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We show that the correlations of electrons with a fixed energy in metals have very anomalous
time and space dependences. Due to soft modes that exist in any Fermi liquid, combined with
the incomplete screening of the Coulomb interaction at finite frequencies, the correlations in 2-d
systems grow as the square of a time scale. In the presence of disorder, the spatial correlations
grow as a distance squared. Similar, but in general weaker, effects are present in 3-d systems and
in the absence of quenched disorder. We propose ways to experimentally measure these anomalous
correlations.
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I. INTRODUCTION

Equilibrium time-correlation functions are an essen-
tial concept in statistical mechanics.1 They describe the
spontaneous fluctuations of a system in equilibrium,
and together with the partition function they provide
a complete description of the equilibrium state. Via the
fluctuation-dissipation theorem they also describe the lin-
ear response of the system to external fields, and they are
directly measurable by means of scattering experiments.
For instance, the number or charge-density correlation
function provides the scattering cross-section for electron,
light, or neutron scattering, and the spin-density corre-
lation function the one for magnetic neutron scattering.

An old, and seemingly plausible, assumption is that
microscopic correlations decay on time scales much faster
than macroscopic observation times; i.e., that there is a
separation of time scales. In this paper we study a class
of quantum correlation functions for which this is not
true, and which actually grow as functions of both space
and time. Our considerations are exact in the sense that
they deal with long-wavelength and low-frequency effects
that can be controlled by means of renormalization-group
arguments applied to an effective field theory.2,3

We first put the above statements in a historical con-
text. Various concepts that were developed in the early
days of statistical mechanics depend on the separation-
of-time-scales assumption, for instance, the notion that
the BBGKY hierarchy of classical kinetic equations can
be truncated,4 or the Kadanoff-Baym scheme of de-
riving and solving quantum kinetic equations and its
generalizations.5,6 The notion of a separation of time
scales is also important in signal processing, where the
microscopic time scale associated with the generation
of the radiation is typically much faster than the ob-
servational time scale.7,8 For time-correlation functions
it implies that they decay exponentially for large times.
Equivalently, their Laplace transform is an analytic func-
tion of the complex frequency z at z = 0. The discovery
of the non-exponential decay known as long-time tails
(LTTs),9–11 and the related breakdown of a virial expan-
sion for transport coefficients12,13 thus came as a consid-

erable surprise,14 since it showed that the assumption is
in general not true. Rather, many time-correlation func-
tions decay only algebraically, i.e., they have no intrinsic
time scale. This scale invariance is reminiscent of the be-
havior of correlation functions at critical points; however,
it occurs in entire phases and therefore is referred to as
‘generic scale invariance’.15–17 The underlying physical
reason is either conservation laws, or Goldstone modes
that lead to a slow decay of some long-wavelength fluctu-
ations and, via mode-mode-coupling effects, affect the de-
cay of other degrees of freedom. An example is the shear
stress in a classical fluid, which is not conserved, yet its
time-correlation function decays algebraically as 1/td/2

for long times t in a d-dimensional fluid since it couples
to the transverse momentum, which is conserved. As a
result, the Green-Kubo expressions for various transport
coefficients diverge in dimensions d ≤ 2, and the hydro-
dynamic equations become nonlocal in time and space;
for a review, see Ref. 17.

In classical systems in equilibrium, LTT effects, while
qualitatively very important, are rather small quantita-
tively and become pronounced only at times so large
that the correlation function is already very small over-
all. In non-equilibrium classical systems the effects are
much more important.18,19 In equilibrium quantum sys-
tems the corresponding effects can also be much larger,
especially in systems with quenched disorder, where the
quantum LTTs are often referred to as “weak-localization
effects”.17,20 Still, the correlation functions considered to
date decay as functions of time, albeit more slowly than
a separation-of-time-scales argument would suggest. In
this paper we show that in a quantum system as sim-
ple as interacting electrons with no quenched disorder,
i.e., the simplest model of a metal, there are correla-
tions that actually grow with time, and in some cases also
with distance. This surprising result is a consequence of
generic soft, or slowly decaying, excitations in a Fermi
liquid in conjunction with the incomplete screening of
the Coulomb interaction at nonzero frequencies. It is a
dramatic illustration of the fact that the impossibility
of separating microscopic and macroscopic time scales,
which is present in classical kinetics, holds a fortiori in
quantum systems.
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II. PHASE-SPACE CORRELATION
FUNCTIONS

In quantum statistical mechanics it is useful to con-
sider correlation functions that depend on one or more
imaginary-time variables τ ∈ [0, 1/T ], with T being the
temperature, or on the corresponding imaginary Mat-
subara frequencies, iωn = 2iπT (n + 1/2) for fermions,
and iΩn = 2iπTn for bosons (n integer). Functions de-
fined for imaginary Matsubara frequencies can be ana-
lytically continued to all complex frequencies, and the
underlying real-time dependence can be obtained by an
inverse Laplace transform. The observables in a fermion
systems can be expressed in terms of expectation val-

ues of products of field operators ψ̂†(x, τ) and ψ̂(x, τ)
that depend on the position x in addition to τ . Spin
is not essential for our purposes, and we suppress it

for now. Let us consider binary products of ψ̂† and ψ̂,
and an imaginary-time Wigner operator Ŵ (X,x; T , τ) =

ψ̂†(X + x/2, T + τ/2) ψ̂(X − x, T − τ/2). In a field-

theoretic formulation, ψ̂†(x, τ) and ψ̂(x, τ) correspond
one-to-one to fermionic (i.e., Grassmann-valued) fields
ψ̄(x, τ) and ψ(x, τ),21 in terms of which we define a
Wigner field

W (X,x; T , τ) = ψ̄(X + x/2, T + τ/2)

×ψ(X − x/2, T − τ/2) (1)

in analogy to the operator Ŵ . In common applications
of real-time Wigner operators or fields, X and T cor-
respond to the “average” or “macroscopic” (presumed
to be slow) length and time scale, and x and τ to the
“relative” or “microscopic” (assumed to be fast) scales.
The definition of the Wigner field reflects the assump-
tion that it is possible and useful to separate these two
scales.5,7 In terms of it, the fluctuating particle number
density is given by n(X, T ) = W (X, T ;x = 0, τ = 0),
and the equilibrium single-particle Green function by
G(x, τ) = 〈W (X, T ;x, τ)〉, where 〈. . .〉 denotes an av-
erage taken with the action governing the fermion sys-
tem. If the average is taken in a non-equilibrium state,
〈W 〉 also depends on X and T . In a real-time formal-
ism, with macroscopic time T and microscopic time t,
〈W (X,x;T, t)〉 = −iG<(X,x;T, t) is the Green func-
tion G< defined in Ref. 5. Its Fourier transform with
respect to the microscopic variables, g<(X, T ;p, ω), is
often interpreted as the density of particles with momen-
tum p and energy ω at the space-time point (X, T ).5,22

Switching back to imaginary time and frequency, this
identifies

ρ(X, iωn) = T

∫ 1/T

0

dT dτ eiωnτ W (X, T ,x = 0, τ)

=
∑
σ

ψ̄n,σ(X)ψn,σ(X) (2)

as the density of particles with energy ωn at point X, i.e.,
a spatial energy distribution. Restoring spin, the spatial

Fourier transform of ρ reads

ρ(k, iωn) =

∫
dX e−ik·X ρ(X, iωn)

=
∑
p,σ

ψ̄n,σ(p + k/2)ψn,σ(p− k/2) , (3)

where ψ̄n(p) =
√
T/V

∫
dx e−ipx ψ̄(x, τ) and ψn(p) =√

T/V
∫
dx eipx ψ(x, τ), with px = p · x − ωnτ ,

∫
dx =∫

dx
∫ 1/T

0
dτ , and V the system volume. ρ depends on a

macroscopic wave vector k, but a microscopic frequency
ωn. This is in contrast to the number density n, which de-
pends on two macroscopic variables. To verify the physi-
cal interpretation of ρ we note that its expectation value
determines the density of states N(ω) via

N(ω) =
−1

π

1

V
Im〈ρ(k = 0, iωn → ω + i0)〉 (4a)

The zeroth frequency moment gives the particle number
N . With η = 0+ the usual convergence factor23 and
nF(ω) the fermion distribution function we have

N = T
∑
n

eiωnη〈ρ(k = 0, iωn)〉 = V

∫
dω nF(ω)N(ω) ,

(4b)
and the first frequency moment gives the energy E car-
ried by the particles,24

E = T
∑
n

eiωnηiωn〈ρ(k = 0, iωn)〉

= V

∫
dω nF(ω)ωN(ω) . (4c)

III. THE ORDER-PARAMETER
SUSCEPTIBILITY OF A FERMI LIQUID

A. Definitions, and Results

Let us now consider the four-fermion correlation func-
tion Cρρ(X − Y ; iωn, iωm) = 〈δρ(X, iωn) δρ(Y , iωm)〉,
with δρ = ρ − 〈ρ〉. This is motivated by two considera-
tions. First, Cρρ provides information about the correla-
tions of energy levels in the Fermi system: It is the sec-
ond moment of the energy density distribution. Second,
the quantity ν(k, iωn) = ρ(k, iωn) − ρ(k,−iωn) can be
interpreted, in a technically precise sense, as an order pa-
rameter (OP) for the Fermi liquid.2 Cνν(k; iωn, iωm) =
〈δν(k, iωn) δν(−k, iωm)〉 is thus the (longitudinal) OP
susceptibility in an ordered phase. We will come back
to this interpretation below. Writing Cρρ in imaginary-
time space, and using time-translational invariance, one
sees that it consists of two distinct contributions. One
piece (which one would call “disconnected” in a diagram-
matic representation) is proportional to δnm, and a sec-
ond, “connected” one, is proportional to T .25 We focus
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on the connected piece by putting ωm = −ωn and elimi-
nate the trivial factor of temperature by defining

C(k, iωn) =
1

V T
〈δρ(k, iωn) δρ(−k,−iωn)〉 , (5)

which has a well-defined zero-temperature limit.26 Since
C depends on a microscopic time scale, the separation-of-
time-scales assumption would suggest that the analytic
continuation C(k, iωn → z) is an analytic function of the
complex frequency z at z = 0, corresponding to expo-
nential decay in imaginary or real frequency space. From
ordinary LTT physics one might expect that a coupling
between the fast and slow degrees of freedom will lead
instead to a nonanalytic function of the form zα, which
would lead to a LTT of the form 1/tα+1. We find that
neither of these expectations is correct in general: In a
Fermi liquid with a Coulomb interaction in d = 2 the
real-time dependence of the correlation function C is

C(k→ 0, t) ∝ κ2 ln(κ/|k|) t2 (d = 2) (6a)

where κ is the screening wave number. That is, C in-
creases with time as t2; i.e., the correlations get stronger
with increasing time. This behavior is cut off by a
nonzero wave number k or, equivalently, by a finite linear
system size L; it is valid for times t �

√
Lκ/vFκ (and t

much larger than the microscopic time scale, see Sec. IV
below), with vF the Fermi velocity. In d = 3 the behavior
is a LTT with α = 0,

C(k→ 0, t) ∝ 1/v3
F t (d = 3) , (6b)

which is valid for t � L/vF. For asymptotically large
times C decays exponentially, with the rate of decay go-
ing to zero as the wave number approaches zero or the
system size goes to infinity.

Also of interest are the spatial correlations. For iωn →
0, i.e., for particles close to the Fermi surface, the spatial
correlations decay only algebraically,

C(x, iωn → 0) ∝

{√
κ/v3

F

√
r (d = 2)

κ/v3
F r

2 (d = 3)
(7)

for distances r = |x| � 1/κ.
These results hold for clean systems. In the presence

of quenched disorder the effects are even stronger. The
time dependence in d = 2 is the same as in the clean
case and given by Eq. (6a), but in d = 3 the correlation
function does not decay with time for t� L2/D,

C(k→ 0, t) ∝ 1/D2 |k| (d = 3) , (8)

where D is the diffusion coefficient that characterizes the
diffusive electron dynamics. The spatial correlations for
particles near the Fermi surface grow quadratically with
distance and remain constant in d = 2 and d = 3, respec-
tively,

C(x, iωn → 0) ∝

{
(1/D3) r2 (d = 2)

1/D3 (d = 3) .
(9)

FIG. 1: Diagrammatic representation of the correlation func-
tion C(k, iωn) for clean systems within (a) the effective field
theory of Ref. 2, and (b) many-body perturbation theory. In
(b), solid and double-dashed lines denote electronic Green
functions and dynamically screened Coulomb potentials, re-
spectively. Notice that no frequency is transferred at the ex-
ternal vertices (heavy dots); this reflects the fact that this is
not a contribution to the usual density correlation function.
The frequency conservation at the internal vertices is as usual.

These expressions are again valid for distances large com-
pared to the microscopic length. Note that for particles
at the Fermi surface (iωn = 0) the spatial correlations at
large distances in d = 3 get cut off only by the system
size. In d = 2 they grow as the square of the distance for
distances less than the localization length or the system
size, whichever is smaller. See Sec. IV for a discussion of
how to interpret this behavior.

B. Derivations

We now explain the origin and derivation of these sur-
prising results. We first consider clean systems. The
correlation function C, Eq. (5), can be calculated in var-
ious ways. In the framework of the effective field theory
developed in Ref. 2 the leading contribution is given by
the one-loop diagram shown in Fig. 1(a). The advan-
tage of this framework is that the renormalization-group
analysis of the effective theory guarantees that the re-
sult is the leading behavior; higher-loop diagrams will
change the prefactor, but not the functional form of the
result.3 Alternatively, the same result can be obtained
from many-body perturbation theory27 via the diagram
shown in Fig. 1(b); however, there is no such guarantee
within that formalism. A simplified analytical expression
for either diagram, which has the correct scaling behav-
ior, at T → 0 is

C(k, iωn) ∝
∫ Λ

k

dp pd−1

∫ ∞
ωn

dω
1

(ω + vFp)4
(U(p, ω))

2
.

(10a)
Here Λ is an ultraviolet momentum cutoff, and U(p, ω)
is the dynamically screened Coulomb interaction. For
ω � vFp in d = 2, 3 the latter has the structure

U(p, ω) ≈ κd−1

pd−1 + κd−1(vFp)2/ω2
, (10b)

where κ is the screening wavenumber. It shows the
plasma frequency, ωP ∝ p3−d, and the incomplete screen-
ing at fixed nonzero frequency, U(p → 0, ω) ∝ 1/pd−1.
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The factor of 1/(ω + vFp)
4 represents the soft fermionic

modes. In the effective field theory it results from the fact
that the interacting part of the relevant propagator (the
solid lines in Fig. 1(a)) scales as 1/(ω + vFp)

2, that is, a
simple ballistic propagator squared, see Eq. (S15c) in the
Supplemental Material. Within many-body perturbation
theory, each of the triangular fermion loops in Fig. 1(b)
scales as 1/(ω + vFp)

2. The strongly singular behavior
discussed in Sec. III A results from a combination of these
fermionic soft modes and the incomplete screening of the
Coulomb interactions at nonzero frequencies. A short-
range interaction still leads to singularities, but they are
weaker than in the Coulomb case; the corresponding be-
havior is obtained by replacing U(p, ω) in Eq. (10a) by a
constant. The limit on the time regime where Eq. (6a)
is valid results from the most singular behavior of C in
d = 2 being restricted to frequencies ωn larger than the
plasma frequency. Note that, in d = 2, the latter can be
made arbitrarily small by going to small wave numbers
(or to large system sizes at k = 0).

For disordered systems, an appropriate effective field
theory is the generalized nonlinear sigma model that has
been studied extensively in the context of metal-insulator
transitions.28–30 The relevant one-loop diagram is still
given by Fig. 1(a), but the nature of the propagators
is diffusive rather than ballistic, see Eq. (S13b) in the
Supplemental Material. Within the framework of many-
body perturbation theory the diagram shown in Fig. 1(b)
needs to be dressed with diffusion poles in elaborate ways.
The net result is that the factor 1/(ω+vFp)

4 in Eq. (10a)
gets replaced by a diffusion pole to the fourth power:

C(k, iωn) ∝
∫ Λ

k

dp pd−1

∫ ∞
ωn

dω
1

(ω +Dp2)4
(U(p, ω))

2
,

(11a)
and the dynamically screened Coulomb potential gets
modified to reflect the diffusive nature of the electron
dynamics:

U(p, ω) ≈ κd−1

pd−1 + κd−1Dp2/(ω +Dp2)
. (11b)

Here D is the diffusion coefficient.
Performing the integrals in Eqs. (10) and (11) yields

the results listed in Sec. III A.

IV. DISCUSSION

To discuss our results, we start with some remarks con-
cerning the proper interpretation of Eq. (9). Consider a
finite system of linear size L. The correlation function
C in Eq. (9) then depends on two real-space positions, x
and y. If L is increased by a factor of b, and x and y
are scaled proportionally, so the distance r = |x−y| also
increases by a factor of b, then C increases by a factor of
b2 in d = 2. This is the meaning of the r2 dependence
in Eq. (9). On the other hand, if one increases r while
keeping L fixed, then C decreases. For a discussion of this

point in a non-equilibrium context, see ch. 7.5 in Ref. 19.
Analogous considerations apply in the time domain.

In the time domain, it is important to put the range
of validity of Eqs. (6) in an appropriate context. The
relevant microscopic time scale in a Fermi liquid is the
inverse Fermi energy, which is on the order of 10−16 s in
a good metal. For a macroscopic system with a linear
size on the order of 1cm, Eq. (6a) is valid for times at
least four orders of magnitude larger than the microscopic
scale, and Eq. (6b) is valid for times that are longer by
yet another factor of 104.

We suggest two ways to experimentally observe the
effects discussed here: The first one is a direct measure-
ment of the energy-density distribution, i.e., the spatial
density of particles whose energy is in a certain inter-
val. As discussed in conjunction with Eqs. (4) and (5),
the correlation function C is the second moment of this
distribution. We can think of no way to measure this
distribution in a condensed-matter system, but it may
be possible in a cold-atom system. The second one is in
principle possible in a condensed-matter system. As can
be seen from Eq. (4a), the density ρ defined in Eq. (2)
determines the local density of states. The correlation
function C thus contains information about the density-
of-states fluctuations in the system. A two-tip tunneling
experiment that measures the local density of states at
points a fixed distance apart, repeated for different dis-
tances and covering the whole sample, would in principle
be able to probe the long-range correlations we predict.

We finally add some remarks to put this remarkable
behavior in context.

(1) As mentioned after Eq. (4c), the correlation func-
tion C can be interpreted as an OP susceptibility for the
Fermi liquid. An interesting analogy in this context is the
corresponding OP susceptibility in a classical Heisenberg
ferromagnet. Due to a coupling between the longitudi-
nal and transverse magnetization fluctuations the longi-
tudinal magnetic susceptibility χL (i.e., the OP suscep-
tibility) for 2 < d < 4 diverges everywhere in the or-
dered phase as 1/k4−d.31,32 This results from a one-loop
contribution to χL that is a wave-number convolution of
two Goldstone modes, each of which scales as an inverse
wave number squared. Diagrammatically this contribu-
tion has the same form as Fig. 1(a). To see the origin of
the stronger effects discussed here, consider the spatial
variation of χL as a function of the distance. Setting all
wave-number components except for kx equal to zero, we
have

χL(x ≈ L) =

∫
1/L

dkx e
ikxL χL(kx) ∝ L3−d . (12)

That is, the correlations grow with the system size for
2 < d < 3. The discussion at the beginning of the current
section again applies. Our results for the Fermi-liquid
OP susceptibility C are in direct analogy to this result
if one makes the following adjustments: (i) For the time
or frequency dependence, replace the only nonzero wave-
number component kx by the frequency and put k = 0.
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(ii) Realize that the relevant propagator in the quantum
field theory2 scales as a soft mode squared, see Eq. (10a)
and Eq. (S15c) in the Supplemental Material. In the
many-body calculation, this is apparent from the trian-
gular fermion loops in Fig. 1(b), each of which scales as a
ballistic propagator squared. (iii) Take into account the
incomplete screening of the Coulomb interaction, which
enhances the effect compared to the naive expectation
that the quantum result should correspond to the classi-
cal one in an effective dimension deff = d+1 (the relevant
dynamical exponent is that of the fermionic soft modes,
z = 1).

(2) The temporal and spatial dependences of the cor-
relation function C are quite different: The underlying
correlation is a function of two points in space, but four
points in time; translational invariance implies that one
and three of these, respectively, are independent. The
time dependence of the function C results from having
integrated over two of the three independent time argu-
ments, which is justified by the physical interpretation
of the function C. A related point is that we study the
behavior of C for both frequency arguments approach-
ing the Fermi surface, ωn = −ωm → 0, rather than for
large frequency differences. The spatial dependence of

C, on the other hand, has the same structure as in usual
two-point correlation functions. An important result is
that the spatial correlations become more and more long
ranged as the Fermi surface is approached.

(3) In the classical-magnet analog the strong fluctu-
ations eventually lead to an instability of the ordered
phase at the ferromagnetic transition. In the present
case, this suggests the possibility of a transition from a
Fermi liquid to a non-Fermi liquid with a vanishing den-
sity of states at the Fermi surface.33

(4) Studies of the distribution of the local density of
states in disordered metals34,35 have calculated a differ-
ent correlation function:, viz., the disorder average of the
disconnected piece of the correlation function Cνν defined
after Eq. (4c). The effects considered were thus entirely
determined by disorder fluctuations and vanish in the
clean limit. In contrast, the effects considered here are
caused by the electron-electron interaction, and some of
them are further enhanced by disorder.

We thank Thomas Vojta for discussions. This work
was supported by the NSF under grant Nos. DMR-
1401410 and DMR-1401449. Part of this work was per-
formed at the Aspen Center for Physics and supported
by the NSF under grants No. PHY-10-66293.

1 D. Forster, Hydrodynamic Fluctuations, Broken Symme-
try, and Correlation Functions (Benjamin, Reading, MA,
1975).

2 D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 85, 125126
(2012).

3 See Supplemental Material for details.
4 N. Bogoliubov, in Studies in Statistical Mechanics, edited

by J. de Boer and G. Uhlenbeck (North-Holland, Amster-
dam, 1962), vol. I.

5 L. P. Kadanoff and G. Baym, Quantum Statistical Mechan-
ics (W.A. Benjamin, New York, 1962).

6 D. C. Langreth and J. W. Wilkins, Phys. Rev. B 6, 3189
(1972).

7 J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-Y.
Tsai, Classical Electrodynamics (Westview Press, 1998).

8 R. L. Allen and D. W. Mills, Signal Analysis (Wiley-IEEE
Press, Piscataway, NJ, 2004).

9 B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18,
988 (1967).

10 J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25,
1257 (1970).

11 M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys.
Rev. Lett. 25, 1254 (1970).

12 J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 16,
124 (1965).

13 J. Weinstock, Phys. Rev. A 140, 460 (1965).
14 R. Peierls, Surprises in Theoretical Physics (Princeton

University Press, 1979).
15 S. Nagel, Rev. Mod. Phys. 64, 321 (1992).
16 J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Ann.

Rev. Phys. Chem. 45, 213 (1994).
17 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Rev. Mod.

Phys. 77, 579 (2005).

18 T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,
Phys. Rev. A 26, 995 (1982).
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