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We first provide a formula to calculate the probability of occurrence of different configurations
(formation probabilities) in a generic free fermion system. We then study the scaling of these
probabilities with respect to the size in the case of critical transverse-field XY-chain in the σz bases.
In the case of the transverse field Ising model, we show that all the ”crystal” configurations follow
the formulas expected from conformal field theory (CFT). In the case of critical XX chain, we show
that the only configurations that follow the formulas of the CFT are the ones which respect the
filling factor of the system. By repeating all the calculations in the presence of open and periodic
boundary conditions we find further support to our classification of different configurations. Using
the developed technique, we also study Shannon information of a subregion in our system. In this
respect we distinguish particular configurations that are more important in the study of the scaling
limit of the Shannon information of the subsystem. Finally, we study the evolution of formation
probabilities, Shannon information and Shannon mutual information after a quantum quench in free
fermion system. In particular, for the intial state considered in this paper, we demonstrate that the
Shannon information after quantum quench first increases with the time and then saturates at time
t∗ = l

2
, where l is the size of the subsystem.

PACS numbers: 03.67.Mn,11.25.Hf, 05.70.Jk

I. INTRODUCTION

Studying correlation functions in many-body systems
has been considered one of the main topics in statisti-
cal mechanics and condensed matter physics for many
years. Although, for a long-time the main quantities of
interest were the correlation functions of local observables
the recent interest in calculating non-local quantities, es-
pecially the entanglement entropy, has made significant
changes. One of the main reasons for this interest (at
least in 1 + 1 dimensional critical systems) is that by
calculating some of the non-local observables one can de-
rive the central charge of the system without referring to
the velocity of sound, for the case of entanglement en-
tropy see [1]. Another non-local quantity which has been
studied for many years with Bethe ansatz techniques and
some other methods is emptiness formation probability
[2–7]. In the case of spin chains, it is the probability of
finding a sequence of up spins in the system (note that
almost all of the studies in this regard concentrate on
the σz bases). These studies show that this probability,
with respect to the sequence size, decreases like a Gaus-
sian in the case of systems with U(1) symmetry [3] and
exponentially in other cases [5, 6]. In the critical cases,
the Gaussian and exponential are accompanied with a
power-law decay with a universal exponent. In a recent
development [7] it was shown that for those critical sys-
tems without U(1) symmetry this universal exponent is
dependent on the central charge of the system. The ar-
gument is based on connecting the configuration of all
spins up to some sort of boundary conformal field the-

ory. One should notice that the argument works just for
those bases that can be connected to boundary conformal
field theory.
In an apparently connected studies recently many au-

thors investigated the Shannon information of quantum
systems in different systems [8–18]. The Shannon in-
formation is defined as follows: Consider the normal-
ized ground state eigenfunction of a quantum spin chain
Hamiltonian |ψG〉 =

∑

I aI |I〉, expressed in a particu-
lar local bases |I〉 = |i1, i2, · · · 〉, where i1, i2, · · · are the
eigenvalues of some local operators defined on the lattice
sites. The Shannon entropy is defined as

Sh = −
∑

I

pI ln pI , (1)

where pI = |aI |2 is the probability of finding the sys-
tem in the particular configuration given by |I〉. As it is
quite clear this quantity is bases dependent and to cal-
culate it one needs in principle to know the probability
of occurrence of all the configurations. The number of
all configurations increases exponentially with the size of
the system and that makes analytical and numerical cal-
culations of this quantity quite difficult. Note that the
emptiness formation probability is just one of the whole
possible configurations. The Shannon information of the
system changes like a volume law with respect to the
size of the system so in principle one does not expect to
extract any universal information by studying the lead-
ing term. The universal quantities should come from the
subleading terms. To study subleading terms, it is use-
ful to define yet another quantity called Shannon mutual
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information. By considering local bases it is always pos-
sible to decompose the configurations as a combination
of the configurations inside and outside of a subregion A
as |I〉 = |IAIĀ〉. Then one can define the marginal proba-
bilities as pIA =

∑

IĀ
pIAIĀ and pIĀ =

∑

IA
pIAIĀ for the

subregion A and its complement Ā. Then the Shannon
mutual information is

I(A, Ā) = Sh(A) + Sh(Ā)− Sh(A ∪ Ā), (2)

where Sh(A) and Sh(Ā) are the Shannon informations
of the subregions A and Ā. From now on instead of
using pIAIĀ we will use just pI . Since in the above quan-
tity the volume part of the Shannon entropy disappears
Shannon mutual information provides a useful technique
to study the subleading terms. Note that one can simi-
larly define the above quantity also for two regions A and
B, i.e. I(A,B) that are not necessarily complement of
each other. The Shannon mutual information has been
studied in many classical [19–22] and quantum systems
[23–27]. Numerical studies on variety of different peri-
odic quantum critical spin chains show that for particular
bases (so called conformal bases) we have [24, 26, 27]

I(A, Ā) = β ln[
L

π
sin(

πl

L
)], (3)

where L and l are the total size and subsystem size re-
spectively and β is very close to c

4 , with c the central
charge of the system. Note that if one takes an ar-
bitrary base (non-conformal bases) the coefficient β is
nothing to do with the central charge. It is worth men-
tioning that based on [26] the conformal bases are those
bases that can be connected to some sort of boundary
conformal field theory in the sense of [7]. For exam-
ple in the transverse field Ising model the σx and σz

bases are the conformal bases. Note that if one consid-
ers the Shannon information of the subsystem we will
have Sh(A) = αl + β ln[Lπ sin(πlL )]. Since to extract the
Shannon information one needs to use all the probabili-
ties the only way to consider all of them in the numerical
calculations is exact diagonalization. This makes the nu-
merical calculation for large sizes very difficult. The re-
sults of the articles [24, 26, 27] are all for periodic systems
with L = 30 whenever there are spin one-half system and
smaller sizes for systems with bigger spins. In a recent
work [25] the author was able to consider an infinite sys-
tem and study the Shannon information of the subsystem
up to the size l = 40. It was concluded that for the XX
chain β is c

4 with c = 1 but for the Ising model although

it is very close to c
4 with c = 1

2 the results are suggesting
that probably β is not exactly connected to the central
charge. Notice that all of the above calculations are done
by considering periodic boundary conditions for the con-
nected regions A and Ā. It is not clear how the equation
(3) might change if one considers open boundary condi-
tions. Finally it is worth mentioning that some of the
the above results have recently been extended to discon-
nected regions in [28].

Motivated by the studies of emptiness formation prob-
ability and Shannon information of the subsystem we
study here some related quantities. First of all, as it
is natural one might be interested in studying the scal-
ing limit of some other configurations with respect to the
size of the subsystem. For example, consider an antifer-
romagnetic configuration in the Ising model or any other
configuration with pattern. It is very important to know
that these configurations are also flowing to some sort of
boundary conformal field theory or not. This study will
clearly also help to understand the nature of the Shannon
mutual information. In addition, this kind of studies also
are very useful in the calculations of post-measurement
entanglement entropy and localizable entanglement en-
tropy [29, 30]. Having the above motivations in mind,
we study formation probabilities , Shannon information
and their evolution after a quantum quench in the quan-
tum XY chain in the σz bases.

The outline of the paper is as follows: In the next
section we will first define our system of interest, i.e.
XY chain and then we will provide a method to cal-
culate the probability of any configuration in the free
fermionic systems. In section three we will list all the
known analytical results regarding emptiness formation
probability for infinite systems and also finite systems
with periodic and open boundary conditions. Explicit
distinguishment is made between critical Ising model and
XX chain with U(1) symmetry. In section IV, we will
define many different configurations with specially de-
fined pattern and calculate their corresponding probabil-
ities numerically. Here again, we discuss Ising and XX
universalities separately for infinite systems and for the
systems with boundary. We also discuss configurations
that do not have any pattern. In section V, we study
the Shannon information in the transverse field critical
Ising model and also critical XX chain. We will classify
the configurations based on their magnetization and show
that in principle just a small part of the configurations
can have a finite contribution to Shannon information in
the scaling limit. Section VI is devoted to the evolution of
formation probabilities and Shannon information after a
quantum quench. We prepare the system in a particular
state and then we let it evolve with another Hamiltonian
and study the time evolution of the formation probabil-
ities and especially Shannon information. Finally, the
last section is about our conclusions and possible future
works.

II. FORMATION PROBABILITIES FROM

REDUCED DENSITY MATRIX

In this section, we first define the system of interest
and after that using the reduced density matrix of this
system we will find a very efficient method to calculate
formation probabilities for systems that can be mapped
to free fermions. The Hamiltonian of the XY-chain is as
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follows:

H = −
L
∑

j=1

[

(
1 + a

2
)σx

j σ
x
j+1 + (

1− a

2
)σy

j σ
y
j+1 + hσz

j

]

. (4)

After using Jordan-Wigner transformation, i.e. cj =
∏

m<j
σz
m

σx
j −iσy

j

2 and N =
∏

L

m=1
σz
m = ±1 with c†L+1 = 0

and c†L+1 = N c†1 for open and periodic boundary condi-
tions respectively the Hamiltonian will have the following
form:

H =

L
∑

j=1

[

(c†jcj+1 + ac†jc
†
j+1 + h.c.)− h(2c†jcj − 1)

]

+N (c†Lc1 + ac†Lc
†
1 + h.c.). (5)

The above Hamiltonian has a very rich phase space
with different critical regions [31]. In figure 1 we show
different critical regions of the system. To calculate prob-
ability of formations for different patterns we first write
the reduced density matrix of a block of spins D by using
block Green matrices. Following [32, 33] we first define
the operators

ai = c†i + ci, bi = c†i − ci. (6)

The block Green matrix is defined as

Gij = tr [ρDbiaj ]. (7)

The elements of the Green matrix can be calculated fol-
lowing [34] and we will mention their explicit form for
open and periodic boundary conditions later.
To calculate the reduced density matrix after partial

measurement we need to first define fermionic coherent
states. They can be defined as follows

|ξ >= |ξ1, ξ2, ..., ξN >= e−
∑N

i=1
ξic

†
i |0 >, (8)

where ξi’s are Grassmann numbers following the proper-
ties: ξnξm + ξmξn = 0 and ξ2n = ξ2m = 0. Then it is easy
to show that

ci|ξ >= −ξi|ξ > . (9)

Using the coherent states (8) the reduced density matrix
has the following form [33]

ρD(ξ, ξ′) = < ξ|ρD|ξ′ >

= det
1

2
(1−G)e

1

2
(ξ∗−ξ′)TF (ξ∗+ξ′), (10)

where F = (G+1)(1−G)−1. One can use the above for-
mula to extract the formation probability for arbitrary
configuration in the σz bases as follows: first of all to ex-
tract the probability of particular configuration we need
to look to the diagonal elements of ρD(ξ, ξ′). When the

a

h

1

−1

1cr
it
ic
a
lX

X

critical XY

critical XY

Ising

critical Ising

FIG. 1: (Color online) Different critical regions in quantum
XY chain. The critical XX chain has central charge c = 1
and critical XY chain has c = 1

2
.

spin in the σz direction is up in the fermionic represen-
tation it can be understood as the lack of a fermion in
that site which in the language of coherent states means
that the corresponding ξ is zero in the equation (10). Af-
ter putting some of the ξ’s equal to zero one will have a
new reduced density matrix in the coherent state basis
with this constraint that some of the spins are fixed to
be up. In other words in the equation (10) instead of F

we will have F̃ which is a sub-matrix of the matrix F .
The elements of the new reduced density matrix will be
ρ̃D(η,η′), where we put the ξ’s corresponding to the sites
filled with fermions equal to η. To extract the probability
of formation one just needs to integrate over all the η’s
that correspond to the down spins. In other words after
using formulas of the Grassmann Gaussian integrals the
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formation probability will have the following formula

P (Cn) = det[
1

2
(1−G)]MCn

F , (11)

whereMCn

F is the minor of the matrix F corresponding to
the configuration Cn. Notice that we just need principal

minors of the matrix F . Since the sum of all the prin-
cipal minors of the matrix F is equal to det(1 + F ) the

normalization is ensured. We have
(

l
k

)

number of rank-
k minors for matrix F with size l. Summing over the
number of all principal minors, one can obtain 2l which
is the number of all possible configurations. Configura-
tions with the same minor rank have the same number
of up spins and by increasing k we actually increase the
number of down spins in the corresponding configura-
tion. For example k = 0(l) is the case with all spins up
(down) and sometimes it is called emptiness formation.
The above formula gives a very efficient way to calcu-
late the formation probabilities in numerical approach.
Since, as we will show, all of these probabilities are expo-
nentially small with respect to the size of the subsystem
it is much easier to work with the logarithm of them and
define logarithmic formation probabilities

Π(Cn) = − lnP (Cn). (12)

All of the calculations done in this paper are based on
the formula (11) and are performed using Mathematica.
In the next sections, we will study the formation proba-
bilities for different configurations with the crystal order
(pattern formation probabilities) with respect to the size
of the subsystem for some particular critical regions of
the system.

III. EMPTINESS FORMATION PROBABILITY:

KNOWN RESULTS

Before presenting our results, we first review here the
well-known facts regarding emptiness formation proba-
bility (k = 0 and l). For reasons that will be clear in
the next section, we will call these two configurations
x = 0 and 1 respectively. Using Fisher-Hartwig theo-
rem the emptiness formation probability was already ex-
haustively studied in [6]. The results were generalized to
arbitrary conformal critical systems in [7]. Due to the
U(1) symmetry there is an important difference between
the XX critical line and the Ising critical point. For this
reason, we report the results regarding these two possi-
bilities separately.

A. Critical Ising point

We list here the results regarding the logarithmic
emptiness formation probability at the critical Ising point

(a = h = 1).
a. Configuration Cx=0, i.e. (| ↑, ↑, ... ↑>): This

configuration corresponds to k = 0 and has the highest
probability and using the equation (11) one can easily
show that

P (x = 0) = det[
1

2
(1−G)] (13)

The above formula is valid independent of the boundary
conditions and the size of the system. For the infinite
system at the critical Ising point the G matrix has the
following form:

Gij = − 1

π(i− j + 1/2)
. (14)

Since the above matrix is a Toeplitz matrix using Fisher-
Hartwig conjecture in [6] it was shown that the logarith-
mic probability for this configuration changes with the
subsystem size as follows:

Π(x = 0) = αl + β ln l+ γ
ln l

l
+O(1), (15)

where β = 1
16 = 0.0625, and α and γ are some non-

universal numbers. At the critical point of the Ising
model these numbers are known α = ln 2 − 2C/π =
0.11002, with C the Catalan constant and γ = − 1

32π =

−0.00994. The ln l
l term is the result of the paper [7].

Using conformal field theory techniques in [7] it was ar-
gued that for generic critical systems the coefficient of
the logarithm should be β = c

8 , where c is the central
charge of the critical system. For the Ising universality
class c = 1

2 .

When the size of the total system is finite L depending
on the form of the boundary conditions, periodic or open;
G has the following two forms

GP
ij = − 1

L sin(π(i−j+1/2)
L )

, (16)

GO
ij = − 1

2L+ 1

( 1

sin(π(i−j+1/2)
2L+1 )

+
1

sin(π(i+j+1/2)
2L+1 )

)

.

(17)

Notice that for L → ∞ the first equation reduces to
(14) and the second equation will give the result for a
semi-infinite chain. The results for emptiness formation
probabilities for the above two cases are [7]
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ΠP (x = 0) = αl + β ln[
L

π
sin

πl

L
] + γπ cot(

πl

L
)
ln l

L
+O(1), (18)

ΠO(x = 0) = αl + βo ln[
4L

π

tan2 πl
2L

sin πl
L

] + γoπ
2− cos(πll )

sin πl
l

ln l

L
+O(1), (19)

where β = c
8 and βo = − c

16 . It is also conjectured that
γ = − c

8πa and γo = c
32πa . The above two equations

are derived using boundary conformal field theory tech-
niques and in principle they are valid in the Ising case
because x = 0 configuration is related to the free confor-
mal boundary condition in the conformal Ising model.
b. Configuration Cx=1, i.e. | ↓, ↓, ... ↓>: This case,

which is also studied in [6] and [7], corresponds to k = l
and has the lowest probability. One can easily show that

P (x = 1) = det[
1

2
(1−G)] detF = det[

1

2
(1 +G)]. (20)

For the infinite system it follows similar formula as (15)

with also an extra ν (−1)l√
l

term, in other words,

Π(x = 1) = αl + β ln l + ν
(−1)l√

l
+ γ

ln l

l
+O(1), (21)

where β = c
8 . At the critical Ising point α = ln 2 +

2C/π = 1.27626 and ν = −0.21505 and γ is unknown.
The oscillating ν term is mathematically explained by
using generalized Fisher-Hartwig conjecture in [6]. To
the best of our knowledge its presence at the critical point
has not been understood by physical arguments [35]. Our
numerical results in the next section will show that the
term is present whenever the parity of the number of
down spins changes with the subsystem size. The term is
very important to be considered in numerical calculations
to get reliable results for β which is the universal and the
most interesting term.
When the size of the system is finite depending on the

type of the boundary conditions boundary changing oper-

ators can play an important role. The following formulas
are presented in [7]:

ΠP (x = 1) = αl + β ln[
L

π
sin

πl

L
] + ..., (22)

ΠO(x = 1) = αl + βo
1 ln[

L

π
sin

πl

L
] + βo

2 ln[
L

π
tan

πl

2L
] + ...,

(23)

where β = c
8 , β

o
1 = c

16 and βo
2 = 4h− c

8 with h = 1
16 being

the conformal weight of the boundary changing operator.
The dots are the subleading terms.

B. XX critical line

The critical XX chain a = 0 has U(1) symmetry which
as it is already discussed extensively in the literature is
the main reason for having Gaussian decaying empti-
ness formation probability [3, 7]. Since in this model

< c†i c
†
j >=< cicj >= 0 the equation (10) has simpler

form

ρD(ξ, ξ′) = det(1− C)eξ
∗Fξ′

(24)

where Cij =< c†i cj > and F = C(1 − C)−1. Finally we
have

P (Cn) = det[1− C]MCn

F (25)

The form of the C matrices in the periodic and open
cases are [36]:

CP
ij =

nf

π
δij + (1− δij)

sin(nf (i− j))

L sin(π(i−j)
L )

, (26)

CO
ij =

(1

2
− (

L

2(L+ 1)
−
n′
f

π
)
)

δij + (1− δij)
1

2(L+ 1)

( sin(n′
f (i− j))

sin(π(i−j)
2L+2 )

−
sin(n′

f (i+ j))

sin(π(i+j)
2L+2 )

)

, (27)

where nf = π
L

(

2⌈ L
2π

arccos(−h)⌉ − 1
)

is the Fermi mo-

mentum and n′
f = π

2(L+1)

(

1 + 2⌊ (L+1)
π arccos(−h))⌋

)

with ⌈x⌉(⌊x⌋) as the closest integer larger (smaller) than

x.

The all spins up and down configurations do not lead to
conformal boundary conditions and so none of the equa-
tions that we mentioned in the last subsection are valid.
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However, using Widom conjecture it is already known
that, see for example [5], the probabilities for both Cx=0

and Cx=1 show Gaussian behavior. For systems with
U(1) symmetry one expects the following behavior for
logarithmic emptiness formation probability [3]:

Π(x = 0) = α2l
2 + αl + β ln l +O(1), (28)

where β = 1
4 for critical XX chain.

IV. LOGARITHMIC PATTERN FORMATION

PROBABILITIES

In this section, we study the logarithmic pattern for-
mation probability defined as Π(C) = − lnP (C) with re-
spect to the size of the subsystem. The easiest configu-
rations to study are those that have some kind of crystal
structure. Although everything is already known and
checked numerically for the emptiness formation proba-
bilities we will also report the results concerning these
cases as benchmarks. Here we introduce the configura-
tions that we studied numerically. None of these config-
urations have been considered before in the literature.
We study here the configurations with k =

l
2 ,

l
3 ,

l
4 , ...,

l
10 with crystal pattern and we call them con-

figurations x = 1
2 ,

1
3 ,

1
4 , ...,

1
10 and for some ranks we will

study the two most basic cases. For example we will
study

Configurations with k = l
2 :

a (| ↓, ↑, ↓, ↑, ... >)

b (| ↓, ↓, ↑, ↑, ↓, ↓, ↑, ↑, ... >)

Configurations with k = l
3 :

a (| ↑, ↑, ↓, ↑, ↑, ↓, ↑, ↑, ... >)

b (| ↑, ↑, ↑, ↑, ↓, ↓, ↑, ↑, ↑, ↑, ↓, ↓, ... >)

All the configurations with the same k belong to the cases
with an equal rank of the minor in the equation (11).
Note that in all of the upcoming numerical calculations
in every step we increase the size of the subsystem with
a number which is devidable to the length of the base
of the corresponding configuration. For some particular
k’s the a and b configurations differ by the parity effect.
For example, in k = l

2a depending on l = 4i or l =
4i − 2 with i = 1, 2, ... the subsystem has even or odd
number of down spins. This means that the parity of the
number of down spins changes with the subsystem size
for this configuration. However, for k = l

2b this is not
the case because in order to have ”perfect crystal” in the

subsystem we need to consider a subsystem with l = 4i
with i = 1, 2, ... which has always even number of down
spins inside. Because of this difference in parity effect
for k = l

2a and k = l
2b we expect different subleading

behavior for these two cases. Finally notice that one can
simply define configurations like k = l

2c and k = l
3c by

simply taking bigger bases for the crystals. For example,
k = l

2c can be understood as a configuration with the
base: three down spins and then three up spins.

A. Transverse-field Ising chain

Using the equation (11) and (14) we first studied the
crystal configurations introduced in the previous subsec-
tion for the case of infinite chain. To calculate the forma-
tion probability for every configuration we first use the
matrix G introduced in (14) to find the matrix F . Then
for every configuration we use an appropriate minor to
calculate the corresponding probability in (11). For ex-
ample, in the case of k = l

2a this can be done by just
finding a minor of F which can be derived by calculating
the determinant of a submatrix F̃ obtained from F by
removing every other row and column. The results for α
and β (the most interesting quantities in this study) are
shown in the Table 1. Based on the numerical results
one can derive the following conclusions regarding crystal
configurations:

1. All the crystal configurations follow either the
equation (15) or (21) with β = 1

16 .

2. Whenever the parity of the number of down spins
in a configuration changes with respect to the size
of the subsystem we have the oscillating term 1√

l
.

For example, in the case of k = l
2a we have the

subleading term (−1)
l
2√

l
but 1√

l
correction is absent

in k = l
2b. It appears again for k = l

3a in the form

of (−1)
l
3√

l
. Generalization to other configurations is

strightforward. .

3. Although in some cases α for bigger x is smaller
than α with smaller x in average α increases with
x.

We then studied the same configurations for the pe-
riodic boundary condition. In the figure 2 it is shown
that all of the configurations follow the formula (18) .
The case of the open boundary condition is more tricky
and depending on the configuration we have two possi-
bilities: When the parity of the number of down spins is
independent of the size of the subsystem (for example in
the configurations x = 1

2b and 1
3b) we have the formula

(19) but when we have the possibility of having odd or
even number of down spins in a configurations (for ex-
ample x = 1

2a,
1
3a) we have the formula (23). The results

are shown in the Figure 3. This behavior could be an-
ticipated based on the difference between configurations
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Configuration α β

x = 0 0.110025 0.062498

x = 1 1.276267 0.062465

x = 1
2
(a) 0.984708 0.062462

x = 1
2
(b) 0.755726 0.062496

x = 1
3
(a) 0.818715 0.062468

x = 1
3
(b) 0.542109 0.062491

x = 1
4
(a) 0.710620 0.062481

x = 1
4
(b) 0.434286 0.062524

x = 1
5
(a) 0.634016 0.062495

x = 1
6
(a) 0.576551 0.062509

x = 1
7
(a) 0.531651 0.062523

x = 1
8
(a) 0.495482 0.062537

x = 1
9
(a) 0.465643 0.062549

x = 1
10
(a) 0.440555 0.062562

TABLE I: Fitting parameters for the logarithmic formation
probabilities of different crystal configurations of the critical
Ising chain discussed in the text. All the data were extracted
by fitting the data in the range l ∈ (2000, 2500) to αl+β ln l+
γ ln l

l
+ δ 1

l
+ η for those cases that do not show parity effect

and to αl+ β ln l+ γ ln l
l

+ ν (−1)m
√

l
+ δ 1

l
+ η (with suitable m)

for those cases that show parity effect [38].

0 500 1000 1500 2000
l

-0.2

0

0.2

0.4

0.6

Π
(l

,L
)-

α 
l

CFT
x=0
x=L
x=1/2(a)
x=1/2(b)
x=1/3(a)
x=1/3(b)

FIG. 2: (Color online) Π(l, L) − αl for periodic system with
total length L = 2000 with respect to l for different configu-
rations. The dashed lines are the results expected from CFT,
i.e. 1

16
ln[L

π
sin πl

L
] + η.

k = 0 and k = l that we discussed before. It looks like
that the boundary changing operator plays a role when-
ever there is the parity effect in the configuration. Look-
ing to the problem in the language of Euclidean two di-
mensional classical system one can argue that in the case
of open boundary condition we have a strip with a slit on
it [7]. However, the boundary conditions on the bound-
ary of strip can be different from the boundary condition

0 500 1000 1500 2000
l

0

0.5
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1.5

2

2.5

3

Π
(l

,L
)-

α 
l

CFT
x=1
x=1/2(a)
x=1/3(a)
x=1/4(a)

(a)
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l
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Π
(l

,L
)-

α 
l

CFT
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x=1/2(b)
x=1/3(b)
x=1/4(b)

(b)

FIG. 3: (Color online) Π(l, L) − αl for open system with to-
tal length L = 2000 with respect to l for different configura-
tions. a) configurations without boundary changing operators
and b) configurations with boundary changing operators. The
dashed lines are the results expected from CFT.

on the slit, consequently, one needs to consider bound-
ary changing operator on the point where the boundary
condition changes. However, in general it is not clear
which configurations lead to different boundary condi-
tions on the slit and on the boundary of the strip. Our
numerical results indeed give a hint that depending on
the bahavior of the parity of the number of down spins
in a configuration the conformal boundary condition on
the slit can be different. In the next two subsections, we
will first comment on the validity of the above results in
other cases such as non-crystal configurations. Then we
will also indicate the possible universal behavior of our
results.
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1. Logarithmic formation probability of non-crystal
configurations

The number of crystal configurations is much smaller
than the number of the whole configurations. In fact,
the number of crystal configurations grows polynomially
with the subsystem size but the number of whole con-
figurations grows exponentially. However, numerically it
is very simple to check the formula for many configura-
tions that have a small deviation from the crystal states.
For example, one can consider the case k = 1 with all
spins up except one and calculate the logarithmic forma-
tion probability using the equation (11). It is clear that
one does not expect the result be any different from the
equation (15) and indeed numerical results confirm this
expectation. The important conclusion of this numerical
exercise is that there are many configurations ”close” to
crystal configurations that indeed follow either the equa-
tion (15) or equation (21) with all having the same β’s
but different α’s.
The above results strongly suggest that all of the crys-

tal and non-crystal configurations discussed in this sec-
tion are flowing to some sort of conformal boundary con-
ditions in the scaling limit.

2. Universality

To check that the above results are the properties of the
Ising universality class we also studied the critical XY-
chain which has also central charge c = 1

2 . The Green
matrix, in this case, is given by

Gij =

∫ π

0

dφ

π

(cosφ− 1) cos[(i− j)φ] − a sinφ sin
[

(i− j)φ]
√

(1− cosφ)2 + a2 sin2 φ
.

Our numerical results depicted in the Figure 4 show that
the coefficient of the logarithmic term is a universal quan-
tity which means that it has a fixed value on the critical
XY-line. The coefficient of the linear term changes by
varying a which indicates its non-universal nature.

B. XX chain

We repeated the calculations of the last section for also
critical XX chain. The central charge of the system is
c = 1. The results of logarithmic formation probabilities
for different magnetic field h are shown in the Table 2
and Table 3. Based on the numerical calculations we
conclude the followings:

1. The configurations with x =
nf

π follow the equa-

tion (15) with β = 1
8 . This means that in the scal-

ing limit most probably all of these configurations
flow to some sort of bounday conformal conditions.
Note that as far as there is no boundary changing

0.5 0.6 0.7 0.8 0.9 1
a

0.058

0.06

0.062

0.064

0.066

0.068

β

x=1/2(a)
x=1/3(a)
0.0625

FIG. 4: (Color online) The coefficient of the logarithmic term
in (15) for two configurations x = 1

2
a and x = 1

3
a for different

values of a. The dashed line is the CFT result. The size
of the largest subsystem was l = 500 and all the results were

extracted by fitting the data to αl+β ln l+γ ln l
l
+ν (−1)m

√
l

+δ 1
l
+

η with suitablem in the range l ∈ (100, 500). Estimated errors
in the numerics are in the order of the size of the markers.

operator in the system the equation (15) is valid
for any CFT independent of its structure.

2. All the other configurations follow the equation
(28) with β which is different for different configu-
rations.

As we mentioned earlier XX chain has a U(1) symmetry
which means that the number of particles is conserved.
The only configurations that respect this symmetry in
the subsystem level are the configurations with x =

nf

π .
Any injection of the particles into the subsystem changes
drastically the formation probability. In the case of x = 0
this phenomena is already explained in [7] based on arc-
tic phenomena in the dimer model. It is quite natural to
expect that similar structure is valid for all the configu-
rations with x 6= nf

π . Note that based on our results the
coefficient of the ln is nf -dependent and strictly speaking
is not a universal quantity.

nf Configuration α β

x = 1/2(a) 0.3465735 0.124998

π/2 x = 1/2(b) 0.5198604 0.124997

x = 1/2(c) 0.7127780 0.124597

π/3 x = 1/3(a) 0.3662041 0.124987

π/4 x = 1/4(a) 0.3432345 0.125024

TABLE II: Fitting parameters for the logarithmic formation
probability of antiferromagnetic configurations with different
filling factors. All the results were extracted by fitting the
data in the range l ∈ (100, 300) to αl+ β ln l+ γ ln l

l
+ δ 1

l
+ η.
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Configuration α2 α β

x = 0, 1 0.346573 0.000000 0.250054

x = 1/3(a) 0.035191 0.366228 0.524293

x = 1/3(b) 0.035188 0.597663 1.578683

x = 1/4(a) 0.080911 0.346599 0.829767

x = 1/4(b) 0.080910 0.587114 2.744492

x = 1/5(a) 0.118119 0.321924 1.144949

x = 1/6(a) 0.147178 0.298674 1.465399

x = 1/7(a) 0.170072 0.278052 1.788319

x = 1/8(a) 0.188433 0.260021 2.112155

x = 1/9(a) 0.203427 0.244263 2.436061

x = 1/10(a) 0.230432 0.230432 2.759481

TABLE III: Fitting parameters for different configurations
with x < 1

2
in the XX chain with nf = π

2
. All the data were

extracted by fitting the data in the range l ∈ (100, 300) to
α2l

2 + αl + β ln l + η.

We also studied the finite size effect in this model. The
results of the numerical calculations of periodic boundary
condition for x = 1

2 are shown in the Figure 5. It is

shown that all of the configurations with x = 1
2 follow

the formula (18) with c = 1.

0 50 100 150 200 250 300
l

0.4

0.8

1.2

1.6

Π
(l

,L
)-

α 
l

CFT
x=1/2(a)
x=1/2(b)

FIG. 5: (Color online) Π(l, L) − αl for periodic system with
total length L = 300 with respect to l for different configu-
rations for critical XX-chain with nf = π

2
. The dashed lines

are the results expected from CFT.

We also repeated the same calculations for open
boundary conditions. We first performed the calculations
for semi-infinite open chain and fitted the results to (15)
and extracted the β. The coefficient of the logarithm not
only depends on the rank of the configuration but also
to the configuration itself. It also changes with nf . We
were not able to find any universal feature in this case.
The above results suggest that most probably all of

the crystal configurations with x =
nf

π in the periodic

boundary condition flow to a boundary conformal field
theory. In the language of Luttinger liquid, the cor-
responding boundary condition should be the Dirichlet
boundary condition [7]. The case of the open boundary
condition is intriguing and we leave it as an open prob-
lem.

V. SHANNON INFORMATION OF A

SUBSYSTEM

In this section, we study Shannon information of a sub-
system in transverse-field Ising model andXX chain. For
both models, the Shannon information is already calcu-
lated in [25] up to the size l = 40 which it seems to be the
current limit for classical computers. The reason that we
are interested in revisiting this quantity is to have a more
detailed study of the contribution of different configura-
tions. This will give an interesting insight regarding the
possible scaling limit for this quantity.

A. Critical Ising

In the last section, we studied many different configu-
rations in the critical Ising model and we found that all

of them follow PCn
= eαnl

l
c
8

with c = 1
2 . The natural ex-

pectation is that if we plug this formula in the definition
of the Shannon information we get

Sh(l) = αl +
c

8
ln l + ... (29)

where the dots are the subleading terms. The above for-
mula is consistent with [24]. However, one should be
careful that although there are a lot of crystal configura-
tions (polynomial number of them) and ”close” to crystal
configurations that are connected to the central charge
it is absolutely not clear what is going to happen in the
scaling limit. For example we repeated the calculations
of [25] and realized that extraction of the coefficient of
the ln in the above equation is indeed very difficult, see
appendix. Here we show where one should look for the
most important configurations. After a bit of inspection
and numerical check, one can see that the configuration
with the highest probability is the x = 0. Although the
proof of the above statment doesn’t look straightforward
one can understand it qualitatively by starting from the
ground state of the Ising model with h → ∞ and ap-
proaching to the critical point h = 1. The ground state
of the Ising model with h → ∞ is made of a configura-
tion with all spins up. When we decrease the transverse
magnetic field the other configurations start to appear
in the ground state. Although the amplitude of the con-
figuration with all spins up decreases by decreasing h it
still remains always bigger than the other configurations.
Another way to look at this phenomena is by looking
at the variation of the expectation value of the Hamil-
tonian H̄ = 〈C|H |C〉 for different configurations C. It
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is easy to see that H̄ is minimum for the configuration
C with all spins up. This simply means that most prob-
ably when one construct the ground state of the Ising
model using the variational techniques this configuration
playes the most important role. The least important
configuration is x = 1 with the lowest probability. This
can also be understood with the same heuristic argu-
ment as above. For every rank k of the minors, as we
discussed, we have

(

l
k

)

number of configurations which

means that for every x for large l we have ef(x)l with
f(x) = −x lnx − (1 − x) ln(1 − x) number of configu-
rations. It is obvious that the number of configurations
in every rank should be high enough to compensate the
exponential decrease of probabilities. We realized that
in every rank the configurations a has the lowest prob-
abilities. One can again understand this fact using the
variational argument. In this case it is much better to
make first the canonical transformation: σx → −σz and
σz → σx in the Hamiltonian of the crtical Ising model.
Then one can simply argue that H̄ is big if there are a lot
of domain walls, i.e. 〈C|σz

j σ
z
j+1|C〉 = −1 in the system

which is the case for the configurations a. Other impor-
tant configurations are the configurations which divide
the subsystem to two connected regions with in one part
all the spins are up and in the other part all the spins
are down. These configurations are interesting because
they have the biggest probabilities among all the config-
urations corresponding to their minor rank. Note that in
this case we have just one domain wall. It is not difficult
to see that the probability of all of these configurations
decay exponentially with the following coefficient α:

αmin(x) =
4C

π
x+ ln 2− 2C

π
, (30)

where C is the Catalan constant. In the two extreme
points, we recover the previous results. We also checked
the validity of the above formula numerically. Having the
biggest and smallest probabilities for every rank, we can
now easily read the most important ranks. In Figure 6
we depicted the αmax and αmin for different configura-
tions. We also depicted the graph of the number of con-
figurations in every rank. The Figure clearly show that
the configurations with x > 1

2 can not have any signifi-
cant contribution in the scaling limit because the number
of configurations is not enough to compensate the expo-
nential decay of the probabilities. A similar story seems
to be valid also for the values of x close to zero. The
reason is that the number of configurations with small x
is such low that can not compensate exponential decay of
the probabilities in this region to have a significant con-
tribution in the Shannon information. Just the region
between the points that the two lines cut each other will
most likely survive in the scaling limit. The numerical
results indeed prove our expectation. In Figure 7 we de-
picted the contribution of every rank Shk(l) in Shannon
information for two different sizes. As it is quite clear
the most important contributions come from 0 < x < 1

2 .

The contribution of the configurations with x > 1
2 is

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

f(x)
α

 min
α

 max

FIG. 6: (Color online) Values of f(x), αmin and αmax with
respect to x. The red curve is the function f(x) = −x log x−

(1− x) ln(1− x) and the blue line is the linear function (30).
The separated points are the αmax regarding the configura-
tions discussed in the text.

exponentially small. This means that ignoring a lot of
configurations will produce a very small amount of error
in the final result of Shannon information. To quantify
this argument we calculated the amount of error in the
evaluation of the Shannon information if we just keep the
configurations with ranks up to xm. Suppose Sh(l, xm)
is the contribution of the configurations with all ranks
equal or smaller than xm. Then the error of truncation

can be calculated by E(xm, l) = Sh(l,1)−Sh(l,xm)
Sh(l,1) . Inter-

estingly we found that the logarithm of the error function
is a linear function of l, see Figure 8. In other words

ln E(xm, l) = −λ(xm)l + δ(xm), (31)

where λ(xm) is equal to zero and infinity for xm = 0
and xm = 1 respectively. λ(xm) for the other values are
shown in the inset of the Figure 8. The above formula
shows that one can calculate Shannon information with
a controllable accuracy by ignoring non-important con-
figurations. Although the above truncation method help
to calculate the Shannon information with good accu-
racy (especially the coefficient of the linear term α) it is
still not good enough to calculate the coefficient of the
logarithm with controllable precision.

B. XX chain

The Shannon information of the subsystem in the XX-
chain is already discussed in [25] and based on numeri-
cal results it is concluded that the equation (30) is valid
with β = 1

8 which is consistent with the conjecture in
[24]. Here we just comment on the contribution of dif-
ferent ranks which shows very different behavior from
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FIG. 7: (Color online) The contributions of different ranks k
in the Shannon information for two sizes l = 14 and 26.
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FIG. 8: (Color online) The error E(xm, l) in the evaluation of
Shannon information coming from the truncation at the rank
k = xml. Inset: −λ(xm) with respect to xm.

the transverse field Ising chain case. First of all, as we
discussed in the previous section when the external field
is zero the only configurations that decay exponentially
are those that respect the half filling structure of the to-
tal system. The rest of the configurations scale like a
Gaussian which simply indicates that their contribution
is very small in the Shannon information. This is sim-
ply because the number of these configurations scale just
exponentially. Based on this simple fact one can antici-
pate that the only configurations that can survive in the
scaling limit are those with k = l

2 . Numerical results de-
picted in the Figure 9 indeed support this idea. Although
the k = l

2 is only one among l possible minor ranks the

number of configurations with this rank is highest with
respect to the others which can be one of the reasons that
one can obtain a good estimate for the coefficient of the
logarithm in (30) with relatively modest sizes.

0 6 12 18 24
k

0

2

4

6

8

Sh
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FIG. 9: (Color online) The contributions of different ranks k
in the Shannon information for two sizes l = 12 and 24 in the
XX-chain.

VI. EVOLUTION OF SHANNON AND

MUTUAL INFORMATION AFTER GLOBAL

QUANTUM QUENCH

Inspired by experimental motivations, the field of
quantum non-equilibrium systems has enjoyed a huge
boost in the recent decade. One of the interesting di-
rections in this field is the study of information propa-
gation after quantum quench, see for example [39–44].
Based on semiclassical arguments and also using Lieb-
Robinson bound it is shown [39, 41] that in one dimen-
sional integrable system one can understand the evolu-
tion of entanglement entropy of a subsystem based on
quasi-particle picture [39]. The argument is as follows:
after the quench, there is an extensive excess in energy
which appears as quasiparticles that propagate in time.
The quasi-particles emitted from nearby points are en-
tangled and they are responsible for the linear increase
of the entanglement entropy of a subsystem with respect
to the rest. In this section, we first study the time evo-
lution of formation probabilities and subsequently Shan-
non and mutual information after a quantum quench.
One can consider this section as a complement to the
other studies of information propagation after quantum
quench. To keep the discussion as simple as possible, we
will concentrate on the most simple case of XX-chain or
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free fermions. Following [45] consider the Hamiltonian

H = −1

2

+∞
∑

m=−∞
tm(c†mcm+1 + c†m+1cm). (32)
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FIG. 10: (Color online) The evolution of logarithmic forma-
tion probability of different configurations with respect to
time t after quantum quench. The size of the subsystem is
taken l = 20.

The time evolution of the correlation functions in the
half filling are given as

Cmn(t) = in−m
∑

jl

ij−lJm−j(t)Jn−l(t)Cjl(0), (33)

where, J is the Bessel function of the first kind. Here
we consider the dimerized initial conditions with t2m = 1
and t2m+1 = 0. The dimerized nature of the initial state
will help later to consider different possibilities for the
initial Shannon mutual information. Then at time zero
we change the Hamiltonian to tm = 1 and let it evolve.
The time evolution of the correlation matrix is given by
[45]

Cmn(t) =
1

2

(

δm,n +
1

2
(δm+1,n + δm−1,n) + e−iπ

2
(m+n) i(m− n)

2t
Jm−n(2t)

)

. (34)

To calculate the time evolution of the probability of dif-
ferent configurations one just needs to use the above
formula in (25). The results for few configurations are
shown in the Figure 10. Of course since the sum of
all the probabilities should be equal to one some of the
probabilities increase with time and some decrease. All
the probabilities change rapidly up to time t∗ ≈ l

2 and
after that saturate. One can also simply calculate the
evolution of the Shannon information with the tools of
previous sections. In Figure 11 we depicted the evolu-
tion of Shannon information of a subsystem with respect
to the time t. The numerical results show an increase in
the Shannon information up to time t∗ ≈ l

2 and then sat-
uration. This is similar to what we usually have in the
study of the time evolution of von Neumann entangle-
ment entropy after quantum quench [39]. However, one
should be careful that in contrast to the von Neumann
entropy the Shannon information of the subsystem is not
a measure of correlation between the two subsystems.
In addition, the increase in the Shannon information of
the subsystem is not linear as the evolution of the von

Neumann entanglement entropy. Our numerical results
indicate that apart from a small regime at the beginning
the Shannon information increases as

Sh(l) = altb − dt t < t∗ (35)

where b ≈ 0.15(2) and a and d are positive l independent
quantities.
To study the time evolution of correlations, it is much

better to study another quantity, Shannon mutual infor-
mation of two subsystems. To investigate this quantity
we first studied the time evolution of Shannon mutual
information of a couple of dimers located far from each
other. The results depicted in the Figure 12 show that
the Shannon mutual information of the dimers are zero
up to time t∗ ≈ l

2 and after that increases rapidly and
then again decays slowly. This picture is consistent with
the quasiparticle picture. The two regions are not corre-
lated up to time that the quasiparticles emitted from the
middle point reach each dimer[46]. However, the similar-
ity between the evolution of the von Neumann entropy
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FIG. 11: (Color online) The evolution of Shannon information of a subsystem with different sizes with respect to time t after
quantum quench. The full lines are the equation (35). The saturation points t∗ = l

2
are marked by vertical arrows.
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FIG. 12: (Color online) The mutual information between a
pair of dimers located at distance d with respect to time.

and mutual Shannon information ends here. To elabo-
rate on that we consider the mutual information of two
adjacent regions with sizes l

2 . Because of the dimerized
nature of the initial state there are two possibilities for
choosing the subsystems: at time zero at the boundary
between the two subsystems there can be a dimer or not.
In the first case at time zero the Shannon mutual infor-
mation between the two subsystems is not zero but in the
second case it is zero. In the second case naturally one
expects an overall increase in the mutual information but
in the first case a priory it is not clear that the mutual in-
formation should increase or decrease. In the Figure 13
we have depicted the results of the numerics for the two
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FIG. 13: (Color online) The evolution of mutual information
between two adjacent subsystems in two different cases: when
at the boundary between the two subsystems there is a dimer,
case a and when there is no dimer, case b. In the first case
the mutual information starts from a non-zero value but in
the second case it starts from zero.

adjacent subsystems for different sizes. The numerical
results show that for the uncorrelated initial conditions
the Shannon mutual information first increases rapidly
and then it decays and finally saturates at time t∗ = l

2 .
In the correlated case, we have overall decay in the mu-
tual information and finally the saturation again at time
t∗ = l

2 . This behavior is very different from the quan-
tum mutual information of the same regions which for
the considered initial states first increases linearly and
then saturates at time t∗ = l

2 . The interesting phenom-
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ena is that after a short initial regime that the Shannon
mutual information is initial state dependent the system
enters to a regime that this quantity is completely inde-
pendent of initial state and it decreases ”almost” linearly
and then saturates. This can be also easily seen from the
equation (35), where we can simply drive

I(l, l) = −dt t < t∗. (36)

The saturation regime is independent of the size of the
subsystem, this is simply because in the equlibrium
regime the Shannon mutual information follows the area-
law [19] and so it is independent of the volume of the
subsystems.

VII. CONCLUSIONS

In this paper, we employed Grassmann numbers to
write the probability of occurrence of different config-
urations in free fermion systems with respect to the mi-
nors of a particular matrix. The formula gives a very
efficient method to study the scaling properties of loga-
rithmic formation probabilities in the critical XY-chain.
In particular, we showed that the logarithmic formation
probabilities of crystal configurations are given by the
CFT formulas for the critical transverse field Ising model.
This is checked by studying the probabilities in the infi-
nite and finite (periodic and open boundary conditions)
chain. In the case of critical XX-chain which has a U(1)
symmetry just the configurations with x =

nf

π follow the
CFT formulas. The rest of the configurations decay like a
Gaussian and do not show much universal behavior. We
also studied the Shannon information of a subsystem in
the transverse field Ising model and XX-chain. In partic-
ular, for the Ising model, we showed that in the scaling
limit just the configurations with a high number of up
spins contribute to the scaling of the Shannon informa-
tion. In principle, if one considers all the configurations,
with our method one can not calculate the Shannon in-
formation with classical computers for sizes bigger than
l = 40 in a reasonable time. However, if one admits a
controllable error in the calculation of Shannon informa-
tion it is possible to hire the results of section V to go to
higher sizes. It would be very nice to extend this aspect of
our calculations further to calculate the universal quan-
tities in the Shannon information with higher accuracy.
For example, one interesting direction can be finding an
explicit formula for the sum of different powers of prin-
cipal minors of a matrix. This kind of formulas can be
very useful to calculate analytically or numerically the
Rényi entropy of the subsystem.
Finally, we also studied the evolution of formation

probabilities after quantum quench in free fermion sys-
tem. In this case, we prepared the system in the dimer
configuration and then we let it evolve with homogeneous
Hamiltonian. The evolution of Shannon information of
a susbsytem shows a very similar behavior as the evo-

lution of entanglement entropy after a quantum quench.
Especially our calculations show that the saturation of
the Shannon information of the subsystem occurs at the
same time as the entanglement entropy. This is probably
not surprising because the t = t∗ is also the time that
the reduced density operator saturates.

It will be very nice to extend our calculations in few
other directions. One direction can be investigating
the evolution of mutual information after local quantum
quenches as it is done extensively in the studies of the
entanglement entropy [47–49]. The other interesting di-
rection can be calculating the same quantities in other
bases, especially those bases that do not have any direct
connection to CFT.
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VIII. APPENDIX: SHANNON INFORMATION

FOR CRITICAL TRANSVERSE-FIELD ISING

MODEL

In this Appendix, we will provide more details regard-
ing the Shannon information of transverse critical Ising
chain and XX chain. The data regarding Shannon infor-
mation for a subsystem with length l up to l = 39 is listed
in the Table A1. Having the data, we checked many dif-
ferent functions with different parameters to study the
coefficient of the logarithm. Needless to say increasing
the possible parameters can make a difference in the fi-
nal result. In [25] the results fitted to

Sh(l) = αl + β ln l +
5

∑

n=1

bn
ln

+ δ (37)

show that the best value is β = 0.060. This can be also
checked using the data provided in the Table A1. It is
worth mentioning that one can also get reasonable results
using the data up to l = 40 for some formation probabil-
ities (not all) if we consider extra terms

∑5
n=1

bn
ln in the

fitting procedure. Although we found that the equation
(37) is the most stable fit with the least standard devi-
ation based on our results in the main text we found it
is hard to exclude the term ln l

l because it is present in
all the configurations studied there. If one includes this
term and does not add the terms

∑5
n=1

bn
ln the β coeffi-

cient will be 0.0617. If one keeps all the terms
∑5

n=1
bn
ln

the result will be β = 0.060. The final conclusion is that
as far as one justifies the presence of the terms

∑5
n=1

bn
ln

in the Shannon information formula the best value for β
with the current available data is 0.060.
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l Shannon l Shannon

1 0.473946633733778 21 9.094267377324401

2 0.925441055292197 22 9.520258511384927

3 1.367970612016317 23 9.946131954351737

4 1.805854593071358 24 10.37189747498959

5 2.240889870728481 25 10.79756367448224

6 2.674003797245196 26 11.22313816533366

7 3.105734740754158 27 11.64862771729621

8 3.536422963908594 28 12.07403837729498

9 3.966297046625437 29 12.49937556879184

10 4.395517906953372 30 12.92464417475445

11 4.824203084194648 31 13.34984860684562

12 5.252441034545332 32 13.77499286454422

13 5.473946633733777 33 14.21026702317442

14 6.107833679024358 34 14.62511508430369

15 6.535085171703405 35 15.05009939651494

16 6.962089515106671 36 15.47503630258492

17 7.388875612253789 37 15.89992835887542

18 7.815467577831834 38 16.32477792018708

19 8.241885740227190 39 16.74960160654153

20 8.668147394540807

TABLE IV: Shannon information calculated for sizes l =
1, 2, ..., 39.
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[9] J-M Stéphan, G. Misguich, and V. Pasquier, Phys. Rev.

B, 82, 125455 (2010);
[10] M. Oshikawa [arXiv:1007.3739]
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