)

〉

,

(A4)

where X ′(τ, x) ≡ ∂xX(τ, x),

Mab
IJ =sgn(N − I)sgn(N − J)VIKVJLOKaOLb

=sgn(N − I)sgn(N − J)(O−1)aI(O
−1)bJ , (A5)

the Euclidean time τ ∈ [0, 1/T ] and the brackets denote the
thermal average at temperature T . In simplifying Eq. (A5),
we have made use of the identityOIaVIJOJb = δab. Because
Sb is diagonal when expressed in terms of the Xa fields, the
only non-zero correlators in Eq. (A4) occur when a = b and
we obtain the well-known result,47

〈X ′
a(τ, x)X

′
b(0, 0)〉 =− δab

( πT

sinh
(

πT (x− sgnaiτ)
)

)2

,

(A6)

where we have used the short-hand, sgna = sgn(N − a). It
will be convenient to calculate a slightly more general Fourier
transform than Eq. (A4) by replacing the exponent in Eq.
(A6), 2 → 2h with h assumed to be half-integral. Thus, we
consider

1

L

∫

τ,x,y

eiωEτ
( πT

sinh
(

πT (x− y − sgnaiτ)
)

)2h

=− (πT )2h

2L

∫

x+,x−,τ

eiωEτ 1
(

sinh
(

πT (x− − sgnaiτ)
)2h

=− π2h(2T )2h−1

∫

x−

esgna2πTx−

1

2πi

∮

|ζ|=1

ζ
ωEτ

2πT
+h−1

(ζ − esgna2πTx−)2h

=− T 2h−1

2ωE

(2π)2h

(2h− 1)!

2h−1
∏

i=1

( ωE

2πT
+ h− i

)

. (A7)

In the first line, we made the change of variables, x± = x± y
and then integrated over x+; in the second line, we made the
change of variable ζ = exp(2πT iτ), performed the contour
integration about the circle |ζ| = 1, and then integrated over
x−. Thus, we find for the current-current static susceptibility:

χ̂Je
I
Je
J
=
e2

4π

2N
∑

a=1

Maa
IJ

=
e2

4π
sgn(N − I)sgn(N − J)VIJ , (A8)

where I, J are not summed over and we used the relation
(O−1)T .(O−1) = V .

Following an analogous procedure, we now calculate the
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PD − PD static susceptibility,

χ̂PDPD
≡ 1

L
lim

ωE→0

∫

τ

eiωEτ
〈

PD(τ)PD(0)
〉

=
2

16π2L
sgn(N − a)sgn(N − b)

×
∫

τ,x,y

eiωEτ
〈

X ′
a(τ, x)X

′
b(0, y)

〉2

=
1

8π2L

∫

τ,x,y

eiωEτ
〈

X ′
a(τ, x)X

′
a(0, y)

〉2

,

(A9)

where we used Wick’s theorem in going from the first to the
second line and the fact that the only non-zero correlators oc-
cur when a = b in going from the second to the third line.
We may now borrow the general result in Eq. (A7) by setting
h = 2 to conclude:

χ̂PDPD
=
Nπ2T 2

6
. (A10)

Appendix B: Memory Matrix Elements

Recall the definition of the memory matrix reviewed Sec.
III C which we repeat here for convenience. The memory ma-

trix M̂(ω) (the temperature dependence is left implicit) is de-
fined as follows:

M̂(ω) =
∑

α

(

λ2αM̂u
α(ω) + (λdisα )2DM̂dis

α (ω)
)

, (B1)

(M̂u)pqα =
1

L

〈F u
p,α;F

u
q,α〉ω − 〈F u

p,α;F
u
q,α〉ω=0

iω
, (B2)

(M̂dis)pqα =
1

L

〈F dis
p,α;F

dis
q,α〉ω − 〈F dis

p,α;F
dis
q,α〉ω=0

iω
. (B3)

Here, F u
q,α = i

λα
[Hu

α,Qq], F
dis
q,α = i

λdis
α

√
D

[

Hdis
α ,Qq

]

, and

Qq is a conserved charge (either Je
R/L,I orPD). 〈F u

p,α;F
u
q,α〉ω

and 〈F dis
p,α;F

dis
q,α〉ω are retarded finite-temperature Green’s

functions evaluated using Sb. λα and λdisα parameterize the
umklapp scattering and coupling to disorder, respectively, and
D is the disorder variance of the Gaussian-correlated disor-
der, ξα(x) = 0, ξα(x)ξ∗β(y) = Dδαβδ(x− y). For simplicity,

we take λα = λ and λdisα = λdis for all α. M̂u contains
the contributions to the memory matrix from umklapp scatter-

ing, while M̂dis contains the contributions from the disorder-
mediated interaction. We stress that the form of the memory
matrix given above is correct to leading order in the scattering
interaction. See Refs. [40, 55–58] for further discussion.

1. Evaluation of the F u,dis
p,α

To compute the F u,dis
p,α commutators, we make use of the

equal-time commutators:
[

eim
(α)
J

φJ (x),
φ′I(y)

2π

]

= m
(α)
I sgnIδ(x− y)eim

(α)
J

φJ (x).

(B4)

We find for the commutatorsF u
p,α of the Qp with the umklapp

scattering operators:

F u
Je
I ,α

= −2e sgn(N − I)sgn(N − J)VIJm
(α)
J

×
∫

x

1

a2
sin

(

∆kαx+m
(α)
K φK

)

, (B5)

F u
PD ,α = 2∆kα

∫

x

1

a2
sin

(

∆kαx+m
(α)
K φK

)

,

(B6)

where the momentum mismatch∆kα ≡
∑

I m
(α)
I kF−p(α)G,

G is a basis vector for the reciprocal lattice, and we have taken
the Fermi momenta in all channels to be equal. Recall that a
is a short-distance cutoff. We see that the Dirac momentum
PD commutes with the umklapp operators when ∆kα = 0,
i.e., when the translation symmetry of the low-energy effec-
tive theory is preserved. The result for [Hu

α, PD] is found us-
ing the integration by parts,

∫

x

ei∆kαxm
(α)
K

2
{φ′K , eim

(α)
L φL} ≡ −i

∫

x

ei∆kαx∂xe
im

(α)
L φL

= −∆kα

∫

x

ei∆kαx+im
(α)
L

φL ,

(B7)

where we have dropped the boundary term and have defined
the derivative operator on the right-hand side of the first line

via a symmetric ordering prescription: ∂x exp(im
(α)
I φI) ≡

i
2m

(α)
J

(

∂xφJ exp(im
(α)
I φI) + exp(im

(α)
I φI)∂xφJ

)

.

The commutators F dis
p,α of the Qp with the disorder-

mediated interactions are computed in a similar fashion:

F dis
Je
I ,α

=
ie√
D
sgn(N − I)sgn(N − J)VIJm

(α)
J

×
∫

x

[

ξα(x)
1

a2
eim

(α)
K

φK − h.c.
]

, (B8)

F dis
PD ,α = − 1√

D
v2

∫

x

[(

∂xξα(x)
) 1

a2
eim

(α)
K

φK + h.c.
]

.

(B9)

We see that the umklapp commutators in Eqs. (B5, B6) may
be obtained from the disorder commutators in Eqs. (B8, B9)
by substituting ξα(x) = exp(i∆kαx).

2. Evaluation of the (M̂u)pqα

We begin with the evaluation of the retarded two-point cor-
relation functions 〈F u

p,α;F
u
q,β〉ω. To leading order in the umk-
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lapp (and disorder) perturbations, these correlators are only
non-zero when α = β because of the linear independence of

the m
(α)
I so we set α = β in the remainder. Also, notice that

〈F u
p,α;F

dis
q,β〉ω = 0 because the disorder we study has zero

mean, ξα(x) = 0. We simplify the following expressions by
introducing the coefficients:

UJe
I
,α =− 2esgn(N − I)sgn(N − J)VIJm

(α)
J ,

UPD ,α =2v2∆kα. (B10)

We see that UPD ,α = 0 for commensurate fillings when
∆kα = 0 because translation invariance in the low-energy

effective theory Slin (interpreted as Dirac fermions created
about zero-momentum) is preserved, resulting in divergent
thermal conductivity.

Just as in Appendix A, we compute the retarded corre-
lators by Fourier transforming the Euclidean real-space cor-
relation functions and then analytically continuing the Mat-
subara frequencies ωE to real frequencies ω by way of the
formula, GR

Fu
p,αFu

q,α
(ω) = GE

Fu
p,αFu

q,α
(iωE → ω + iδ) ≡

〈F u
p,α;F

u
q,α〉ωE→−iω+δ .

Thus, the Fourier transformed Euclidean correlation func-
tions take the form:

1

L
〈F u

p,α;F
u
q,α〉ωE

=
Up,αUq,α

L

1

a4

∫

x,y,τ

eiωEτ
〈

sin
(

∆kαx+m
(α)
K φK(τ, x)

)

sin
(

∆kαy +m
(α)
L φL(0, y)

)〉

=
Up,αUq,α

4L

∫

x,y,τ

eiωEτ
[

ei∆kα(x−y)
〈eim

(α)
K φK(τ,x)

a2
e−im

(α)
L φL(0,y)

a2

〉

+e−i∆kα(x−y)
〈e−im

(α)
K φK(τ,x)

a2
eim

(α)
L φL(0,y)

a2

〉]

=
Up,αUq,α

2L

∫

x,y,τ

eiωEτ cos
(

∆kα(x− y)
) (πT )4

sinh3
(

πT ((x− y)− iτ)
)

sinh
(

πT ((x− y) + iτ)
) ,

(B11)

where x, y ∈ (−L,L) with L → ∞ and τ ∈ [0, 1/T ]. The
first equality follows from direct substitution of Eqs. (B5,
B6); for the second equality, we have only retained the non-
zero terms in the product; for the third equality, we have used
the standard thermal real-space Euclidean two-point func-
tion of a dimension (∆R,∆L) = (3/2, 1/2) vertex operator
1
α2 exp(im

(α)
J φJ ).

47 It is a great simplification of the calcula-
tion that all vertex operators considered have the same scaling
dimension. If only a fraction of the operators necessary to
relax the currents had dimension (3/2, 1/2) and the remain-
ing operators were of higher dimension, it would be straight-

forward to calculate their effects by methods similar to those
presented here. These operators would give subleading con-
tributions to the memory matrix leading to slower relaxation
of some conserved currents. As a result these operators would
give the dominant contributions to the matrix of conductivi-
ties.

Similar to Appendix A, we evaluate Eq. (B11) by first mak-
ing the change of variables x± = x ± y and ξ = e2πiTτ . We
assume a short-distance cutoff 0 < a < |x− y|. The integral
over x+ factors out, canceling the 1/L prefactor, and we are
left with the following integral to evaluate:

1

L
〈F u

p,α;F
u
q,α〉ωE

=− 4π4T 3Up,αUq,α

∫

x−

e−2πTx− cos(∆kαx−)
1

2πi

∮

|ζ|=1

ζ
ωE
2πT

+1

(ζ − e−2πTx−)3(ζ − e2πTx−)

=
π2TUp,αUq,α

4

∫ ∞

a

dx−
e−ωEx− cos(∆kαx−)

sinh3(2πTx−)

[

4π2T 2 + ω2
E sinh2(2πTx−) + πTωE sinh(4πTx−)

]

.

(B12)

Next, we Wick rotate, ωE → −iω + δ, Eq. (B12) to obtain the retarded Green’s function,
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1

L
〈F u

p,α;F
u
q,α〉ω =

π2TUp,αUq,α

4

∫ ∞

a

dx−
e−δx−+iωx− cos(∆kαx−)

sinh3(2πTx−)

[

4π2T 2 + (−iω + δ)2 sinh2(2πTx−)

+πT (−iω + δ) sinh(4πTx−)
]

. (B13)

The remaining integral in Eq. (B12) can be evaluated ex-

actly to obtain the memory matrix elements (M̂u)pqα defined
in Eq. (B2). The exact expression is rather complicated and
so we shall examine it in various low-frequency and low-
temperature limits for both commensurate and incommensu-
rate fillings. To study the low-frequency and low-temperature

behavior of (M̂u)pqα , we first perform two expansions. First,
we expand the result as the short-distance cutoff a→ 0, keep-
ing only the singular and finite non-zero terms. Any a → 0
singularities are a reflection of the short-distance divergences
of the correlation function. Second, we expand to linear or-
der in δ, however, we find it sufficient to study the resulting
expression at δ = 0 as the real part of the memory matrix is
generally non-zero at finite ω and finite T .

a. Commensurate Fillings

For commensurate fillings we set ∆kα = 0. For ω/T ≪ 1,
the expression for the memory matrix element at commensu-
rate fillings has the following behavior,

(M̂u)pqα

(ω

T
≪ 1

)

= Up,αUq,α

[π4

32
T + i

πω

16
log(a1T )

]

,

(B14)

where we have dropped all O(δ) terms and absorbed all con-
stants via a redefinition of the cutoff a → a1. We shall make
these multiplicative redefinitions of the short-distance cutoff
a → ai in each of the following expressions. In the opposite
regime when T/ω ≪ 1, we find the following expression for
the memory matrix elements at commensurate filling,

(M̂u)pqα

(T

ω
≪ 1

)

= Up,αUq,α

[π2

32
ω + i

π

16
ω log(a2ω)

]

,

(B15)

where a1 6= a2.

b. Incommensurate Fillings

When the filling is incommensurate, ∆kα 6= 0. We shall
study the memory matrix for frequencies and temperatures
ω, T ≪ ∆kα.

For ω/T ≪ 1, the expression for the memory matrix ele-
ments at incommensurate fillings have the following behavior,

(M̂u)pqα

(ω

T
≪ 1

)

=Up,αUq,α

[π2

32

( (∆kα)
2

T
+ 4π2T

)

e−
∆kα
2T

+i
πω

16
log(a3∆kα)

]

,

(B16)

where we have only retained the leading term present for T →
0. Precisely at T = 0 (but first ω → 0), the real part of the

(M̂u)pqα

(

ω
T ≪ 1

)

vanishes when ∆kα 6= 0 and we obtain a

purely imaginary memory matrix which implies a finite Drude
weight. When T/ω ≪ 1, the incommensurate memory matrix
takes the form,

(M̂u)pqα

(T

ω
≪ 1

)

=Up,αUq,α

[π2

16

( (∆kα)
2

ω
+ ω

)

e
ω−∆kα

2T

+
iπ

32

(

ω log
(

a24((∆kα)
2 − ω2)

)

+
(∆kα)

2

ω
log

(

1− ω2

(∆kα)2

))]

.

(B17)

While we have studied the memory matrix for incommen-
surate fillings in the limit ω, T ≪ ∆kα, we have checked
that the initial expression obtained before taking the low-
frequency or low-temperature limits reverts to the commen-
surate values by taking ∆kα = 0.

3. Evaluation of the (M̂dis)pqα

Because the same vertex operators are used in both the
umklapp and disorder-mediated interactions, the calculation

of the disorder memory matrix elements (M̂dis)pqα will be
very similar to that of the previous section. We begin with
the evaluation of the retarded two-point correlation functions
〈F dis

p,α;F
dis
q,α〉ω which we determine by analytically continuing

the Euclidean correlator 〈F dis
p,α;F

dis
q,α〉ωE

. We again simplify
the ensuing expressions by introducing the coefficients,

ŨJe
I
,α =i e sgn(N − I)sgn(N − J)VIJm

(α)
J ,

ŨPD ,α =− v2, (B18)

that occur in the disorder commutators in Eqs. (B8,B9).

Unlike the correlators of the commutators involved in
the umklapp calculation, we need to examine each set
of correlators 〈F dis

Je
I ,α

;F dis
Je
J ,α

〉ωE
, 〈F dis

Je
I ,α

;F dis
PD ,α〉ωE

, and

〈F dis
PD ,α;F

dis
PD ,α〉ωE

in turn. First consider:
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1

L
〈F dis

Je
I ,α

;F dis
Je
J ,α

〉ωE=iω+δ =−
(πT )4ŨJe

I
,αŨJe

J
,α

LD

∫

x,y,τ

eiωEτ ξα(x)ξ
∗
α(y) + ξ∗α(x)ξα(y)

sinh3
(

πT ((x− y)− iτ)
)

sinh
(

πT ((x− y) + iτ)
)

=
π2T ŨJe

I
,αŨJe

J
,α

4LD

∫

x+

∫ ∞

a

dx−
e(−δ+iω)x−

sinh3(2πTx−)

[

ξα(x)ξ
∗
α(y) + ξ∗α(x)ξα(y)

]

×
[

4π2T 2 + (−iω + δ)2 sinh2(2πTx−) + πT (−iω + δ) sinh(4πTx−)
]

, (B19)

where x± = x ± y and we have performed identical manip-
ulations to those explained in the previous section to evaluate
Eqs. (B11), (B12), and (B13).

To explicitly evaluate the integrals over x+ and x− in Eq.
(B19), we must choose a form for the functions ξα(x) pa-
rameterizing the disorder. As we have discussed, we have
chosen to consider zero-mean Gaussian-correlated disorder,
ξ(x) = 0, ξα(x)ξ∗α(y) = Dδ(x − y). To make contact
with the pure system calculation of umklapp scattering at
incommensurate fillings, we comment that this form of the
disorder may be obtained by choosing a disorder potential,

ξα(x) =
∫

∆pα
ξ̃(∆pα)e

i∆pαx with ξ̃(∆pα) = 1. We see that

incommensurate fillings can be understood as a particular dis-
order realization with ξ̃(∆pα) = δ(∆pα −∆kα).

Before integrating over x+ and x− in Eq. (B19), we first
disorder average. This allows us to again factor out the x+
integral to cancel the 1/L prefactor and also to replace the
product of disorder potentials ξα(x) inside the first brackets
by 2Dδ(x− y), where the δ(x− y) is understood to evaluate
all terms containing x− = a, the short-distance cutoff. We
find:

1

L
〈F dis

Je
I
,α;F

dis
Je
J
,α〉ω =

π2T ŨJe
I
,αŨJe

J
,α

2

e(−δ+iω)a

sinh3(2πTa)

[

4π2T 2 + (−iω + δ)2 sinh2(2πTa) + πT (−iω + δ) sinh(4πTa)
]

.

(B20)

Next, consider 1
L〈F dis

Je
I ,α

;F dis
PD ,α〉ω. The calculation of this

correlator is identical to the previous one except that the over-
all coefficient now involves the ŨJe

I
,αŨPD,α and the product

of disorder potentials in the first line of Eq. (B19) is replaced:

ξα(x)ξ
∗
α(y) + ξ∗α(x)ξα(y) →ξα(x)∂yξ

∗
α(y)− ξ∗α(x)∂yξα(y)

=∂y

(

ξα(x)ξ
∗
α(y)− ξ∗α(x)ξα(y)

)

.

(B21)

Upon disorder averaging, the term in the parentheses in Eq.
(B21) vanishes. Thus, we find:

1

L
〈F dis

Je
I
,α;F

dis
PD ,α〉ω = 0. (B22)

There is no overlap to leading order in the disorder-variance
D between the electrical and thermal currents.

Finally, we evaluate 1
L 〈F dis

PD ,α;F
dis
PD ,α〉ω by replacing in Eq.

(B19):

ŨJe
I
,αŨJe

J
,α →ŨPD ,αŨPD ,α,

ξα(x)ξ
∗
α(y) + ξ∗α(x)ξα(y) →∂xξα(x)∂yξ

∗
α(y) + h.c.

(B23)

Disorder averaging, performing the integration by parts with
respect to ∂x/y = ∂x+ ± ∂x−

, discarding all boundary terms,
and evaluating x− = a, we find:

1

L
〈F dis

PD ,α;F
dis
PD ,α〉ω =

π2T ŨPD
ŨPD

2
∂x−

∂x−

[ e(−δ+iω)x−

sinh3(2πTx−)

[

4π2T 2 + (−iω + δ)2 sinh2(2πTx−)

+πT (−iω + δ) sinh(4πTx−)
]]∣

∣

∣

x−=a
(B24)

Equipped with the above correlation functions, we may now evaluate the memory matrix elements (M̂dis)
Je
I J

e
I

α and
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(M̂dis)PDPD
α . As before, we determine these memory ma-

trix elements by expanding about the limit a → 0 and subse-
quently expanding about δ = 0. It is sufficient to set δ = 0.
In summary, we find:

(M̂dis)
Je
I J

e
I

α =ŨJe
I
,αŨJe

J
,α

[2π3

3
T 2 +

π

6
ω2 − i

3π

24

ω

a

]

, (B25)

(M̂dis)
Je
IPD

α =0, (B26)

(M̂dis)PDPD
α =ŨPD ,αŨPD ,α

[8π5

5
T 4 +

2π3

3
T 2ω2 +

π

15
ω4 + i

π

15

ω

a3

]

. (B27)

We notice that the logarithmic singularities that occurred
in the umklapp memory matrix elements for a = 0 are re-
placed by power-law singularities. Such singularities reflect
the short-distance divergences as correlation function inser-
tion points become coincident. They only occur in the imag-
inary part of the memory matrix elements at finite frequen-
cies. Our prescription is to remove such power-law diver-
gences by hand and concentrate on the real parts of the mem-
ory matrix elements that determine the long-wavelength re-
sponse of the system. This prescription leads to agreement
with related computations66,67 studying the tunneling conduc-
tance between quantum wires at a single point contact.

Appendix C: N̂ Matrix

In this appendix, we show that N̂ = 0 to quadratic order in
the umklapp λ and disorder λdis couplings using rather gen-
eral considerations. Recall the definition:

(N̂)pq ≡ χ̂pq̇ =
(

Qp, i[
∑

α

(Hu
α +Hdis

α ),Qq])
)

. (C1)

1. Umklapp Contributions

First, consider the contribution to N̂ from umklapp
processes Hu

α. Observe that i[Hu
α,Qq] = λF u

q,α and

i[Hdis
α ,Qq] =

√
Dλdis, where Qq ∈ {Je

I , PD}, so that by us-
ing the definition of the static susceptibility and conventions
in Appendix A:

(N̂)pq =
λ

L
lim

ωE→0

∫

τ

eiωEτ 〈Qp(τ)F
u
q,α(0)〉, (C2)

and likewise for the disorder contribution studied momentar-
ily where the bracket denotes the Euclidean correlation func-
tion at temperature T . At leading order in λ, the above two-
point function 〈Qp(τ)F

u
q,α(0)〉 vanishes when computed with

respect to Sb; more specifically, 〈∂xφI(τ, x)eim
(α)
J φJ (0,y)〉 =

0 and 〈∂xφI(τ, x)∂xφI(τ, x)eim
(α)
J φJ (0,y)〉 = 0 when com-

puted with respect to Sb. At quadratic order, λ2, there is the
correction,

δ(N̂)pq =
λ2

L
lim

ωE→0

∫

τ,τ ′,z

eiωEτ 〈Qp(τ)F
u
q,α(0)H

u
α(τ

′, z)〉.

(C3)

The above correlation function, computed with respect to Sb

factorizes, into the sum of two three-point functions:

λ2

L

∫

τ,τ ′,z

eiωEτ 〈Qp(τ)F
u
q,α(0)H

u
α(τ

′, z)〉 ∝ iλ
2(πT )5

L

∫

τ,τ ′,x,y,z

eiωEτ
[C1e

−i∆kαXzy − C2e
i∆kαXzy

sinh
(

πT (Xzy + iτ ′)
)

]

× 1

sinhh
(

πT (Xxy − iτ)
)

sinhh
(

πT (Xxz − iτ + iτ ′)
)

sinh3−h
(

πT (Xzy − iτ ′)
) ,

(C4)

for constants C1 = (−1)hC2 (whose precise magnitude will
not be required) equal to the operator product coefficients for

the fusion, Qp exp(im
(α)
I φI) ∼ exp(im

(α)
I φI), and h = 1

when Qp = Je
I and h = 2 when Qp = PD. Above, we have
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introduced the “difference coordinates”Xxy = x− y,Xxz =
x−z,Xzy = z−y. At ωE = 0, we notice that the integrand is
odd under the reflection of all spatial and temporal coordinates
followed by the shifts, τ, τ ′ → τ − 1/T, τ ′− 1/T . Therefore,
the integral is zero at ωE = 0 and the quadratic contribution

to N̂ from umklapp processes vanishes.

2. Disorder Contributions

Next, consider the contributions to N̂ from disorder-
mediated processes Hdis

α . The term linear in λdis again van-
ishes for the same reason as before. At quadratic order, we
consider Eq. (C3) with the superscript u replaced by dis. The
form of the resulting three-point function is very similar to
that which appears in Eq. (C4). The difference is due to the
disorder ξα appearing in the disorder commutators Eqs. (B8,
B9) and Hdis

α . For F dis
q,α = F dis

Je
I
,α, we disorder average and

insert δ(y − z) into integrand in Eq. (C4) at ωE = 0: when
Qp = Je

I , the three-point function vanishes using the above
reflection and translation argument; when Qp = PD, the
three-point function vanishes identically after setting y = z
and using C1 = C2 for h = 2. For F dis

q,α = F dis
PD ,I , we disor-

der average, replace the relative minus sign between C1 and
C2 by (+1), and insert ∂yδ(y − z) into the integrand in Eq.
(C4): when Qp = Je

I , the integrand vanishes identically sim-
ilar to PD before; when Qp = PD , we may again apply the
reflection and translation argument to conclude that the inte-

gral vanishes at ωE = 0. Thus, we may safely ignore the N̂
matrix in our transport calculations.

Appendix D: Exact Marginality Along the ‘Decoupled Surface’

In this Appendix, we argue perturbatively for the exact
marginality, along the decoupled surface, of the dimension
(∆R,∆L) = (3/2, 1/2) operators used to relax the electrical
and thermal currents. Our argument strictly applies in the scal-
ing limit in which only classically marginal and relevant in-
teractions are retained in the low-energy effective theory with
irrelevant interactions being set to zero.

Recall from Sec. II that the decoupled surface is a subspace
within the hyperconductor phase in which the interaction ma-
trix ṼIJ is block diagonal. The scaling dimensions of opera-
tors are independent of ṼIJ when the theory lies on the decou-
pled surface; however, scaling dimensions vary continuously
with ṼIJ upon departing from the decoupled surface.

We consider the collection of operators Oα =

cos
(

m
(α)
I φI

)

with scaling dimension equal to (3/2, 1/2)

along the decoupled surface whose coupling constants we
denote by gα . These operators are exactly marginal if their
beta function βgα vanishes to all orders in the couplings of
the theory,

ġα = βgα , (D1)

where the dot denotes a variation of the coupling with respect
to the renormalization group scale. We will understand the

contributions to βgα as arising from corrections to scaling
(i.e., conformal perturbation theory) of the zero-temperature
two-point function,

〈Oα(z, z̄)Oα(0)〉 ∼ z−1z̄−3, (D2)

for z = x+ iτ, z̄ = x− iτ computed with respect to the fixed
point action Sb in Eq. (4).47

First, observe that Oα has unit spin, ∆R − ∆L, under the
SO(2) = U(1) rotation symmetry of the Euclidean theory.
When the action is perturbed,Sb → Sb+gα

∫

Oα, the SO(2)
symmetry is broken. We may view gα as a spurion – a “field”
that transforms oppositely to the operator it multiplies so that
the product is an SO(2) singlet – of this broken rotational
symmetry. This means that gα may be understood to have
spin-(-1). With this understanding, we may constrain the form
of βgα .

The left-hand side of Eq. (D1) is linear in gα and so the
equality implies that βgα also carries spin-(-1). Thus, we
must determine what spin-1 combination of operators could
possibly contribute to βgα .48 Working in the scaling limit
where all irrelevant operators are ignored allows us to dis-
regard any contribution from high-dimension operators with
negative spin. There are no marginal spin-(-1) operators be-
cause the lowest scaling dimension of a right-moving vertex
operator is equal to 3/2. There do exist spin-(-1) relevant and
spin-(-2) marginal operators which are quadratic and quartic
in the fermions of the left-moving sector along with marginal
spin-0, i.e., dimension (1, 1) operators, and spin-2 operators
in addition to the marginal Oα operators. Perturbations by
spin-(-1) operators can be absorbed by a field redefinition of
the left-moving fermion sector and so we ignore such defor-
mations.

A general contribution to the Oα two-point function con-
tainsN−2 spin-(-2) insertions,N0 spin-0 insertions,N2 spin-2
insertions, and NOβ

Oβ insertions. Note that we are collec-
tively referring to all additional insertions of the Oβ operators
as NOβ

. In order for βOα
to carry spin equal to -1, we require

the number of insertions of various operators to satisfy:

2N−2 −NOβ
− 2N2 = −1. (D3)

Thus, NOβ
should be odd.

All operators in the left-moving sector can be built from
products of the fermion operators and their spatial derivatives.
Since the left-moving sector is describable in terms of inter-
acting chiral fermions, fermion parity constrains any non-zero
contribution to the Oα two-point function to contain an even
number of left-moving fermion operators:

4N−2 +NOβ
+ 2N2 + 2N0 ∈ 2Z. (D4)

The first contribution to the left-hand side of Eq. (D4) as-
sumes an operator quartic in the fermion operators. An opera-
tor that is only quadratic with a single spatial derivative acting
on one of the fermions might also contribute. However, this
has no effect on the conclusion that the parity of the left-hand
side must be even.

Eqs. (D3) and (D4) are not consistent with one another: the
former requires NOβ

to be odd, while the latter requires NOβ
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to be even. The only resolution is that the Oα operators are
exactly marginal in the scaling limit and so βgα = 0. There is
likewise no renormalization of the Luttinger liquid parameters
of Sb due to the spin-1 Oα operators.

Exact marginality of the dimension (3/2, 1/2) operators
and the Luttinger parameters along the decoupled surface is
a consequence of the chirality or spin-1 nature of the Oα op-
erators which is ultimately due to the asymmetric nature of
the left-moving and right-moving excitations in the asymmet-

ric shorter Leech liquid underlying the hyperconductor stud-
ied in this paper. The de-coupled renormalization group equa-
tions described above should be contrasted with those of the
Kosterlitz-Thouless transition that involve a dimension (1, 1)
vertex operator and the Luttinger parameter.56 It is this differ-
ence that results in the logarithmic corrections to scaling in the
expressions for the conductivities in the work of Giamarchi on
transport in a 1D Luttinger liquid.36
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