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We study momentum-space entanglement in quantum spin-half ladders consisting of two coupled
critical XXZ spin-half chains using field theoretical methods developed in Lundgren et al. [Phys.
Rev. B 88, 245137 (2013)], and exact diagonalization. When the system is gapped, we analytically
find the momentum-space entanglement Hamiltonian is described by a chiral conformal field theory
with a central charge of two. This is in contrast to entanglement Hamiltonians of various real-space
partitions of gapped-spin ladders that have a central charge of one. When the system is gapless, the
entanglement Hamiltonian consists of one gapless mode that is linear in subsystem momentum and
one mode with a flat dispersion relation. In the gapless region, we extend the work of Lundgren et al.
to include the effect of a certain irrelevant term on the entanglement spectrum. In both the gapless
and gapped phases, the momentum-space entanglement entropy obeys a volume law. In the gapless
region, we find a subleading constant term in the entanglement entropy which contains information
about the underlying field theory of the system. The analytical predictions for the entanglement
spectrum are consistent with results from exact diagonalization.

PACS numbers: 71.10.Pm, 03.67.Mn, 11.25.Hf

I. INTRODUCTION

Quantum entanglement has become an indispensable
tool in the study of condensed matter physics. In partic-
ular, the topological entanglement entropy [1, 2] and the
entanglement spectrum [3] have played a significant part
in understanding and identifying exotic phases of mat-
ter. The entanglement spectrum is obtained as follows:
First a system is partitioned into two regions, A and B.
This partition is usually made in real-space. Given the
reduced density matrix of A, ρA, where ρA is obtained
from the full density matrix, ρ, (formed from the ground
state wave-function) as ρA = e−He = TrB(ρ), the entan-
glement spectrum is the set of eigenvalues of He, which is
called the entanglement Hamiltonian. The entanglement
entropy, S, can be obtained from the entanglement spec-
trum as S = −TrρAlnρA. In a real-space partition, the
entanglement entropy for topologically ordered states is
equal to α|∂A| − γ, where α is a non-universal constant
term, |∂A| is the length of the boundary between regions
A and B, and γ is the topological entanglement entropy.
The topological entanglement entropy and (real-space)
entanglement spectra has been studied in many systems
including quantum spin chains [4–14] and ladders [15–22],
fractional quantum Hall systems [3, 23–33], Chern insu-
lators [34, 35], symmetry broken phases [36, 37], topolog-
ical insulators [38–42], and other systems in one [43, 44]
and two dimensions [45–53].

Recently, several works on the entanglement entropy
and spectrum in one dimension have used a momentum-
space partition. This partition is motivated in part by the
low-energy description of one-dimensional systems, which
involves splitting particles into right and left movers
[54, 55]. The momentum-space entanglement spectrum
was first studied in the bosonic formulation of the Heisen-
berg spin-half chain [56], where it was found to reveal in-
formation about the underlying conformal field theory by

the counting of entanglement levels and an entanglement
gap. Ref. [57] studies the momentum-space entanglement
spectrum of both fermionic and bosonic formulations of
the XXZ spin-half chain. For the bosonic formulation,
Ref. [57] finds that the entanglement gap seen in Ref. [56]
does not extend throughout the critical region. For the
fermionic formulation, the momentum-space entangle-
ment Hamiltonian does not capture physical phase tran-
sitions. While this might seem like a drawback, Ref. [57]
highlights that these results might be useful for numerical
algorithms, such as the momentum-space density matrix
renormalization group. The momentum-space entangle-
ment spectrum has also proved useful in characterizing
disordered fermionic systems [58, 59] and critical spin-1
chains [60]. Entanglement entropy between left and right
movers was also recently studied in the context of string
theory [61]. We note that the entanglement entropy of a
momentum-space partition where fast modes were traced
over, instead of partitioning left and right movers as done
in this paper, was studied in Ref. [62].

Inspired by these results on the momentum-space en-
tanglement spectrum, we analytically and numerically
study the momentum-space entanglement spectrum and
entropy between left and right movers in Heisenberg spin-
half ladders. The legs of the ladder consist of spin-half
XXZ chains of length L, described by the following
Hamiltonian (with periodic boundary conditions):

Hα =

L∑
i=1

Jxy

2
(S+
α,iS

−
α,i+1 + S−α,iS

+
α,i+1) + JzSzα,iS

z
α,i+1,

(1)
where S+

α,i, S
−
α,i, and Szα,i are the standard spin-half op-

erators on leg α ∈ {1, 2} and site i ∈ {1, . . . , L}. We take
the interchain coupling between the legs of the ladder to
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be

H⊥ =

L∑
i=1

(
Jxy⊥
2

(S+
1,iS

−
2,i + S−1,iS

+
2,i) + Jz⊥S

z
1,iS

z
2,i

)
. (2)

H⊥ couples spins that are on the same rung of the lad-
der. The total Hamiltonian, which hosts both gapless and
gapped phases, is then H = H1 +H2 +H⊥. Throughout
this work, we assume that |Jxy⊥ |, |Jz⊥| � Jxy and Jxy > 0.

By mapping the spin-ladder to a low-energy bosonic
field theory and then expanding interchain interactions
to quadratic order in fields (as done by Lundgren et al.
[21]), we are able to analytically obtain the momentum-
space entanglement spectrum and entropy between left
and right movers. If the system is gapped, we notably find
the entanglement spectrum is described by a chiral con-
formal field theory with a central charge of two. This is in
contrast to the entanglement Hamiltonian with a central
charge of one that has been found in various real-space
partitions of gapped spin ladders (we note for these real-
space partitions the entanglement Hamiltonian is non-
chiral). These partitions include tracing out one leg of
the ladder [15–17, 21, 22] and every other rung [63, 64]. If
the system is gapless, the entanglement Hamiltonian has
one gapless mode (with unit central charge one) and one
dispersion-less mode. In the gapless region, we also in-
clude the effect of a certain formally irrelevant term (in
the renormalization group sense) on the entanglement
spectrum, extending the work of Ref. [21]. These analyt-
ical predictions are consistent with exact diagonalization
results for system sizes up to 14 sites.

In addition, we find that the entanglement entropy
scales with the length of the ladder, i.e. a volume law, re-
gardless of whether the system is gapped or gapless. This
volume law is also in contrast to the standard area law
usually seen in real-space systems [65] (certain real-space
systems can have volume laws [66–69]). We note that the
entanglement entropy between coupled spin chains also
scales with the length of the ladder (this is actually an
example of the area law as the entanglement entropy be-
tween the coupled spin chains scale with the length of the
partition) [70–72] . In the gapless case, we interestingly
find a subleading constant term in the entanglement en-
tropy that reveals information about the underlying field
theory of the system.

Our paper is organized as follows: In Sec. II, we intro-
duce the low-energy field theory of the spin ladder under
study. In Sec. III, the momentum-space entanglement
spectrum and entropy is calculated for this model. In
Sec. IV, we compare our analytical predictions for the
entanglement spectrum to exact diagonalization results.
Finally, in Sec. V, we summarize our results and present
our conclusion.

II. LOW-ENERGY FIELD THEORY

We now present the low-energy model of the system
in terms of bosonic fields. See Ref. [54] or Ref. [55] for

a review of Abelian bosonization. The transformation is
summed up in the spin-to-boson transformation

S+
α (x) =

S+
α,i√
a

=
ei
√
πθα(x)

√
2πa

((−1)
x
a+cos(

√
4πφα(x))) (3)

and

Szα(x) =
Szα,i
a

= − 1√
π
∂xφα(x) +

(−1)
x
a

πa
cos(
√

4πφα(x)),

(4)
where a is the lattice constant.

For this work, we consider the range of parameters for
the legs of the ladder, 0 ≤ ∆ = Jz

Jxy ≤ 1. For this range of
∆, the XXZ spin-half chain is critical and the bosonized
Hamiltonian of a single chain takes the form

Hα =
u

2

∫
dx

(
K(∂xθα)2 +

1

K
(∂xφα)2

)
, (5)

where

K =
π

2(π − cos−1(∆))
, u = Jxy

π
√

1−∆2

2 cos−1(∆)
. (6)

Each leg of the ladder is composed of left and right mov-
ing modes. At K = 1, there is no entanglement between
left and right movers (when the legs of the ladder are
uncoupled) [54, 55].

Introducing symmetric and anti-symmetric fields as
follows

φ± =
1√
2

(φ1 ± φ2), θ± =
1√
2

(θ1 ± θ2), (7)

the total Hamiltonian is

H =
u+

2

∫
dx

(
K+(∂xθ+)2 +

1

K+
(∂xφ+)2

)
+
u−
2

∫
dx

(
K−(∂xθ−)2 +

1

K−
(∂xφ−)2

)
+

2Ga
(2πa)2

∫
dx cos(

√
2πθ−) +

2ga
(2πa)2

∫
dx cos(

√
8πφ−)+

2gs
(2πa)2

∫
dx cos(

√
8πφ+)+

1

2

Ga
(2πa)2

∫
dx cos(

√
2πθ−) cos(

√
8πφ+),

(8)

where gs = ga = Jz⊥a, Ga = πJxy⊥ a, and

K± = K

(
1± KJz⊥a

πu

)− 1
2

, u± = u

(
1± KJz⊥a

πu

) 1
2

.

(9)
We have ignored an umklapp term that is proportional
to Jz cos(

√
8πφ+) cos(

√
8πφ−) and another term pro-

portional to gs cos(
√

2πθ−) cos(
√

8πφ−), as these two
terms are always less relevant than the other terms for
the range of parameters considered in this work. The
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cos(
√

2πθ−) cos(
√

8πφ+) term is less relevant than first
three cosine terms and will not play an important role
unless Jz⊥ = 0 (see Sec. II C).

For a wide range of ∆, Eq. (8) describes the Hal-
dane phase for ferromagnetic rung coupling and the rung-
singlet phase for anti-ferromagnetic rung coupling [54, 55,
73]. There are three cases of interest based on the rela-
tive scaling dimensions of the cosine terms. The scaling
dimensions of cos(

√
2πθ−), cos(

√
8πφ−), cos(

√
8πφ+),

are (2K−)−1, 2K−, 2K+ respectively. We now consider
each of the three cases separately.

A. Jxy
⊥ 6= 0, Jz

⊥ 6= 0, K− ≥ 1
2

We first consider the case when Jz⊥ 6= 0. For Jz⊥ 6= 0,
the last term in Eq. (8) is less relevant than the other
interaction terms and we ignore it. The symmetric and
anti-symmetric modes are now separate. For K− ≥ 1

2 ,

the most relevant operator is the cos(
√

2πθ−) term [54],

thus we drop the cos(
√

8πφ−) term (strictly speaking, at
K− = 1

2 , both cosine terms are equally relevant, but it is

a useful approximation to neglect the cos(
√

8πφ−) term
due to SU(2) symmetry present at K− = 1

2 [74].). The
effective Hamiltonian for this range of parameters is then
HA = HA

+ +HA
− , where

HA
+ =

u+

2

∫
dx

(
K+(∂xθ+)2 +

1

K+
(∂xφ+)2

)
2gs

(2πa)2

∫
dx cos(

√
8πφ+) (10)

and

HA
− =

u−
2

∫
dx

(
K−(∂xθ−)2 +

1

K−
(∂xφ−)2

)
+

2Ga
(2πa)2

∫
dx cos(

√
2πθ−). (11)

For ∆ between 0 and 1, both the symmetric and anti-
symmetric channels are energetically gapped.

B. Jz
⊥ 6= 0, K− <

1
2

We now consider the case when K− < 1
2 . This set of

parameters also includes the case when Jxy⊥ = 0, which
is treated numerically later. The most relevant inter-
action term in the anti-symmetric channel is now the
cos(
√

8πφ−) term [54], and we ignore the cos(
√

2πθ−)
term. We note that, whereas, the symmetric channel is
always gapped for the range of ∆ considered, the anti-
symmetric channel is gapless for a small region around
K = 1 [73]. For example, if Jz⊥ = .2 the model is gapless
from ∆ = 0 to ∆ ≈ .048. More concretely, if K− < 1 the
anti-symmetric channel is gapped. The effective Hamil-
tonian for this range of parameters is HB = HB

+ + HB
− ,

where

HB
+ =

u+

2

∫
dx

(
K+(∂xθ+)2 +

1

K+
(∂xφ+)2

)
2gs

(2πa)2

∫
dx cos(

√
8πφ+) (12)

and

HB
− =

u−
2

∫
dx

(
K−(∂xθ−)2 +

1

K−
(∂xφ−)2

)
+

+
2ga

(2πa)2

∫
dx cos(

√
8πφ−). (13)

C. Jz
⊥ = 0

We finally consider the case when Jz⊥ = 0, which re-
quires a bit more care, as less relevant operators become
important. The Hamiltonian now reads,

H =
u+

2

∫
dx

(
K+(∂xθ+)2 +

1

K+
(∂xφ+)2

)
+
u−
2

∫
dx

(
K−(∂xθ+)2 +

1

K−
(∂xφ+)2

)
+

2Ga
(2πa)2

∫
dx cos(

√
2πθ−)+

1

2

Ga
(2πa)2

∫
dx cos(

√
2πθ−) cos(

√
8πφ+). (14)

Under renormalization group flow, the cos(
√

2πθ−) term

will increase, while the cos(
√

2πθ−) cos(
√

8πφ+) term ini-
tially decreases [73]. As pointed out in Ref. [73], this
means θ− essentially becomes pinned and we can write
the following effective Hamiltonian for the symmetric
channel for this range of parameters as

HC
+ =

u+

2

∫
dx

(
K+(∂xθ+)2 +

1

K+
(∂xφ+)2

)
+
λ

2

Ga
(2πa)2

∫
dx cos(

√
8πφ+), (15)

where λ = 〈cos(
√

2πθ−)〉. The expectation value of

cos(
√

2πθ−), λ, is taken with respect to

HC
− =

u−
2

∫
dx

(
K−(∂xθ+)2 +

1

K−
(∂xφ+)2

)
+

2Ga
(2πa)2

∫
dx cos(

√
2πθ−). (16)

We thus see the effective Hamiltonians in Sec. II A
and II C are the same upon swapping Jz⊥ with λπJxy⊥ /2
in the symmetric channel. As such, we only need to cal-
culate the entanglement spectrum for the Hamiltonian in
Sec. II A and II B.
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III. MOMENTUM-SPACE ENTANGLEMENT
SPECTRUM AND ENTROPY

In this section, we calculate entanglement entropy and
spectrum between left and right movers. These left and
right movers are free only when the legs of the ladder are
uncoupled and the legs of the ladder are at the XX point
(∆ = 0). This is equivalent to the momentum-space par-
tition that is considered for the fermionic representation
of the XXZ chain in Ref. [57].

We now calculate the entanglement Hamiltonian for
the Hamiltonians in Secs. II A and II B. We first introduce
left and right moving fields,

φα =
φR,α + φL,α√

4π
, θα =

φα,L − φα,R√
4π

. (17)

As mentioned earlier, when K = 1, the left and right
movers of a single chain are free (when the legs of the
ladder are not coupled). When K 6= 1 there is finite en-
tanglement between left and right movers, even if the legs
of the ladder are uncoupled, in this basis. The left and
right moving fields have the following mode expansion
[21]

φα,R = φα,R,0 + 2πNα,R
x

L
+

∑
k>0

√
2π

L|k|

(
a†k,αe

ikx + ak,αe
−ikx)

)
(18)

and

φα,L = φα,L,0 + 2πNα,L
x

L
+

∑
k<0

√
2π

L|k|

(
a†k,αe

ikx + ak,αe
−ikx)

)
. (19)

Here, ak are bosonic operators describing oscillator
modes and φα,L/R,0 and Nα,L/R are the zero modes. The
zero modes, φα,L/R,0 and Nα,L,R, satisfy the commuta-
tion relations

[φα,R,0, Nα′,R] = −iδα,α′ , [φα,L,0, Nα′,L] = iδα,α′ . (20)

For completeness, the mode expansions of the symmetric
and anti-symmetric fields, introduced in Eq. (7), are

φ± = φ±,0 + π̃±
x

L
+

∑
k 6=0

√
1

2L|k|
(a†k,±e

ikx + ak,±e
−ikx), (21)

θ± = θ±,0 + π±
x

L
+∑

k 6=0

sgn(k)√
2L|k|

(a†k,±e
ikx + ak,±e

−ikx), (22)

where we have defined

φ±,0 =

(
(φ1,L,0 + φ1,R,0)± (φ2,L,0 + φ2,R,0)√

8π

)
, (23a)

θ±,0 =

(
(θ1,L,0 − θ1,R,0)± (θ2,L,0 − θ2,R,0)√

8π

)
, (23b)

π̃±,0 =
√
π

(
N1 ±N2√

2

)
, (23c)

π±,0 =
√

2π (M1 ±M2) , (23d)

ak,± =
(ak,1 ± ak,2)√

2
, (23e)

where Nα = N1,L + N1,R and Mα =
N1,L−N1,R

2 . In
quantum spin chains, Nα,Mα ∈ Z [75]. The commuta-
tion relations (which can be derived using Eqs. (20) and
(23)) that are important for this work are

[φ+,0, π+,0] = i, [θ−,0, π̃−,0] = i, [φ−,0, π−,0] = i. (24)

We now find the ground state of the total Hamiltonian,
Eq. (8). After finding the ground state, we can easily ob-
tain the momentum-space entanglement properties of the
model. Following Ref. [21], we expand the cosine terms
to quadratic order in field strength. In Ref. [21], the
momentum-space entanglement spectrum and entropy
was calculated for a single Tomonaga-Luttinger liquid.
In the present case, we have two uncoupled Tomonaga-
Luttinger liquids. However, we will see that analytical
treatment of the zero modes is slightly different than for
the case of a single Tomonaga-Luttinger liquid, so we pro-
vide a detailed derivation of the entanglement spectrum
and entropy (the analytical treatment of the oscillator
modes remains the same). The scalar fields from the
quadratic Hamiltonian are then mode expanded and the
Hamiltonian is diagonalized via a Bogoliubov transfor-
mation. For small values of J⊥ and Jz⊥, this expansion
should be done after the coupling grows under renor-
malization group flow. As such, our approach is valid
when the system size is larger than the correlation length.
The analytical predictions obtained from this method
have been numerically investigated with exact diagonal-
ization in Ref. [21] and Ref. [57]. Excellent agreement
was found between the analytical and numerical results.
The method developed in Ref. [21] was also recently used
to study the real-space entanglement spectrum of wire
constructions of fractional quantum Hall phases [76].

While this approach works for a wide range of cou-
plings, we note if the field is in a superposition of being
localized on different minima of the cosine, this approach
breaks down. However, due to the compactification of the
bosonic fields in the Haldane and Rung-singlet phases, we
do not have to worry about this issue in this work.

A. J⊥ 6= 0, Jz
⊥ 6= 0, K− ≤ 1

2

We first consider the Hamiltonian in Sec. II A. Recall
these results also apply for the parameters in Sec. II C
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upon switching λπJxy⊥ /2 for Jz⊥ in the symmetric chan-
nel. We note that due to the locking of the φ+ and θ−
fields, the winding modes of these fields must be sup-
pressed, i.e. π̃+ = π− = 0. We expand the cosine terms
as

2Ga
(2πa)2

cos(
√

2πθ−) ≈ const.+
u−m

2
A,−K−

2
(θ− − θ̄−,0)2

(25)
and

2gs
(2πa)2

cos(
√

8πφ+) ≈ const.+
u+m

2
A,+

2K+
(φ+ − φ̄+,0)2,

(26)
where φ̄+,0 and θ̄−,0 are the locking positions. Plugging
in the mode expansion and writing H± = Hzero

± + Hosc
± ,

we find for the oscillator portion,

Hosc
± =

u±
2

∑
k 6=0

(
a†k,±, a−k,±

)(
AA,k,± Bk,±
BA,k,± AA,k,±

)(
ak,±
a†−k,±

)
(27)

with

AA,k,+ =
1

2

(
1

K+
+K+

)
|k|+

m2
A,+

2|k|K+
,

BA,k,+ =
1

2

(
1

K+
−K+

)
|k|+

m2
A,+

2|k|K+
,

AA,k,− =
1

2

(
1

K−
+K−

)
|k|+

K−m
2
A,−

2|k|
,

BA,k,− =
1

2

(
1

K−
−K−

)
|k| −

K−m
2
A,−

2|k|
.

(28)

By performing a Bogoliubov transformation,(
ak,±
a†−k,±

)
=

(
cosh θk,± sinh θk,±
sinh θk,± cosh θk,±

)(
bk,±
b†−k,±

)
, (29)

with

cosh (2θA,k,±) =
AA,k,±
λA,k,±

,

sinh (2θA,k,±) = −BA,k,±
λA,k,+

,

λA,k,± =
√
A2
A,k,± −B2

A,k,± =
√
k2 +m2

A,±, (30)

the oscillator part of H± is diagonalized as

H± = u±
∑
k 6=0

λA,k,±

(
b†k,±bk,± +

1

2

)
. (31)

We thus have a Klein-Gordon Hamiltonian with a mass
gap u±mA,±. Renormalization group calculations to low-
est order in J⊥ and Jz⊥ yields

mA,+ =
u+

a

(
4K+gs
πu+

) 1
2−2K+

(32)

and

mA,− =
u−
a

(
4Ga

πu−K−

) 1

2− 2
K− . (33)

For the details of this calculation, see Ref. [54] or [55].
The ground state |0〉 of HA

± is specified by the condi-
tion that bk,±|0〉 = 0 for all k 6= 0. For the zero mode
contribution we find

Hzero
+ =

u+

2
(π2

+

K+

L
+
Lm2

A,+

K+
(∆φ+,0)2), (34)

Hzero
− =

u−
2

(π̃2
−

1

LK−
+ Lm2

A,−K−(∆θ−,0)2), (35)

where we have defined ∆φ±,0 = φ±,0− φ̄±,0 and ∆θ±,0 =
θ±,0 − θ̄±,0. We note that the reduced density matrix of
left or right movers can be factored as ρA = ρzero

A ⊗ ρosc
A .

Furthermore, we can factorize ρosc
A as ρosc

A,+ ⊗ ρosc
A,−.

We are now in position to calculate the oscillator part
of the reduced density matrix, ρosc

A , using methods of
free theories originally introduced by Peschel [77]. We
first calculate the two-point correlation function for right
moving particles. This is given by

〈0|a†k,±ak,±|0〉 = sinh2θk,± =
cosh(2θk,±)− 1

2
. (36)

Introducing the ansatz,

ρosc
A,± =

1

Zosc
e,±

e−H
osc
e,± , Zosc

e,± = Tre−H
osc
e,± , (37)

with

Hosc
e,± =

∑
k>0

wk,±

(
a†k,±ak,± +

1

2

)
, (38)

an alternate expression for the two-point correlation
function is given by the Bose distribution function,

Tr(a†k,±ak,±e
−Hosc

e,±) =
1

eωk,± − 1
. (39)

Here, Hosc
e,± is the entanglement Hamiltonian for the right-

moving oscillator modes. We stress the entanglement
Hamiltonian is a different object than the physical Hamil-
tonian for the oscillator modes. Equating the two expres-
sions for the two-point correlation function, we find

wk,± = ln

(
cosh(2θk,±) + 1

cosh(2θk,±)− 1

)
. (40)

Using Eq. (40), we find, to lowest order in sub-system
momentum,

wA,+,k = ve,A,+k =
4K+

mA,+
k,

wA,−,k = ve,A,−k =
4

K−mA,−
k. (41)
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The entanglement Hamiltonian for the symmetric (anti-
symmetric resp.) oscillator part, is then

He,A,± = ve,A,±

(∑
k>0

ka†k,±ak,± −
π

12L

)
. (42)

Here, we have used ζ-function regularization ζ(−1) =
− 1

12 for the infinite constant term.
We now consider the zero-mode part of the entan-

glement spectrum. The commutation relations for the
zero modes allow for the identification of the zero-mode
Hamiltonian as a discrete harmonic oscillator. In the
limit of large system size, the discreteness of the har-
monic oscillator is irrelevant. As such, the ground-state
in the π+, π̃− basis can be approximated as a Gaussian,

〈π+, π̃−|G〉 ∝ e
−K+(π+)2

2mA,+L
− (π̃−)2

2mA,−LK− . (43)

Using π̃+, π− = 0, the ground state can be written as

|G〉 =
∑

(M̄,N̄)

1√
z

exp

[
−π
2L

(
2ve,A,+M̄

2 + ve,A,−N̄
2
)]

× |(M1, N1) = (M̄, N̄)〉 ⊗ |(M2, N2) = (M̄,−N̄)〉,
(44)

the reduced density matrix for right moving zero modes
is then

ρzero
A =∑

NR,1,NR,2

|NR,1, NR,2〉e
−

2πK+(NR,+)2

mA,+L
−

2π(NR,−)2

mA,−LK− 〈NR,1, NR,2|.

(45)

where NR,± = NR,1 ± NR,2. The total entanglement
Hamiltonian for the zero-mode part is given by

Hzero
e,A =

π

2L

(
ve,A,+N

2
R,+ + ve,A,−N

2
R,−
)
. (46)

The total entanglement Hamiltonian for right moving
particles is He,A = He,A,+ +He,A,−+Hzero

e,A . Both He,A,−
and He,A,+ are gapless and have a chiral central charge of
one, thus He,A is gapless and has a chiral central charge
of two.

We now calculate the entanglement entropy, S, in the
large L limit. Following the method first outlined in
Ref. [21], we calculate the partition function (at a fic-
tious temperature, T = 1

β ) which is given by

Ze,A(β) = Zzero
e,A (β)Zosc

e,A,−(β)Zosc
e,A,+(β). (47)

The partition function for the oscillators is

Zosc
e,A,±(β) = e

π
12 τ2,±

∞∏
j=1

(
1

1− e−2πτ2,A,±j

)
=

1

η(iτ2,±)
,

(48)

where η is the Dedekind eta function and τ2,A,± =
βve,A,±

L . As L→∞, we have

Zosc
e,A,±(β) ≈ e

LTπ
ve,A,±12

√
ve,A,±
LT

. (49)

The partition function for the symmetric zero-mode
channel is

Zzero
e,A =

∑
N1,R,N2,R

e−
βπ

2LK (NT
RΩNR) =

∑
N1,R,N2,R

e−πτ(NT
RΩNR),

(50)
where

Ω =

(
ve,A,+ + ve,A,− ve,A,+ − ve,A,−
ve,A,+ − ve,A,− ve,A,+ + ve,A,−

)
, (51)

NR =
(
N1,R, N2,R

)
, and τ = β

2L . The partition function
for zero modes is the Riemann theta function. Using the
modular properties of the Riemann theta function, in the
large L limit we find

Zzero
e,A =

θ(0|iτ−1Ω−1)√
det(τΩ)

≈
(
ve,A,+ve,A,−β

2

L2K2

)− 1
2

. (52)

Here, we have used the fact that the Riemann theta func-
tion approaches unity as L goes to infinity. The total
partition function is then

Ze,A = e
LTπ
12 ( 1

ve,A,+
+ 1
ve,A,−

)
(53)

The momentum-space entanglement entropy for this par-
tition is then

S =
∂(T lnZe,A)

∂T
|T=1 = L

π

6

(
ve,A,+ + ve,A,−
ve,A,+ve,A,−

)
. (54)

We thus see we have a volume law. The physical rea-
son for the volume law is quite clear. We see that from
Eq. (27), there is pairing between states with momen-
tum k and momentum −k. In other words, the Hamil-
tonian generates entanglement between pairs of left and
right moving particles with momentum k. The number of
these pairs is proportional to the number of momentum
modes. The number of momentum modes is directly pro-
portional to the system size, hence giving rise to a volume
law for the momentum-space entanglement entropy.

B. Jz
⊥ 6= 0, K− >

1
2

1. Gapped Regime

We now consider the Hamiltonian in Sec. II B. If the
anti-symmetric channel is gapped, we expand that cosine
term in the anti-symmetric channel as

2ga
(2πa)2

cos(
√

8πφ−) ≈ const.+
u−m

2
B,−

2K−
(φ− − φ̄−,0)2.

(55)
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Due to the locking of the φ+ and φ− fields, we have
π̃− = π̃+ = 0. After plugging in the mode expansions,
we find for the oscillator contribution

Hosc
± =

u±
2

∑
k 6=0

(
a†k,±, a−k,±

)(
AB,k,± BB,k,±
BB,k,± AB,k,±

)(
ak,±
a†−k,±

)
,

(56)
with

AB,k,+ =
1

2

(
1

K+
+K+

)
|k|+

m2
B,+

2|k|K+
,

BB,k,+ =
1

2

(
1

K+
−K+

)
|k|+

m2
B,+

2|k|K+
,

AB,k,− =
1

2

(
1

K−
+K−

)
|k|+

m2
B,−

2|k|K−
,

BB,k,− =
1

2

(
1

K−
−K−

)
|k| −

m2
B,−

2|k|K−
.

(57)

We again have a sine-Gordon model with a mass gap,
u±mB,±. Renormalization group calculations to lowest
order in J⊥ and Jz⊥ yield

mB,+ =
u+

a

(
4K+gs
πu+

) 1
2−2K+

(58)

and

mB,− =
u−
a

(
4K−ga
πu−

) 1
2−2K−

. (59)

We find the zero-mode contribution to be

Hzero
+ =

u+

2
(π2

+

K+

L
+
Lm2

B,+

K+
(∆φ+,0)2), (60)

Hzero
− =

u−
2

(π2
−
K−
L

+
Lm2

B,−

K−
(∆φ−,0)2). (61)

Following similar steps as the previous section, we find
the entanglement Hamiltonian for the oscillators to be

Hosc
e,B,± = ve,B,±

(∑
k>0

ka†k,±ak,± −
π

12L

)
, (62)

where

ve,B,+ =
4K+

mB,+
, ve,B,− =

4

K−mB,−
. (63)

Using π̃+, π̃− = 0, we find the zero-mode contribution of
the entanglement Hamiltonian to be

Hzero
e,B =

π

2L

(
ve,B,+N

2
R,+ + ve,B,−N

2
R,−
)
. (64)

Evaluating the partition function in the same manner as
the previous section, we find the entanglement entropy
to be

S = L
π

6

(
ve,B,+ + ve,B,−
ve,B,+ve,B,−

)
. (65)

2. Gapless Regime

We can also treat the small gapless region of the anti-
symmetric channel at Jxy⊥ = 0 and K− > 1. One can
show in this case (by neglecting the irrelevant cosine
term. Strictly speaking, the irrelevant cosine terms will
modify these results as discussed in detail below. We will
see the main effect of the irrelevant cosine terms can be
accounted for by replacing the Tomonaga-Luttinger pa-
rameter, K−, with an effective one.) the entanglement
spectrum for the anti-symmetric mode is flat and wB,−,k
is given by [21]

wB,−,k = wB,− = ln

(
K− + (K−)−1 + 2

K− + (K−)−1 − 2

)
. (66)

The entanglement Hamiltonian for the anti-symmetric
oscillator modes is then

Hosc
e,B,− = wB,−

(∑
k>0

a†k,±ak,± +
1

2

)
. (67)

The entanglement Hamiltonian for the symmetric oscil-
lator modes is still given by Eq. (62). The zero mode
entanglement Hamiltonian is given by

Hzero
e,B =

πvB,+
L

N̄2
+ (68)

where N̄+ ∈ {−∞, . . . ,∞}. We see the symmetric part of
the entanglement Hamiltonian remains gapless, and we
thus have an entanglement Hamiltonian with one gapless
mode and one dispersion-less, i.e. flat, mode.

After obtaining the entanglement Hamiltonian, one
can calculate the momentum-space entanglement en-
tropy. The entanglement entropy (See App. A for key
steps of this calculations) is given by

S = L

(
γ

2
+

π

6ve,B,+

)
− κ, (69)

where

κ =
(K− − 1)2

4

[
1− ln

(
(K− − 1)2

4

)]
. (70)

In addition to the volume law, we have a subleading con-
stant term in the entanglement entropy. This constant
term reveals the Tomonaga-Luttinger parameter of the
anti-symmetric gapless mode (once taking into account
the irrelevant cosine term, we will see that κ actually re-
veals the effective Tomonaga-Luttinger parameter). We
remark that the constant term that appears in the entan-
glement entropy between coupled Tomonaga-Luttinger
liquids contains information on both the symmetric and
anti-symmetric channels [70].

In general, there will be corrections to wB,− and the en-
tanglement entropy due to the irrelevant cosine term we
neglected in Eq. (13) (we are ignoring the three neglected
terms that are less relevant). Finding these corrections
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is crucial for obtaining qualitative agreement with some
of the numerical results presented in the next section.
We can treat the irrelevant cosine term in Eq. (13) as
follows. The correlation functions in the gapless region
can be computed from a perturbative expansion of the
cosine term for small coupling strengths. Here, we focus
on the correlation function of the exponential of the φ−
field. When ga = 0, the correlation function is given by

〈eia
√

2πφ−(r)e−ia
√

2πφ−(0)〉 =

(
a

r

)a2K−
, (71)

where r � a. To second order in coupling strength, ga,
the correlation functions are given by (see for example,
Ref. [54])

〈eia
√

2πφ−(r)e−ia
√

2πφ−(0)〉 =

(
a

r

)a2Keff
−

, (72)

where

Keff
− = K− −

g2
a

2π2u2
−

∫ L

a

dr

a

(
r

a

)3−4K−

=

K− +
g2
a

2π2u2
−

(
1−

(
L

a

)4−4K−) 1

4− 4K−
. (73)

Here, L acts as an infrared cut-off. Since the exponent
of correlation functions control the low-energy properties

of the Hamiltonian [54], we can replace K− by Keff
− in

gapless region and use the following effective Hamiltonian
to describe the gapless region around ga = 0

HB,eff
− =

u−
2

∫
dx

(
Keff
− (∂xθ−)2 +

1

Keff
−

(∂xφ−)2

)
.

(74)

We also see that Keff
− is smaller than K−. Intuitively

this makes sense because the cosine term acts to or-
der φ−, thereby making fluctuations less likely. The
momentum-space entanglement spectrum and entropy
(including κ) are still given by Eq. (66) and Eq. (69)

respectively, except with Keff
− replacing K−.

IV. NUMERICAL ANALYSIS

In this section, we compare our predictions with exact
diagonalization results for up to systems sizes of 14 sites
(28 total spins). One can either transform the spin op-
erators to Jordan-Wigner fermions or hard-core bosons.
Using hard-core bosons is complicated by the fact that

the commutation relation of hard-core boson creation
and annihilation operators depend on the occupancy of
a given state and thus the calculation of matrix elements
between momentum basis states is numerically challeng-
ing. Thus, we consider a Jordan-Wigner transformation
of the spin operators to spin-less fermions. In general,
a Jordan-Wigner transformation will have long-range in-
teractions and complicated boundary terms due to string
factors. We will see that when Jxy⊥ = 0, the problem
simplifies and we are able to obtain results consistent
with the analytical predictions for the Hamiltonian in
Sec. II B. Unfortunately, due to complicated boundary
terms introduced by the Jordan-Wigner string we can not
capture the results of Sec. II A and II C with a Jordan-
Wigner transformation. We leave numerical verification
of the analytical predictions of Sec. II A and II C for fu-
ture work.

We begin by applying a Jordan-Wigner transformation
to Eqs. (1) and (2). The Jordan-Wigner transformation
is applied directly, i.e. all spins are arranged in a one di-
mensional sequence [78]. Explicitly, the Jordan-Wigner

transformation is given by S−i = cie
iπ

∑
j<i c

†
jcj , Szi =

(c†jcj− 1
2 ), where i ∈ {1, . . . , 2L}. We stress that one can

not apply the Jordan-Wigner transformation separately
to each leg of the ladder as this does not preserve the orig-
inal algebra of the spin operators. The Hamiltonian for
the legs of the ladder when written as a one-dimensional
sequence of 2L spins is

H1 +H2 =

L−1∑
i=1

Jxy

2
(S+
i S
−
i+1 + S−i S

+
i+1) + JzSzi S

z
i+1+

2L−1∑
i=L+1

Jxy

2
(S+
i S
−
i+1 + S−i S

+
i+1) + JzSzi S

z
i+1+

Jxy

2
(S+

1 S
−
L + S−1 S

+
L ) + JzSz1S

z
L+

Jxy

2
(S+
L+1S

−
2L + S−L+1S

+
2L) + JzSzL+1S

z
2L.

(75)

The last four terms in Eq. (75) arise due to periodic
boundary conditions. The interchain coupling is

H⊥ =

L∑
i=1

(
Jxy⊥
2

(S+
i S
−
i+L + S−i S

+
i+L) + Jz⊥S

z
i S

z
i+L

)
.

(76)
Defining αi = ci ∀ i < L + 1, βi = ci ∀ i > L, the
Hamiltonian for the legs of the ladder (neglecting con-
stant terms) is given by (for Jxy⊥ = 0)

H =

L∑
i=1

[
Jxy

2
(α†iαi+1 + α†i+1αi + β†i βi+1 + β†i+1βi ) + Jz(α†iαiα

†
i+1αi+1 + β†i βi β

†
i+1βi+1) + Jz⊥α

†
iαiβ

†
i βi

]
. (77)
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FIG. 1. (color online) Fermionic entanglement spectra for representative values of ∆, with L = 14 and NA = 8 (four particles
on each leg). The entanglement eigenvalues, ξ, (relative to ξ0, which is the ground state entanglement energy) are plotted
versus the subsystem crystal momentum, MA (we have also shifted the crystal momentum to have the lowest level at zero). (a)
The low energy properties of the entanglement Hamiltonian are consistent with a chiral CFT with a central charge of two. (b)
At MA = 1, we observe a large splitting of the first two entanglement levels, consistent with the prediction of a dispersion-less
mode and a chiral conformal field theory of unit central charge.

We now introduce the Fourier transform of the creation
and annihilation operators,

αi =

L∑
m=1

ei
2π
L mα̃m, βi =

L∑
k=1

ei
2π
L kβ̃k. (78)

Here, m ∈ {1, . . . , L} is the crystal momentum of the
α-particles and k ∈ {1, . . . , L} is the crystal momen-
tum of the β-particles. The ground state of Eq. (75) has∑L
i=1 S

z
i = 0 and

∑2L
i=L+1 S

z
i = 0. As such, we have L

2 α-

particles and L
2 β-particles. To avoid a degenerate Fermi

sea at K = 1 (and when the legs of the ladder are uncou-
pled), we limit ourselves to systems sizes of L = 4n + 2,
n ∈ N.

After numerically finding the ground state in the
momentum-space occupation basis, one can then find the
momentum-space entanglement spectrum. The system
is partitioned into two regions A and B in momentum-
space. These regions are defined as A = {m|m ≤
L
2 } ⊗ {k|k ≤

L
2 } and B = {k|k > L

2 } ⊗ {m|m > L
2 }.

Regions A and B are decomposed in terms of the total
crystal momentum, M = MA + MB and total number
of particles, N = NA + NB . NA, NB , MA and MB are

given by

MA =

( L
2∑

m=1

nα,mm+

L
2∑

k=1

nβ,kk

)
mod L,

MB =

( L∑
m=L

2 +1

nα,mm+

L∑
k=L

2 +1

nβ,kk

)
mod L,

NA =

L
2∑

m=1

nα,m +

L
2∑

k=1

nβ,k,

NB =

L∑
m=L

2 +1

nα,m +

L∑
k=L

2 +1

nβ,k. (79)

We now present our numerical results for the momentum-
space entanglement spectrum of spin ladders.

A. Gapped Region

We first investigate the momentum-space entangle-
ment spectrum of the gapped phase. We take L = 14
(the largest system size available) and NA = 8 (four α
particles and four β particles). Fig. 1a shows the en-
tanglement spectrum at J⊥z = .4, Jxy = 1, Jz = 1.
Starting from MA = 0, we observe a nearly linear spec-
trum with the following counting of entanglement lev-
els 1, 2, 5, 10, . . . (from right to left). This matches the
counting of a chiral conformal field theory with a central
charge of two, consistent with our analytical predictions.

From computing correlation functions, we find the cor-
relation length for the Hamiltonian in Sec. II B is rather
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FIG. 2. (color online) The entanglement gap, ∆ξ, between ξ2 and ξ0 versus Jz, with L = 10 and NA = 3 (three particles on
each leg). The black dots are numerical data obtained from exact diagonalization, the blue line is the analytical prediction

using K−, and the red line is the analytical prediction using Keff
− .

large and on the same order of the system sizes consid-
ered in this work. The correlation length of the symmet-
ric channel, ξs ≈ 1

mB,+
, is actually much larger than the

correlation length in commonly studied isotropic Heisen-
berg ladders [79]. For the system sizes considered, this
makes accurately verifying our analytical predictions for
the slope of the entanglement spectrum difficult. Fur-
thermore, there is a large computational cost to obtain
the entanglement spectrum for each parameter point for
the largest system size presented (14 sites). We thus
leave a detailed numerical investigation of the slope of
the momentum-space entanglement spectrum in spin-half
ladders as an open problem.

B. Gapless Region

We now turn to the entanglement spectrum in the gap-
less region, where one expects to see one gapless mode
and one flat mode. Shown in Fig. 1b is the entanglement
spectrum at Jxy = 1, Jz = .1, Jz⊥ = .6, Jxy⊥ = 0. We
observe at MA = 1 a large splitting of the first two entan-
glement levels, consistent with the prediction of a chiral
conformal field theory of unit central charge and a flat
mode. In addition, the value of the second entanglement
level at MA = 1, which we call ξ2, (12.06) is consistent
with our analytical predictions (9.73) (using the effective
Luttinger parameter, Eq. (73)). We expect the disagree-
ment between the value of ξ2 obtained numerically and
our analytical prediction can be explained by a combi-

nation of higher order corrections of Keff
− and taking

into the other three irrelevant terms (which are less rel-
evant than the cosine term in Eq. (13)). We are unable
to use the entanglement levels at MA = 2 to verify our
analytical predictions due to their almost equal spacing.

Larger systems sizes should allow one distinguish the en-
tanglement levels that belong to the chiral conformal field
theory and the flat mode at MA > 1.

None the less, we can take a closer look at ξ2 for var-
ious parameters to verify our analytical predictions. For
L = 10 and NA = 6 (three particles on each leg), we
first investigate ξ2 for Jxy = 1, Jz⊥ = .2, Jxy⊥ = 0 as a
function of Jz. For Jz⊥ = .2, we are in the gapless region
for Jz = 0 to Jz ≈ .048. We see that our analytical
prediction is in excellent agreement with our numerical
results (see Fig. 2a). Note, this Jz⊥ is much smaller than
the one used in Fig. 1b, so higher order corrections to
K− are not important and thus we have better agree-
ment between numerics and our analytical prediction.

We note for this small value of Jz⊥, Keff
− and K− are

in near agreement. We now investigate ξ2 for Jz⊥ = .5,
which is shown in Fig. 2b. For Jz⊥ = .5, we are in the
gapless region for Jz = 0 to Jz ≈ .12. Notably, we see

that analytical prediction for ξ2 using Keff
− and K− are

qualitatively different. More specifically, ξ2 computed

with Keff
− diverges before the cosine term becomes rele-

vant, while ξ2 computed with K− diverges exactly when

the cosine term becomes relevant. We see that Keff
−

qualitatively captures the numerically observed behav-
ior. Again, we expect better quantitative agreement if

one where to include higher order corrections Keff
− and

use larger system sizes.

Finally, we remark that, while it would be interesting
to numerically capture the predicted constant term in the
entanglement entropy, it would be hard due to the finite
size effects present for the system sizes considered in this
section. More specifically, in deriving the entanglement
entropy in the gapless phase, we neglected corrections
to the entanglement entropy from sub-leading terms (in
system size) in the symmetric channel.
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V. CONCLUSION

We have studied the momentum-space entanglement
entropy and spectrum of anisotropic spin-half ladders us-
ing field theoretical methods and exact diagonalization.
We found that the entanglement entropy between left and
right movers is linear in system size and obeys a volume
law. When the system is gapped, the momentum-space
entanglement Hamiltonian was found to be gapless and
described by a chiral conformal field theory with a cen-
tral charge of two. If the system is gapless, the entan-
glement Hamiltonian was found to be described by one
chiral dispersion-less mode and one chiral gapless mode
with a linear spectrum. We have extended the work of
Ref. [21] by taking into account certain irrelevant terms,
which qualitatively change the entanglement spectrum.
In both the gapless and gapped regions, we find a vol-
ume law. Notably, in the gapless region we also find a
subleading constant term. Exact diagonalization results
are found to be consistent with our analytical predictions.
Our work can easily be generalized to include exchange
between the spins across diagonals of the plaquettes and
the following four-spin term (S1,iS1,i+1S2,iS2,i+1), which
can arise due to phonons.

As mentioned throughout this work, exact diagonal-

ization suffers from finite size effects, as the typical cor-
relation length of the phases studied in this work is on
the same order as the system sizes currently available via
exact diagonalization. As such, it would be interesting
to numerically investigate the entanglement spectrum via
quantum monte carlo methods, which have recently been
applied to entanglement spectra studies [80–83], or the
momentum-space density matrix renormalization group.
Finally, it would also be interesting to generalize our work
to study other gapless phases of spin ladders, including
the vector chiral phase [84], and inequivalent chains.
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Appendix A: Momentum-Space Entanglement Entropy in Gapless Region

In this section, we provided some key steps in the calculation of the momentum-space entanglement entropy for the
Hamiltonian in Sec. II B. The partition function for the anti-symmetric oscillator mode is given by

Zosc
e,−(β) =

∏
k>0

(
2 sin(

βwk,B,−
2

)

)−1

=

(
2 sin(

βwB,−
2

)

)− L
2a−1

. (A1)

Here, we have used the fact that k runs over L
2a − 1 modes (after taking into account the exclusion of the zero mode).

We first calculate the Renyi entropy (for general Renyi index, n), which is given by

Sn = − 1

n− 1
ln

(
Zosc
e,−(n)

Zosc
e,−(1)n

)
=

(
L

2a
− 1

)
1

n− 1
ln

(
2 sinh(

nwB,−
2 )

(2 sinh(
wB,−

2 ))n

)
=

(
L

2a
− 1

)
1

n− 1
ln

(
1− e−nwB,−

(1− e−wB,−)n

)
. (A2)

After some algebra, we have

Sn =

(
L

2a
− 1

)
1

n− 1
ln

( 1− (K−−1
K−+1 )2n

(1− (K−−1
K−+1 )2)n

)
=

(
L

2a
− 1

)
1

n− 1

[
ln

(
1− (

K− − 1

K− + 1
)2n

)
−n ln

(
1− (

K− − 1

K− + 1
)2

)
(A3)

For the parameters we are interested in, K− ≈ 1. For K− ≈ 1, we have

ln

(
1− (

K− − 1

K− + 1
)2n

)
≈ −

(
K− − 1

2

)2n

. (A4)

Finally, we arrive at our expression for the Renyi entropy,

Sn =

(
L

2a
− 1

)
1

n− 1

[
−
(
K− − 1

2

)2n

+ n

(
K− − 1

2

)2]
. (A5)

Taking the n = 1 limit to obtain the entanglement entropy, we find

S1 =

(
L

2a
− 1

)
(K− − 1)2

4

[
1− ln

(
(K− − 1)2

4

)]
. (A6)
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Fiete, and R. Thomale, Phys. Rev. Lett. 113, 256404
(2014).

[58] I. Mondragon-Shem, M. Khan, and T. Hughes, Phys.
Rev. Lett. 110, 046806 (2013).

[59] E. C. Andrade, M. Steudtner, and M. Vojta, J. Stat.
Mech. Theor. Exp. 2014, P07022 (2014).

[60] R. Lundgren, J. Blair, P. Laurell, N. Regnault, G. A. Fi-
ete, M. Greiter, and R. Thomale, ArXiv e-prints (2015),
arXiv:1512.09030 [cond-mat.str-el].

http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1088/1742-5468/2012/08/P08011
http://dx.doi.org/10.1088/1742-5468/2012/08/P08011
http://dx.doi.org/10.1103/PhysRevLett.108.227201
http://dx.doi.org/10.1103/PhysRevLett.108.227201
http://dx.doi.org/10.1103/PhysRevA.78.032329
http://dx.doi.org/10.1103/PhysRevA.78.032329
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://stacks.iop.org/1367-2630/12/i=2/a=025006
http://stacks.iop.org/1367-2630/12/i=2/a=025006
http://arxiv.org/abs/1303.0741
http://arxiv.org/abs/1303.0741
http://dx.doi.org/10.1103/PhysRevB.88.125142
http://dx.doi.org/ 10.1103/PhysRevB.90.235111
http://stacks.iop.org/1742-5468/2014/i=6/a=P06001
http://stacks.iop.org/1742-5468/2014/i=6/a=P06001
http://stacks.iop.org/1742-5468/2014/i=10/a=P10029
http://stacks.iop.org/1742-5468/2014/i=10/a=P10029
http://dx.doi.org/10.1103/PhysRevLett.105.077202
http://dx.doi.org/10.1209/0295-5075/96/50006
http://dx.doi.org/10.1209/0295-5075/96/50006
http://dx.doi.org/10.1088/1742-5468/2012/11/P11021
http://dx.doi.org/10.1088/1742-5468/2012/11/P11021
http://dx.doi.org/10.1103/PhysRevA.86.032326
http://dx.doi.org/10.1103/PhysRevA.86.032326
http://dx.doi.org/10.1103/PhysRevB.86.224422
http://dx.doi.org/10.1103/PhysRevB.86.224422
http://dx.doi.org/10.1103/PhysRevB.88.245137
http://dx.doi.org/10.1103/PhysRevB.92.039903
http://dx.doi.org/10.1103/PhysRevB.92.039903
http://stacks.iop.org/1742-5468/2013/i=08/a=P08013
http://stacks.iop.org/1742-5468/2013/i=08/a=P08013
http://dx.doi.org/10.1103/PhysRevB.76.125310
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/ 10.1103/PhysRevB.85.045119
http://dx.doi.org/ 10.1103/PhysRevB.85.045119
http://dx.doi.org/10.1103/PhysRevB.85.125308
http://dx.doi.org/10.1103/PhysRevB.85.125308
http://dx.doi.org/10.1103/PhysRevB.85.115321
http://dx.doi.org/10.1103/PhysRevB.85.115321
http://dx.doi.org/10.1103/PhysRevLett.108.256806
http://dx.doi.org/10.1103/PhysRevB.88.155307
http://dx.doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://stacks.iop.org/1742-5468/2014/i=10/a=P10030
http://stacks.iop.org/1742-5468/2014/i=10/a=P10030
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/ 10.1103/PhysRevB.88.144426
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://dx.doi.org/10.1103/PhysRevB.84.195103
http://dx.doi.org/10.1103/PhysRevB.82.085106
http://dx.doi.org/10.1103/PhysRevB.82.085106
http://dx.doi.org/10.1103/PhysRevB.87.035119
http://dx.doi.org/10.1103/PhysRevB.87.035119
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevA.71.022315
http://dx.doi.org/10.1103/PhysRevA.71.022315
http://dx.doi.org/10.1103/PhysRevB.75.214407
http://dx.doi.org/10.1103/PhysRevB.75.214407
http://dx.doi.org/10.1103/PhysRevLett.105.080501
http://dx.doi.org/10.1103/PhysRevLett.105.080501
http://dx.doi.org/10.1103/PhysRevB.87.035141
http://dx.doi.org/10.1103/PhysRevLett.107.157001
http://dx.doi.org/10.1103/PhysRevLett.107.157001
http://dx.doi.org/10.1088/1367-2630/15/5/053017
http://stacks.iop.org/1742-5468/2014/i=9/a=P09011
http://stacks.iop.org/1742-5468/2014/i=9/a=P09011
http://arxiv.org/abs/1410.4790
http://arxiv.org/abs/1411.6932
http://arxiv.org/abs/1411.6932
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/10.1103/PhysRevLett.105.116805
http://dx.doi.org/ 10.1103/PhysRevLett.113.256404
http://dx.doi.org/ 10.1103/PhysRevLett.113.256404
http://dx.doi.org/10.1103/PhysRevLett.110.046806
http://dx.doi.org/10.1103/PhysRevLett.110.046806
http://stacks.iop.org/1742-5468/2014/i=7/a=P07022
http://stacks.iop.org/1742-5468/2014/i=7/a=P07022
http://arxiv.org/abs/1512.09030


13

[61] L. A. Pando Zayas and N. Quiroz, ArXiv e-prints (2014),
arXiv:1407.7057 [hep-th].

[62] V. Balasubramanian, M. McDermott, and
M. Van Raamsdonk, Phys. Rev. D 86, 045014 (2012).

[63] R. A. Santos, ArXiv e-prints (2014), arXiv:1408.1716
[cond-mat.str-el].

[64] R. A. Santos, C.-M. Jian, and R. Lundgren, ArXiv e-
prints (2015), arXiv:1511.01489 [cond-mat.str-el].

[65] J. Eisert, M. Cramer, and M. Plenio, Rev. Mod. Phys.
82, 277 (2010).

[66] G. Gori, S. Paganelli, A. Sharma, P. Sodano, and
A. Trombettoni, Phys. Rev. B 91, 245138 (2015).

[67] N. Shiba and T. Takayanagi, Journal of High Energy
Physics 2014, 33 (2014), 10.1007/JHEP02(2014)033.

[68] G. Vitagliano, A. Riera, and J. I. Latorre, New Journal
of Physics 12, 113049 (2010).

[69] G. Ramrez, J. Rodrguez-Laguna, and G. Sierra, Journal
of Statistical Mechanics: Theory and Experiment 2014,
P10004 (2014).

[70] S. Furukawa and Y. Kim, Phys. Rev. B 83, 085112
(2011).

[71] A. Mollabashi, N. Shiba, and T. Takayanagi, J. High En-
ergy Phys. 2014, 185 (2014), 10.1007/JHEP04(2014)185.

[72] J. C. Xavier and F. B. Ramos, Journal of Statistical Me-
chanics: Theory and Experiment 2014, P10034 (2014).

[73] E. Kim and J. Sólyom, Phys. Rev. B 60, 15230 (1999).
[74] S. Furukawa, M. Sato, S. Onoda, and A. Furusaki, Phys.

Rev. B 86, 094417 (2012).
[75] F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
[76] J. Cano, T. L. Hughes, and M. Mulligan, ArXiv e-prints

(2014), arXiv:1411.5369 [cond-mat.str-el].
[77] I. Peschel, J. Physics A: Mathematical and General 36,

L205 (2003).
[78] There are other possible paths, which can be used to

control phase factors [85], However, the left and right
moving particles are not free when the legs of ladder are
uncoupled and at the XX point.
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