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In this work, we propose a systematic way of computing a low-rank globally-adapted localized
Tucker-tensor basis for solving the Kohn-Sham DFT problem. In every iteration of the self-consistent
field procedure of the Kohn-Sham DFT problem, we construct an additive separable approxima-
tion of the Kohn-Sham Hamiltonian. The Tucker-tensor basis is chosen such as to span the tensor
product of the one-dimensional eigenspaces corresponding to each of the spatially separable Hamil-
tonians, and the localized Tucker-tensor basis is constructed from localized representations of these
one-dimensional eigenspaces. This Tucker-tensor basis forms a complete basis, and is naturally
adapted to the Kohn-Sham Hamiltonian. Further, the locality of this basis in real-space allows us
to exploit reduced-order scaling algorithms for the solution of the discrete Kohn-Sham eigenvalue
problem. In particular, we use Chebyshev filtering to compute the eigenspace of the Kohn-Sham
Hamiltonian, and evaluate non-orthogonal localized wavefunctions spanning the Chebyshev filtered
space, all represented in the Tucker-tensor basis. We thereby compute the electron-density and
other quantities of interest, using a Fermi-operator expansion of the Hamiltonian projected onto the
subspace spanned by the non-orthogonal localized wavefunctions. Numerical results on benchmark
examples involving pseudopotential calculations suggest an exponential convergence of the ground-
state energy with the Tucker rank. Interestingly, the rank of the Tucker-tensor basis required to
obtain chemical accuracy is found to be only weakly dependent on the system size, which results in
close to linear-scaling complexity for Kohn-Sham DFT calculations for both insulating and metallic
systems. A comparative study has revealed significant computational efficiencies afforded by the
proposed Tucker-tensor approach in comparison to a plane-wave basis.

I. INTRODUCTION

Electronic structure calculations within the Kohn-
Sham density functional theory (DFT)1,2 have been
very successful in providing significant insights into a
wide range of materials properties over the past decade
by enabling quantum-mechanically informed studies on
ground-state materials properties. The Kohn-Sham ap-
proach to DFT is based on the key result by Hohen-
berg and Kohn1 that the ground-state properties of a
materials system can be described by a functional of
electron-density, which to date remains unknown. How-
ever, Kohn and Sham2 addressed this challenge in an
approximate sense by reducing the many-body problem
of interacting electrons to an equivalent problem of non-
interacting electrons in an effective mean field governed
by the electron-density. This effective single-electron for-
mulation encompasses an unknown exchange-correlation
term that includes the quantum-mechanical interaction
between electrons, which is modeled in practice, and the
widely used models have been successful in predicting a
range of properties across various materials systems.

However, the computational complexity of traditional
approaches of solving the Kohn-Sham problem scales as
O(M N2) where M denotes the number of basis func-
tions and N specifies the system-size (number of atoms
or number of electrons). This enormous computational
cost associated with Kohn-Sham DFT calculations, ap-
proaching cubic-scaling as M ∝ N , has restricted the size

and complexity of accessible materials systems. Thus, to
enable accurate large-scale DFT calculations, it is de-
sirable to develop computational methods employing a
systematically improvable and complete basis, but which
is also effective as that it can accurately capture the elec-
tronic structure using a small number of basis functions
(small M). In addition, it is also desirable to develop
computational methods that exhibit reduced-order scal-
ing with system-size. To this end, this work develops an
algorithm to construct an efficient, yet complete, basis
that is systematically adapted to the Kohn-Sham Hamil-
tonian and combines this approach with reduced-order
scaling methods for the solution of the Kohn-Sham prob-
lem to develop a computationally efficient methodology
for large-scale Kohn-Sham DFT calculations.

Among the complete basis sets employed in DFT cal-
culations, the plane-wave basis 3–5 is the most widely
used, and is naturally suited for the computation of bulk-
properties of materials. Although the plane-wave basis
provides variational convergence in the ground-state en-
ergy with exponential convergence rate, the computa-
tions are restricted to periodic geometries with periodic
boundary conditions. Furthermore, the plane-wave ba-
sis functions are extended in real space, and this lim-
its the scalability of numerical implementations on par-
allel computing architectures. The other widely em-
ployed basis sets include the atomic-orbital-type basis
functions6–8 which are reduced-order basis functions that
provide good accuracy with relatively few basis functions.
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However, these basis sets do not constitute a complete
basis and may not offer systematic convergence for all
materials systems. Also, in some cases, parallel scala-
bility across processors is limited due to the non-locality
of these basis functions. Recent efforts have also focused
on developing adaptive reduced-order basis functions9,10,
which offers a promising direction to develop computa-
tionally efficient large-scale DFT calculations.

Over the past few decades, systematically improvable
real-space techniques for DFT calculations have been an
active area of research. Some notable developments in-
clude discretization techniques based on finite difference
discretization11,12, wavelet basis13,14, and finite element
basis15–19. Among the real-space techniques, the finite
element basis—a piecewise polynomial basis—has desir-
able features such as admitting general geometries and
boundary conditions, locality of the basis functions that
supports development of reduced-order scaling methods
via localization, and good parallel scalability. However,
the number of basis functions M required to achieve
chemical accuracy is usually larger in comparison to
plane-wave basis and atomic-orbital basis. Thus, it is
desirable to develop a basis that is systematically improv-
able and complete such as plane-waves, wavelets or finite
elements, has locality in real-space such as wavelets and
finite elements, is efficient such as atomic-orbital type
basis, and exhibits good parallel scalability.

In addition to developing efficient basis functions,
many efforts in the past decade have focused on develop-
ing algorithms for the solution of Kohn-Sham equations
that have a reduced computational complexity. We re-
fer to20,21 for a comprehensive review of these methods.
These methods usually exploit the locality22 in repre-
senting the wavefunctions directly or indirectly, by ei-
ther computing the single-electron density matrix (divide
and conquer method23–25, Fermi-operator expansion type
techniques26–30, density-matrix minimization31,32, sub-
space projection type methods33,34) or representing the
density matrix in terms of localized Wannier functions
(Fermi-operator projection method35,36, orbital mini-
mization approach37,38). While these methods have been
successful in achieving linear-scaling complexity for ma-
terials systems with a band-gap, the computational com-
plexity can deviate significantly from linear-scaling for
metallic systems with vanishing band-gaps. The devel-
opment of reduced-order scaling techniques which can
handle both insulating and metallic systems in a unified
framework is still an active area of research26,27,29,30,34.

In this work, we exploit low-rank tensor-structured ap-
proximations39,40 to develop a Tucker-tensor algorithm
for solving the Kohn-Sham equations. This constitutes
constructing a complete, yet efficient localized Tucker-
tensor basis that is adapted to the Kohn-Sham Hamil-
tonian, and using subspace-projected localization tech-
niques for the solution of Kohn-Sham equations in the
Tucker-tensor basis. This work has been inspired by re-
cent studies on a posteriori numerical analysis of the
computed electronic structure of materials systems41,

which revealed that tensor-structured approximations
based on canonical and Tucker type representations42–44

can provide low-rank approximations to the electronic
structure of a wide range of materials systems. Fur-
ther, a recent study45 has shown that the Tucker rank
required to approximate the computed electronic struc-
ture of materials is only weakly dependent on the system-
size, thus providing a useful direction to exploit the low-
rank Tucker approximation for developing reduced-order
scaling algorithms for DFT calculations.

The key challenge in this work is to develop a sys-
tematic procedure for computing the Tucker-tensor basis
adapted to the Kohn-Sham eigenvalue problem in order
to efficiently represent the a-priori unknown Kohn-Sham
wavefunctions. To this end, for every self-consistent field
(SCF) iteration of a DFT calculation, we compute a
spatially additive separable approximation of the Kohn-
Sham Hamiltonian and solve for the 1D-eigenfunctions
of the separable one-dimensional Hamiltonians. Using a
localization procedure46, we construct a one-dimensional
non-orthogonal localized basis spanning the eigenspaces
of the corresponding one-dimensional Hamiltonians. We
then construct the Tucker-tensor basis using the tensor
product of these one-dimensional localized basis func-
tions. The discrete Kohn-Sham eigenproblem is subse-
quently computed by projecting the continuous prob-
lem onto the space spanned by this Tucker-tensor ba-
sis, where all the operations are conducted using tensor-
structured algorithms. The eigenspace corresponding to
the occupied states of the discrete Kohn-Sham Hamil-
tonian is computed by Chebyshev filtering followed by
the computation of non-orthogonal localized wavefunc-
tions (represented in the Tucker-tensor basis) spanning
the eigenspace. The relevant quantities such as the
density matrix, the electron-density, and the band en-
ergy are computed -via- Fermi-operator expansion of the
subspace-projected Hamiltonian onto the space spanned
by the non-orthogonal localized wavefunctions.

The proposed Tucker-tensor approach constructs a lo-
calized tensor-structured basis adapted to the Kohn-
Sham Hamiltonian in every SCF iteration and conse-
quently deviates significantly from the usual fixed spa-
tial basis sets currently employed in DFT calculations.
The complexity estimates suggest that the proposed al-
gorithm scales linearly with system-size if the discretized
matrices in the localized Tucker-tensor basis and the lo-
calized wavefunctions are sufficiently sparse (realized for
large-scale materials systems). Even in the case where
the sparsity is not realized, like relatively smaller mate-
rials systems, reduced-order scaling with system-size is
obtained if the Tucker-rank remains only weakly depen-
dent on the system-size.

In order to assess the accuracy and performance of the
proposed Tucker-tensor algorithm, we conduct bench-
mark pseudopotential calculations on both metallic and
insulating systems. In all our benchmark studies, we
observe an exponential convergence in the ground-state
energy with the Tucker rank. Further, we find that
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the number of Tucker-tensor basis functions required
to obtain chemical accuracy grows sublinearly with the
system-size, both for metallic and insulating systems. In-
terestingly, the Tucker-rank, and hence the number of
Tucker-tensor basis functions, was insensitive to signif-
icant perturbations in the electronic structure—such as
those resulting from introducing random vacancies in a
nanocluster. The computational time for these bench-
mark calculations suggests a close to linear-scaling com-
plexity with respect to the system-size for both metallic
and insulating systems, which is closely related to the
sublinear dependence on the number of Tucker-tensor ba-
sis functions with the system-size. In the limit of very
large system-sizes, the required number of Tucker-tensor
basis functions will scale linearly with system-size. How-
ever, a sufficient increase in the system-size renders the
matrices involved in the proposed algorithm sparse, ow-
ing to the locality in the Tucker-tensor basis and the
wavefunctions, which in turn results in a linear-scaling
computational complexity of the proposed approach. A
comparative study of the proposed approach on modest-
size benchmark calculations suggests that the number of
Tucker-tensor basis functions required to achieve chem-
ical accuracy is about 5 times lower than the number
of plane-wave basis functions, and offers about a three to
four-fold computational speedup compared to plane-wave
discretizations.

The remainder of this article is organized as follows.
We begin by recalling some fundamentals of tensor-
structured techniques in Section II, followed by the real-
space formulation of the Kohn-Sham density functional
theory in Section III. We then discuss the proposed
Tucker-tensor algorithm for Kohn-Sham DFT in Sec-
tion IV followed by the numerical results on benchmark
problems in Section V. We conclude with an outlook on
future developments in Section VI.

II. LOW-RANK TENSOR APPROXIMATIONS

Tensors, when represented efficiently by a small num-
ber of parameters, have significant advantages in terms
of reducing the storage and computational costs in a vari-
ety of applications. For convenience, we recall here some
fundamental concepts of the tensor-structured methods
and refer to39,42–44 for a comprehensive review. For con-
venience, we restrict our presentation here to tensors of
order three.

Let A be a real-valued tensor of order three,

A = (ai1i2i3) ∈ V, (1)

where (i1, i2, i3) ∈ ×3
k=1Ik with non-empty finite index

sets I1, I2, I3 ⊂ N, and V := ×3
k=1Vk with Vk := R|Ik|.

The simplest decomposition of a given tensor is the
canonical decomposition,44, given by a linear combination

of rank-1 tensors

A ≈ A(R) =

R∑
i=1

civ
(1)
i ⊗v

(2)
i ⊗v

(3)
i , (2)

where {v(k)
i }Ri=1 is a set of orthonormal vectors for k =

1, 2, 3. The parameter R in the decomposition is called
the canonical rank of the tensor-approximation. The
storage cost of the tensor A in the canonical represen-
tation is O(Rn), where n := maxk=1,2,3 |Ik| denotes
the univariate grid-size. However, the computation of
this decomposition is a NP-hard and ill-posed problem47.
Fast and stable algorithms for reducing arbitrary full-size
tensors to the canonical format with controlled accuracy
are lacking.

On the other hand, robust algorithms for the repre-
sentation of the full-size tensors in the rank-structured
Tucker-tensor format are available, and thus this is the
preferred tensor-structured format in this work. The
rank (r1, r2, r3)-Tucker representation (approximation)
of A is given by

A(r) =

r1∑
l1=1

r2∑
l2=1

r3∑
l3=1

βl1l2l3v
(1)
l1
⊗v(2)

l2
⊗v(3)

l3
. (3)

In Eq. (3), for each k ∈ {1, 2, 3}, {v(k)
lk
}1≤lk≤rk consti-

tutes an orthonormal basis of Tk := span1≤lk≤rkv
(k)
lk

with

dimTk = rk. The coefficients tensor β := (βl1l2l3) ∈
Rr1×r2×r3 is called the core-tensor. As shown in41, the
Tucker approximation error of the electronic-structure of
molecular systems decays exponentially with increasing
Tucker rank r := maxk=1,2,3 rk. Further, the overall stor-

age cost of A(r) is bounded by r3 + 3rn. Since usually
r � n, this leads to an impressive data compression41,45.
Furthermore, A(r) can be computed from A by a mini-
mization procedure,

A(r) := argmin
A∈Tr

‖A −A‖2F , (4)

where ‖A‖F =
√

tr(ATA) is the Frobenius norm. One
method for solving the minimization problem in Eq. (4)
is the alternating least squares (ALS) algorithm44, and
we refer to40,43 for other algorithms.

The Tucker-tensor approximation discussed above be-
comes unattractive in higher dimensions due to the ex-
ponentially growing memory requirements for storing the
core tensor when dealing with larger dimensions. This
has motivated alternative tensor structured formats like
tensor trains (TT)48,49, wherein a d-dimensional tensor
A = (ai1i2i3...id) is approximated as

A ≈
∑

α1,α2,··· ,αd−1,αd

G
(1)
i1α1

G
(2)
α1 i2 α2

. . . G
(d)
αd id

, (5)

where auxiliary indices αk vary from 1 to rk and rk are
called compression ranks or simply TT-ranks. The ba-
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sic arithmetic and storage involved in the TT approach
is linear in dimension d and polynomial in r = maxk rk.
We also note that more-general tensor decomposition ap-
proaches like the hierarchical tensor representation50–52,
and tree tensor network states53,54 have been proposed to
reduce the computational complexity and storage costs
of the tensor-structured representations.

In this work, as explained in Section IV, we focus on
developing a methodology to compute a Tucker-tensor
basis that effectively represents the single-electron wave-
functions spanning the occupied eigenspace of the Kohn-
Sham Hamiltonian. We restrict ourselves in this work
to the Tucker-tensor format since the single-electron
wavefunctions are functions in a three-dimensional space
where the Tucker-tensor format is efficient. Furthermore,
the underlying representation of the Tucker-tensor for-
mat provides a convenient way of computing the Galerkin
projection of the continuous Kohn-Sham problem into
the computed Tucker-tensor basis as discussed subse-
quently.

III. THE KOHN-SHAM DENSITY
FUNCTIONAL THEORY

In Kohn-Sham density functional theory (DFT)2,55,
the variational problem of evaluating the ground-state
properties of a given materials system consisting of
Ne electrons and Na atomic nuclei located at R =
(Rj)1≤j≤Na

is equivalent to solving the nonlinear eigen-
value problem for N > Ne/2 smallest eigenvalues(
−1

2
∇2 + Veff(%,R)

)
ψi = εiψi, i = 1, 2, . . . , N, (6)

where εi and ψi denote the eigenvalues and the corre-
sponding eigenfunctions (canonical single particle wave-
functions) of the Hamiltonian, respectively. In the
present work, for the sake of simplicity, we discuss the
formulation in a nonperiodic setting restricting ourselves
to spin-independent Hamiltonians. However, the present
discussion as well as the ideas proposed subsequently can
easily be generalized to periodic or semiperiodic materi-
als systems and spin-dependent Hamiltonians.

The electron density—a central quantity in DFT—at
any spatial point x = (x1, x2, x3) in terms of the canoni-
cal wavefunctions is given by

%(x) = 2

N∑
i=1

f(εi, µ)|ψi(x)|2, (7)

where f(ε, µ) ∈ [0, 1] is the orbital occupancy function,
and µ represents the Fermi energy which is computed
from the constraint that the total number of electrons
in the system is Ne. In ground-state DFT calculations,
it is common to represent f by the Fermi distribution
f(ε, µ) = 1/(1 + exp[(ε− µ)/σ]), which tends to a Heav-
iside function as the parameter σ ↘ 0.

In Eq. (6), the effective single-electron potential in the
Hamiltonian is given by

Veff(%,R) :=
δExc

δ%
+
δEH

δ%
+ Vext(R)

= Vxc(%) + VH(%) + Vext(R). (8)

In the above, Exc represents the exchange-correlation en-
ergy that accounts for quantum-mechanical interactions
between electrons, and we adopt the widely used local
density approximation (LDA)56,57. The Hartree energy,
EH, represents the classical electrostatic interaction en-
ergy between the electrons and is given by

EH(%) :=
1

2

∫
R3

∫
R3

%(x′)%(x)

|x− x′|
dx′ dx =

1

2

∫
R3

VH(%)%(x) dx.

(9)
Finally, Vext(R) denotes the external electrostatic poten-
tial corresponding to the nuclear charges. In this work,
we adopt the commonly used pseudopotential approach,
where only the valence-electron wavefunctions are com-
puted. The pseudopotential, which provides the effec-
tive nuclear electrostatic potential Vext(R) for the va-
lence electrons, is commonly represented by the operator
Vext = Vloc + Vnl, where Vloc is the local part and Vnl is
its nonlocal part. Using the norm-conserving Troullier-
Martins pseudopotentials58 in the Kleinman-Bylander
form59, the action of these operators on a Kohn-Sham
wavefunction in real space is given by

Vloc(x,R)ψ(x) :=

Na∑
J=1

V Jloc(x−RJ)ψ(x),

Vnl(x,R)ψ(x) :=

Na∑
J=1

∑
lm

CJlmϕ
J
lm(x−RJ)∆V Jl (x−RJ),

(10)

where

∆V Jl (x−RJ) := V Jl (x−RJ)− V Jloc(x−RJ),

CJlm :=

∫
ϕJlm(x−RJ)∆V Jl (x−RJ)ψ(x) dx∫

ϕJlm(x−RJ)∆V Jl (x−RJ)ϕJlm(x−RJ) dx
.

In the above, V Jl (x − RJ) denotes the pseudopotential
component of atom J corresponding to the azimuthal
quantum number l, V Jloc(x − RJ) is the corresponding
local potential, and ϕJlm(x − RJ) is the corresponding
single-atom pseudo-wavefunction with azimuthal quan-
tum number l and magnetic quantum number m.

For given positions of nuclei, the system of equations
corresponding to the Kohn-Sham eigenvalue problem is

Hψi = εiψi,

2

N∑
i=1

f(εi, µ) = Ne, %(x) = 2

N∑
i=1

f(εi, µ)|ψi(x)|2, (11)
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where

H :=

(
−1

2
∇2+Vxc(%)+VH(%)+Vloc(x,R)+Vnl(x,R)

)
.

(12)
As the Hamiltonian H depends on % which in turn is
computed from the eigenfunctions of H, the system of
equations in (11) is solved by a self-consistent field (SCF)
iteration in a suitable basis. Upon self-consistently solv-
ing the Kohn-Sham eigenvalue problem, the ground-state
energy is given by

Etot = 2

N∑
i=1

f(εi, µ)εi +

∫
R3

[Exc(%)− Vxc(%)%] dx

− 1

2

∫
R3

%VH(%) dx +
1

2

Na∑
I,J=1
I 6=J

ZIZJ
|RI −RJ |

.

Therein, the last term on the right denotes the nuclear-
nuclear repulsive energy, EZZ, with ZI denoting the va-
lence charge of the Ith nucleus.

IV. TUCKER-TENSOR ALGORITHM FOR DFT

We now present a Tucker-tensor algorithm for the solu-
tion of the Kohn-Sham equations that has reduced com-
putational complexity in comparison to conventional ap-
proaches. In every cycle of the SCF iteration, the pro-
posed algorithm provides a prescription to compute a
non-orthogonal locally-adapted Tucker-tensor basis us-
ing a separable approximation of the Hamiltonian. The
Kohn-Sham eigenvalue problem is subsequently solved by
projecting the problem onto the span of this computed
Tucker-tensor basis, and by computing the eigenspace
corresponding to the occupied states using Chebyshev fil-
tering techniques. Let %(n) denote the input electron den-
sity to the nth SCF iteration and Hn ≡ H(%(n)(x),R) be
the corresponding Hamiltonian. The proposed Tucker-
tensor algorithm consists of the following key steps with
specific details discussed subsequently:

I. Construct a separable approximation of the Hamil-
tonian by using one of two proposed competing
variational methods (outlined below),

Hx +Hy +Hz ∼ Hn. (13)

II. Compute rd one-dimensional eigenfunctions forHx,
Hy, Hz represented on a finite element grid, and
subsequently employ a localization procedure to
evaluate non-orthogonal localized basis functions
spanning the eigensubspaces in each spatial dimen-
sion.

III. Compute a non-orthogonal localized Tucker-tensor
basis TL := (TLijk)1≤i,j,k≤rd as the tensor-product

of the one-dimensional localized basis functions of
Step II.

IV. Compute the projection Hnh of Hn onto TL.

V. Employ Chebyshev filtering to compute the ap-
proximate occupied eigensubspace of Hnh corre-
sponding to the lower end of the eigenspectrum
comprising of occupied states and a few unoccupied
states above the Fermi energy. Subsequently, lo-
calize the Chebyshev filtered wavefunctions by uti-
lizing a non-orthogonal localization procedure as
described in34, which we refer to as the localized
Chebyshev filtered wavefunctions.

VI. Project Hnh onto the occupied eigensubspace of
Hnh represented by the localized Chebyshev fil-
tered wavefunctions. Employ a Fermi-operator ex-
pansion of this subspace-projected Hamiltonian to
compute the relevant quantities of interest such as
the density matrix, the output electron-density and
the ground-state energy. Then proceed with the
SCF iteration.

We now begin to discuss various details of the pro-
posed algorithm. Let the domain be cuboidal, i.e. Ω =

×3
k=1 ωk with one-dimensional bounded real sets ωk, and

enclose the compact support of the Kohn-Sham wave-
functions. We discretize ωk by using isoparametric 1D
finite elements, and represent functions on ωk by using
finite element basis functions—the piecewise polynomial
functions constructed from the finite element discretiza-
tion60. We denote by nk (for k = 1, 2, 3) the dimension
of the finite element space discretizing ωk, or, in other
words, the number of finite element basis functions in
each spatial dimension k. In the present work, we use
a higher-order finite element discretization with polyno-
mial degree p > 2. We note that, while the ideas pre-
sented in this work are equally applicable to any basis,
the choice of the finite element basis is motivated by the
locality of the basis and its adaptive capability.

Given the input electron density to the nth SCF iter-
ation, %(n)(x), we begin by computing the local effective
potential on Ω,

V loc
eff (x) := Vxc(%(n)(x)) + VH(%(n)(x)) + Vloc(x). (14)

We note that the evaluation of VH (cf. Eq. (9)) involves
the computation of a 3D convolution integral. To this
end, for chosen rank r% ∈ N and x′ = (x′1, x

′
2, x
′
3), we

first compute the rank-r% Tucker-tensor decomposition

of the density %(n)(x) as

%(n)(x′) ≈
r%∑
i,j,k

σ
(n)
ijk%

(n)
i (x′1)%

(n)
j (x′2)%

(n)
k (x′3). (15)

Next, we approximate the kernel |x − x′|−1 by a series
of Gaussians (see61, where also the values of αp, βp are
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tabulated), and obtain for a rank parameter T ∈ N

1

|x− x′|
≈

T∑
p=1

αpe
−βp(x1−x′1)2e−βp(x2−x′2)2e−βp(x3−x′3)2 .

(16)

Thus, the computation of VH(%(n)) reduces to the com-
putation of a series of 1D convolution integrals, as

VH(%(n)(x)) =

∫
Ω

%(n)(x′)

|x− x′|
dx′

≈
T∑
p=1

αp

r%∑
i,j,k

σ
(n)
ijk

[∫
ω1

%
(n)
i (x′1)e−βp(x1−x′1)2 dx′1×∫

ω2

%
(n)
j (x′2)e−βp(x2−x′2)2dx′2×

∫
ω3

%
(n)
k (x′3)e−βp(x3−x′3)2dx′3

]
.

(17)

Upon evaluating VH , we compute V loc
eff given by

Eq. (14). Further, to aid evaluation of terms arising
in subsequent computations, we compute the rank-rv

Tucker-tensor decomposition of V loc
eff , denoted by V̂ loc

eff (x).
For the same reason, by evaluating the rank-rv Tucker-
tensor decomposition of the atom-centered pseudopo-
tential and pseudo-wavefunction components, we com-
pute the tensor-structured approximation of the non-
local part of the pseudopotential operator and denote

this by V̂nl(x,R).

A. Separable approximation of Hn

We now explain Step I of the Tucker-tensor algorithm
in more detail and present two methods to compute the
additive separable approximation of Hn. One of the
proposed methods is based on a rank-1 approximation
of the eigenfunction corresponding to the lowest eigen-
value of the Kohn-Sham Hamiltonian, while the second
method involves an additive separable approximation of
the Kohn-Sham potential Veff. While the first method is
applicable to both local and non-local pseudopotentials,
the latter is restricted to local pseudopotentials, only.

a. Method I. Rank-1 decomposition of wavefunctions.
We start with the ansatz for the eigenfunction

ψ(x) :=

3∏
k=1

ψk(xk), (18)

and denote by X the function space of all one-time
(weakly) differentiable rank-1 functions in Ω. The prob-
lem of computing the smallest eigenvalue of the Kohn-
Sham Hamiltonian (Eq. (12)) in the function space X is
equivalent to the variational problem

min
ψ∈X
L(ψ), (19)

with the Lagrangian

L(ψ) :=
1

2

∫
Ω

[ 3∑
p=1

|∂xpψp(xp)|2
3∏
q=1
q 6=p

ψ2
q (xq)

+ 2
(
V̂ loc

eff (x) + λ
) 3∏
k=1

ψ2
k(xk)

+ 2

3∏
k=1

ψk(xk)V̂nl(x,R)

3∏
k=1

ψk(xk)
]
dx.

Here, λ is a Lagrange multiplier corresponding to the
constraint

3∏
k=1

∫
ωk

ψ2
k(xk) dxk = 1. (20)

Minimizers of (19) satisfy the Euler-Lagrange equations
δL(ψ)
δψk

= 0 for k = 1, 2, 3. Hence, the minimizers ψk are

the solutions of the one-dimensional problems[
−1

2

d2

dx2
k

+
V loc
k (xk)

mk
+
V nl
k (xk)

mk

]
ψk(xk)=−

(
λ+

ak
2mk

)
ψk(xk),

(21)
where we introduced the one-dimensional quantities

V loc
k (xk) :=

∫
ω̂k

V̂ loc
eff (x)

3∏
j=1
j 6=k

ψ2
j (xj) dx̂k,

mk :=

∫
ω̂k

3∏
j=1
j 6=k

ψ2
j (xj) dx̂k,

ak :=

∫
ω̂k

3∑
p,q=1

p 6=q; p,q 6=k

|∂xpψp(xp)|2ψq(xq) dx̂k,

V nl
k (xk)ψk(xk) :=

Na∑
J=1

∑
lm

γJlm ν
J
lm F

J,k
lm (xk) with

F J,klm (xk) :=

∫
ω̂k

ϕ̂Jlm(x−RJ)∆̂V Jl (x−RJ)

3∏
j=1
j 6=k

ψj(xj) dx̂k,

γJlm :=

∫
ωk

F J,klm (xk)ψk(xk) dxk,

(νJlm)−1 :=

∫
Ω

ϕ̂Jlm(x−RJ)∆̂V Jl (x−RJ)ϕ̂Jlm(x−RJ) dx,

with notations

dx̂1 := dx2 dx3, dx̂2 := dx1 dx3,

dx̂3 := dx1 dx2, ω̂k :=×3
j=1
j 6=k

ωj .
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In the above expressions, ∆̂V Jl and ϕ̂Jlm denote the rank-
rv Tucker-tensor decomposition of ∆V Jl and ϕJlm, respec-
tively. We note that the integrals involved in the above
expressions reduce to a product of integrals in one dimen-
sion owing to the tensor-structured representation of all
field quantities, thus rendering the computational com-
plexity of evaluating these terms very low.

The minimizing functions ψk(xk) obtained from the
self-consistent solution of (21) are fixed to construct the
one-dimensional potentials V loc

k and V nl
k . The eigen-

functions of the resulting one-dimensional Hamiltonians
in (21) are then used to construct the Tucker-tensor basis
after localization, see Section IV B below.

b. Method II. Weighted residual minimization. In
this method, which is restricted to local pseudopotentials,
we construct an additive separable approximation of V loc

eff
by solving the weighted residual minimization problem

min
V loc
k ∈L1(ωk) 1≤k≤3

∫
Ω

w(x)
[
V̂ loc

eff (x)−
3∑
l=1

V loc
l (xl)

]2
dx,

(22)
where w(x) ∈ L2(Ω) represents a non-negative weight
function. We then construct the one-dimensional Hamil-
tonians for k = 1, 2, 3 as Hk := − 1

2
d2

dx2
k

+V loc
k (xk) result-

ing in the one-dimensional eigenvalue problems

Hkξk,i = εk,iξk,i . (23)

The weight is chosen as w(x) := |%(n)(x)|α with α := 1
to penalize the error in the separable approximation of

V̂ loc
eff (x) in the vicinity of atoms where the electron den-

sity is higher in comparison to the regions far-away from
the atoms.

B. Construction of a 3D Tucker-tensor basis TL

The methods outlined in Section IV A provide a sys-
tematic approach to constructing an additive separable
approximation to the Kohn-Sham Hamiltonian. Solv-
ing the eigenvalue problems (Eq. (21) for Method I or
Eq. (23) for Method II), we compute the eigenfunc-
tions associated with the one-dimensional Hamiltonians
in each spatial dimension. We remark that the one-
dimensional eigenfunctions thus computed form a com-
plete basis for admissible functions on each ωk. In the
discrete numerical setting, we compute rd1 , rd2 , rd3 eigen-
functions corresponding to the lowest eigenvalues of the
one-dimensional Hamiltonians in x1, x2, x3 spatial direc-
tions, respectively. For the sake of notational simplicity
in presenting our ideas, we assume rd1 = rd2 = rd3 =: rd.
We denote by (ξk,i)1≤i≤rd the eigenfunctions in the di-
rection k spanning the space Vrdk for k = 1, 2, 3. The
three-dimensional Tucker tensor basis for the Kohn-Sham
DFT problem can thus be constructed as a tensor prod-

uct given by

T := {Tabc}1≤a,b,c≤rd := {ξ1,aξ2,bξ3,c}1≤a,b,c≤rd . (24)

However, the eigenfunctions (ξk,i)1≤i≤rd have a global
support on ωk, thereby rendering the support of the cor-
responding three-dimensional Tucker-tensor basis global
on Ω. The global nature of these functions results in
dense matrices for the Kohn-Sham DFT problem, which
is not desirable. To this end, we construct a localized rep-
resentation of the Tucker-tensor basis {Tabc}1≤a,b,c≤rd by
localizing the 1D eigenfunctions (ξk,i)1≤i≤rd around the
atomic locations in each of the spatial directions xk for
k = 1, 2, 3. Various localization procedures employing
non-orthogonal localized functions37,62–64 have been pro-
posed in the context of electronic structure calculations,
which have better localizing properties than orthogonal
functions. In the present work, we adopt the weighted L2

localization technique proposed in E et al.46 to construct
the localized 1D basis-functions spanning the eigenspace
Vrdk for k = 1, 2, 3. However, we note that other local-
ization procedures such as those proposed in65 can also
be used. We obtain the localized basis by solving for each
k = 1, 2, 3 the minimization problem

argmin
φ∈Vrdk , ‖φ‖=1

∫
ωk

w(xk)|φ(xk)|2 dxk. (25)

Here, w(xk) ≥ 0 is chosen to be a smooth weighting
function of the form |xk − bIk |2, and bIk denotes a lo-
calization center. Such a choice of w(xk) minimizes the
spread of the basis-functions from a localization center.
In the present work, the localization center bIk is chosen
to be the kth direction atom-coordinate RIk correspond-
ing to the Ith atom for k = 1, 2, 3. Let rIk denote the
number of localized functions we desire to compute at
every atom-coordinate RIk . Representing the localized
function as

φ(xk) =

rdk∑
i=1

αiξk,i(xk) ∈ Vrdk , (26)

the minimization problem in Eq. (25) is equivalent to
solving the generalized eigenvalue problem in each spatial
direction k for the smallest rIk eigenvalues

GIkα = λα, (27)

where for i, j = 1, . . . , rdk

GIkij :=

∫
ωk

|xk −RIk |2 ξk,i(xk) ξk,j(xk) dxk . (28)

In the present work, we choose rIk corresponding to the
Ith atom such that

∑
I rIk = rdk . We note that we can

rewrite GIk in Eq. (28) in matrix notation as

GIk = LTb KIk
b Lb, (29)
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where (·)T is the matrix transpose, the columns of the
matrix Lb correspond to the finite element nodal values
of the eigenfunctions {ξk,1(xk), ξk,2(xk), . . . , ξk,rdk (xk)},
and(

KIk
b

)
ij

:=

∫
ωk

|xk −RIk |2Ni(xk)Nj(xk) dxk, (30)

with Ni denoting the finite element basis function corre-
sponding to node i.

Upon solving Eq. (27) for each Ik, we represent the
computed localized one-dimensional functions spanning
Vrdk by (φk,i)1≤i≤rd . Thus, the three-dimensional local-
ized Tucker-tensor basis functions for solving the Kohn-
Sham DFT problem are constructed to be

TL := {TLabc}1≤a,b,c≤rd := {φ1,aφ2,bφ3,c}1≤a,b,c≤rd . (31)

In practice, we use a truncation tolerance to achieve a
compact support for (φk,i)1≤i≤rd , and consequently for
{TLabc}1≤a,b,c≤rd .

C. Discrete Kohn-Sham eigenvalue problem

The projection of Hn onto×3
k=1 Vrdk , denoted by Hnh ,

expressed in the localized Tucker-tensor basis TL is given
by

(Hnh)(ijk),(abc) :=
∑
p,q,r

〈TLijk|TLpqr〉−1〈TLpqr|Hn|TLabc〉. (32)

We note that it is convenient to approximate the Kohn-
Sham potential Veff (Eq. (8)) using a Tucker-tensor
decomposition, which reduces all integrals involved in
Eq. (32) to products of one-dimensional integrals, and
is used in the present work. The discrete Kohn-Sham
eigenvalue problem in the localized Tucker-tensor basis
is given by the non-Hermitian standard eigenvalue prob-
lem

H̃Ψi = εhi Ψi, (33)

with H̃ := M−1H where H denotes the discrete Hamilto-
nian matrix with matrix elements HIJ and M denotes the
overlap matrix arising because of the non-orthogonality
of the localized Tucker-tensor basis functions with ma-
trix elements MIJ for subscripts I, J ∈×3

k=1{1, . . . , rdk}.
By εhi we denote the ith eigenvalue corresponding to the
discrete eigenvector Ψi in Eq. (33) expressed in the local-
ized Tucker-tensor basis TL. The matrix elements MIJ

and HIJ are given by

MIJ :=

∫
Ω

TLI (x)TLJ (x) dx, (34)

HIJ :=
1

2

∫
Ω

∇TLI (x)·∇TLJ (x)dx+

∫
Ω

TLI (x)V̂ loc
eff (x)TLJ (x)dx

+

∫
Ω

TLI (x)V̂nl(x,R)TLJ (x) dx, (35)

with V̂ loc
eff and V̂nl denoting the rank-rv Tucker-tensor de-

compositions of V loc
eff and Vnl, respectively. As a con-

sequence of applying the Tucker-tensor decompositions

V̂ loc
eff and V̂nl, the right hand sides of (34), (35) reduce

to a tensor-structured format involving one-dimensional
integrals. Thus, the computational complexity associ-
ated with the computation of the discrete Hamiltonian
and overlap matrix in the equations (34) and (35) is
evaluated to be O(r2

d n) +O(r6
d) +O(r2

dr
3
v n) +O(r6

dr
3
v),

with n := maxk nk relating to the number of nodes in
the one-dimensional finite element mesh (univariate grid-
size). However, as we use a localized Tucker-tensor basis,
by exploiting the locality in the basis functions, the com-
putational complexity of evaluating the matrix elements
reduces to O(c1/3n)+O(c)+O(c1/3r3

vn)+O(c r3
v), where

c denotes the maximum number of non-zero entries in
the matrices H and M. Finally, the inverse overlap ma-
trix M−1 involved in the computation of H̃ is evaluated
using a scaled third-order Newton-Schulz iteration66.

D. Computation of the DFT ground-state energy

a. Chebyshev filtered subspace iteration. An approx-
imation to the eigenspace of the discrete Kohn-Sham
eigenproblem in Eq. (33), spanned by N > Ne/2 low-
est eigenfunctions, is computed by using a Chebyshev-
filtered subspace iteration (ChFSI) technique67. We refer
to19,34 for the details of its implementation in the context
of finite element discretization. The ChFSI technique
exploits the rapid growth of Chebyshev polynomials in
(−∞,−1) to magnify the relevant eigenspectrum, and
thereby providing an efficient approach for the solution
of the Kohn-Sham eigenvalue problem.

In each iteration of the SCF procedure, the action of a
Chebyshev filter on a given subspace is accomplished by
the recursive construction of the Chebyshev polynomial
of the discrete Hamiltonian together with its action on
the subspace. This involves matrix-vector multiplications
between the discretized Hamiltonian H̃ and the vectors
obtained during the course of the recursive iteration. We
note that, if the discretized Hamiltonian is sufficiently
sparse and the vectors obtained during the process of
recursive iteration of the Chebyshev filtering procedure
are sparse, the computational complexity of the relevant
matrix-vector multiplications scales as O(N).
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b. Localization and truncation. Developing a local-
ized representation of the wavefunctions spanning the
occupied eigenspace is one of the key ideas that has
been exploited in developing reduced-order scaling al-
gorithms33,34, and is also employed here. We use the
algorithm developed in34 to construct a non-orthogonal
localized basis of the subspace spanned by Chebyshev
filtered wavefunctions. We recall the main ideas and
present them in the context of the Tucker-tensor basis for
the sake of completeness. The localized basis of the sub-
space spanned by the Chebyshev filtered wavefunctions,
henceforth referred to as the localized Chebyshev filtered
basis, is obtained by solving the generalized eigenvalue
problem for the nP smallest eigenvalues for every atom
P ,

WPα = λSα, (36)

where for l,m = 1, . . . , N

WP
lm :=

∫
Ω

|x−RP |2 ψfl (x)ψfm(x) dx, (37a)

Slm :=

∫
Ω

ψfl (x)ψfm(x) dx, (37b)

and nP denotes the number of localized functions we
desire to compute at every atom centered at RP =
(RPx1

, RPx2
, RPx3

). The number nP is chosen to be
equal to the number of occupied single atom orbitals cor-
responding to the P th atom; α is a vector containing the
coefficients corresponding to the linear combination of

Chebyshev filtered functions {ψf1 (x), ψf2 (x), . . . , ψfN (x)}.
The matrix WP can be recast in matrix notation as

WP = LTKPL, (38)

where the columns of the matrix L correspond to the
coefficients of the Chebyshev filtered wavefunctions ex-
pressed in Tucker-tensor basis, and with

KP
IJ :=

∫
Ω

|x−RP |2 TLI (x)TLJ (x) dx. (39)

Let K0 denote the matrix in Eq. (39) for a reference atom

located at R0. We note that the matrix KP for any P
can be represented in terms of K0 as

KP = K0+|R0−RP |2M+2

3∑
k=1

(R0xk−RPxk)Bxk , (40)

where

K0 := (K0
1,O2,O3) + (O1,K

0
2,O3) + (O1,O2,K

0
3)

M := (O1,O2,O3) , Bx1 := (B1,O2,O3)

Bx2 := (O1,B2,O3) , Bx3 := (O1,O2,B3)

with the notation (X,Y,Z) := X⊗Y⊗ Z

and (with φk,i as in Eq. (31))

(
K0
k

)
ij

:=

∫
ωk

(xk −R0xk)2φk,i(xk)φk,j(xk) dxk(
Ok

)
ij

:=

∫
ωk

φk,i(xk)φk,j(xk) dxk(
Bk

)
ij

:=

∫
ωk

(xk −R0xk)φk,i(xk)φk,j(xk) dxk (41)

for k = 1, 2, 3. Thus, WP , for any atom P , can be eval-
uated as a linear combination of five matrices indepen-
dent of the atom P , where the integrals involved in each
of the matrices can be evaluated as the product of one-
dimensional integrals. We note that the matrices K0

k, Ok

and Bk are sparse owing to the locality of the Tucker-
tensor basis TL, thereby rendering KP sparse. Further,
we truncate the wavefunctions involved in the computa-
tion of L using a truncation tolerance, rendering L sparse.
Thus, the computational complexity involved in the con-
struction of WP for all atoms P = 1, . . . , Na scales as
O(N). Using the eigenvectors α from the solution of
the eigenvalue problem in Eq. (36) for each atom P ,
the linear combination of the Chebyshev filtered vectors
is computed to construct the non-orthogonal localized
wavefunctions which span the Chebyshev filtered space.
We refer to these localized wavefunctions which span the
Chebyshev filtered subspace as the localized Chebyshev
filtered wavefunctions, and denote them in matrix form
by ΦL. In practice, we achieve compact support for these
localized wavefunctions by introducing a truncation tol-
erance.

c. Computation of the electron-density. To compute
the electron-density in a given self-consistent field it-
eration, we first evaluate the projection of the Hamil-
tonian onto the space spanned by the Chebyshev fil-
tered wavefunctions represented in the basis of the lo-
calized Chebyshev filtered functions, which is given by
Hφ = S−1ΦT

LH̃ΦL with S = ΦT
LMΦL

34. Furthermore,
S−1 can be computed in O(N) complexity if S and S−1

are exponentially localized68. If the discretized Hamilto-
nian H̃ and the matrix ΦL are sparse with a bandwidth
independent of N , Hφ can be computed in O(N) com-
plexity.

Following34, the electron-density is given by (cf.
Eq. (60) in 34)

%(x) = 2 T T (x) M−1/2 ΦL f(Hφ) S−1 ΦTLM−1/2T (x),
(42)

where T T (x) = [T1(x), T2(x), T3(x), . . . , Tr3d(x)] and

f(Hφ) =
1

1 + exp
(

Hφ−µ
σ

) , (43)
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with µ being the chemical potential, σ = kBT , and kB
the Boltzmann constant. A Chebyshev polynomial ex-
pansion is used to approximate f(Hφ) in (43), and if

Hφ is sufficiently sparse, f(Hφ) can be computed in
O(N) complexity27. Furthermore, the computation of
the Chebyshev polynomial expansion requires the evalu-
ation of the Fermi energy µ which is achieved by using
the constraint

2 tr
(
f(Hφ)

)
= Ne. (44)

Here, Ne is the number of electrons in the given system.
The Fermi energy can be efficiently computed with the
methods described in27 which scale as O(N). Finally,
the band energy required in computing the total energy
of the system is evaluated by

Eband = 2

N∑
i=1

f(εi, µ)εi = 2 tr
(
f(Hφ)Hφ

)
. (45)

V. NUMERICAL SIMULATIONS

In this section we investigate the accuracy, perfor-
mance, and scaling of the proposed Tucker-tensor algo-
rithm for the solution of the Kohn-Sham equations. As
benchmark examples we conduct pseudopotential calcu-
lations on nonperiodic three-dimensional materials sys-
tems representative of both metallic and insulating sys-
tems. The benchmark metallic systems considered in-
clude aluminum nanoclusters of various sizes: single alu-
minum atom, aluminum dimer, and nanoclusters con-
taining 1×1×1 (14 atoms), 2×2×2 (63 atoms), 3×3×3
(172 atoms), 4 × 4 × 4 (365 atoms) and 5 × 5 × 5 (666
atoms) face-centered-cubic (fcc) unit cells. The bench-
mark insulating systems include: methane molecule, and
alkane chains C8H18, C16H34 and C33H68. The x, y, z-
axis for the Tucker tensor calculations are chosen as the
eigendirections of the moment of inertia tensor of the
atomic system computed using the atomic locations and
atomic masses of the various elements in the materials
system. This provides a systematic approach of orienting
the axis to align with the atomistic system and improve
the efficiency of the Tucker tensor approach. In all our
simulations, we choose the ranks r%, rv, and the number
T of terms in the expansion in Eq. (17), such that the ap-
proximation errors are higher-order compared to the dis-
cretization errors of the finite-dimensional Tucker-tensor
basis in Eq. (24). In particular, we choose the ranks

r% = rv := 45, T := 35,

and the values of αn, βn are taken from61. Norm-
conserving Troullier-Martins pseudopotentials58 have
been employed in the case of aluminum nano-clusters
and alkane chains for investigating the performance of
Method I in the proposed Tucker-tensor algorithm, while
bulk local pseudopotentials70 are employed for conduct-

ing a comparative study between Method I and Method
II. We use the n-stage Anderson mixing scheme69 on
the electron density for the self-consistent field itera-
tion of the Kohn-Sham problem, and employed a stop-
ping tolerance of 10−7 in the square of the L2 norm of
electron density difference between successive iterations.
The Chebyshev filtered subspace iteration is used with a
Chebyshev polynomial degree of 25 for the computation
of the eigenspace associated with the occupied states. In
our current Python implementation, all the matrices ex-
pressed in the Tucker-tensor basis are parallelized using
MPI, and are executed on a parallel computing cluster
with the following specifications: dual- socket eight-core
Intel Core Sandybridge CPU nodes with 16 processors
(cores) per node, 64 GB memory per node, and 40 Gbps
Infiniband networking between all nodes for fast MPI
communications. However, the ALS algorithm (Eq. (4))
employed in computing the Tucker-tensor decomposition
of the three-dimensional fields, is not parallelized, thus
requiring the various fields (%, VH, Veff) on the tensor-
structured grid to be stored locally on every compute
node. This has limited the size of the materials systems
considered in the present study.

The computational complexity of the proposed sub-
space projection algorithm relies on the locality of the
Tucker-tensor basis, the locality of the localized Cheby-
shev filtered wavefunctions spanning the occupied space,
and the dependence of the rank rd on the system size.
The truncation tolerances employed in the various stages
of the algorithm determine the sparsity of the matrices
in our formulation (H̃,Hφ,ΦL,S,W

P ). In the present
study, we use dense data structures for all the matrices
involved, since the truncation tolerances employed in our
simulations resulted in matrices with fraction of non-zero
entries greater than 2% for the materials systems stud-
ied. The overhead cost of using a sparse data-structure
at these density fractions results in more computational
inefficiencies than treating the matrices as dense matri-
ces.

In the present work, we employ the recently devel-
oped real-space approach for Kohn-Sham DFT calcu-
lations using a higher-order finite element basis19,34 to
provide reference energies to assess the approximation
errors in the ground-state energies obtained with the pro-
posed Tucker-tensor approach. These reference energies
are converged up to 0.1 meV in the ground-state energy
per atom with respect to discretization and other numer-
ical parameters.

A. Metallic systems

We first conduct a comparative study between the
two methods of constructing the separable Hamiltonian
which were proposed in Section IV A. To this end, we
employ bulk local pseudopotentials70 to conduct simula-
tions on three benchmark examples consisting of a single
aluminum atom, aluminum dimer, and an aluminum nan-
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Aluminum 1 atom: Method I
Aluminum 1 atom: Method II

FIG. 1: Convergence of the ground-state energy with
respect to the Tucker rank using local pseudopotential. Case

study: Aluminum atom
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Aluminum dimer: Method I
Aluminum dimer: Method II

FIG. 2: Convergence of the ground-state energy with
respect to the Tucker rank using local pseudopotential. Case

study: Aluminum dimer
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Aluminum 1x1x1 nanocluster: Method I
Aluminum 1x1x1 nanocluster: Method II

FIG. 3: Convergence of the ground-state energy with
respect to the Tucker rank using local pseudopotential. Case

study: Aluminum 1x1x1 nanocluster

ocluster containing 1×1×1 (14 atoms) fcc unit cell with
a lattice constant of 7.45 a.u. For each of these bench-
mark systems, the relative error in ground-state energy is
computed as a function of the Tucker rank rd, and is plot-
ted in Figures 1-3. The results show that both methods
of computing the separable Hamiltonian provide similar
accuracies in the ground-state energies. Further, there
is an exponential convergence in the ground-state energy
for increasing Tucker ranks. We also note that the Tucker
rank required to achieve chemical accuracy (∼ 5 meV in
the ground-state energy per atom) is weakly dependent
on the system-size: ∼ 25 for single atom, ∼ 30 for dimer,
and ∼ 32 for 1× 1× 1 aluminum nanocluster.

We next employ Method I for computing the separable
Hamiltonian while using the norm-conserving Troullier
Martins pseudopotentials58 in the Kleinman-Bylander
form59. The convergence of the ground-state energy with
the Tucker rank is examined for the benchmark systems
comprising of single aluminum atom, aluminum dimer,
and aluminum nanoclusters containing 1 × 1 × 1 (14
atoms), 2×2×2 (63 atoms) and 3×3×3 (172 atoms) fcc
unit cells with a lattice constant of 7.45 a.u. Figures 4-5
show these results which indicate an exponential rate of
convergence of the ground state energy with increasing
Tucker rank. Furthermore, the number of basis functions,
r3
d, required to obtain chemical accuracy in the ground-

state energy, for the case of non-local pseudopotentials,
grows sublinearly with system size as O(N0.22) for the
range of systems studied— with Tucker rank rd being
∼ 33 for single atom, ∼ 41 for dimer, and around 45, 49
and 53 for 1× 1× 1, 2× 2× 2, 3× 3× 3 aluminum nan-
oclusters, respectively. Moreover, we obtained ground-
state energies within chemical accuracy for 4× 4× 4 and
5× 5× 5 nanoclusters using the Tucker-tensor basis with
Tucker ranks of 57 and 60, respectively. We also intro-
duced 5 random vacancies in the 4×4×4 nanocluster and
found that the ground-state energy within chemical accu-
racy is obtained with a Tucker basis of rank 57 even for
this system. The ground-state energies computed with
the proposed Tucker-tensor algorithm are tabulated in
Table I, and are within chemical accuracy of the refer-
ence energies. This demonstrates the effectiveness of the
computed Tucker-tensor basis in accurately representing
the electronic structure of materials systems with varying
sizes and complexity.

The computational CPU times per SCF iteration for
each of these systems is plotted against the number of
electrons in Figure 6. All computational times reported
in this study denote CPU times in hours (CPU time =
number of cores × wall-clock time in hours). The scaling
with the system-size for the aluminum clusters is found
to be O(N1.2). It is remarkable that we obtain close to
linear-scaling complexity even for metallic systems with
the proposed Tucker-tensor algorithm for the range of
systems studied. Albeit using dense data structures in
our computations, we obtain close to linear-scaling com-
plexity due to the sublinear dependence of the number of
Tucker-tensor basis functions on the system-size. We ex-
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pect that in the limit of very large system sizes, the num-
ber of Tucker-tensor basis functions will grow linearly
with the system-size. However, the increase in system-
size renders the matrices involved in the proposed algo-
rithm sparse, owing to the locality in the Tucker-tensor
basis and the localized Chebyshev filtered wavefunctions.
We note that the complexity estimates for the proposed
Tucker-tensor algorithm (cf. Section IV) suggest linear-
scaling complexity with system-size for the case of sparse
matrices. Thus, we expect the close to linear-scaling com-
putational complexity to also hold in the limit of large
system sizes.
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Aluminum 1 atom
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FIG. 4: Convergence of the ground-state energy with
respect to the Tucker rank for non-local pseudopotential
using Method I. Case study: Aluminum atom and dimer
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FIG. 5: Convergence of the ground-state energy with
respect to the Tucker rank for non-local pseudopotential

using Method I. Case study: Aluminum nanoclusters

Tables II and III show the comparison of computa-
tional time and number of basis functions for the pro-
posed algorithm using Tucker-tensor basis and plane-
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FIG. 6: Computational CPU-time per SCF iteration for
1× 1× 1 to 5× 5× 5 fcc Al-nanoclusters.

FIG. 7: Electron-density contours on the midplane of
4× 4× 4 fcc nanoclusters.

wave basis (ABINIT software71) for the computation of
ground-state energy of 3× 3× 3 and 5× 5× 5 aluminum
nanoclusters to within discretization error of less than
5 meV. The parameters used in the Tucker tensor calcu-
lations (domain size, SCF mixing scheme and stopping
tolerances) have also been used in the plane-wave calcu-
lations for a consistent comparison. These results show
that the proposed Tucker-tensor approach requires a 3−5
times lower number of Tucker-tensor basis functions in
comparison to the number of plane-wave basis functions.
The computational times for the proposed methodology
and the current non-optimized implementation are also
lower than the plane-wave implementation in ABINIT by
a factor of 2.5 in the case of 3×3×3 aluminum nanoclus-
ter and by a factor of 3.7 in the case of 5 × 5 × 5 alu-
minum nanocluster. Further optimization of our in-house
code may lead to more significant speedups than the fac-
tors reported here, and may provide significant savings
in the computational times for large-scale DFT calcula-
tions. Figure 7 shows the electron-density contours on
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TABLE I: Ground-state energies per atom (eV) for
various sizes of aluminum nanoclusters computed with

the proposed algorithm.

Al-Cluster Tucker rank Energy Ref. energy

1x1x1 45 −55.80965 −55.81430

2x2x2 49 −56.45924 −56.46504

3x3x3 53 −56.69260 −56.69669

4x4x4 57 −56.80104 −56.80561

4x4x4

with 5 vacancies 57 −56.76531 −56.76964

5x5x5 60 −56.87367 −56.87822

the mid-plane of a 4× 4× 4 nanocluster computed with
the proposed Tucker-tensor approach.

B. Insulating systems

We consider three-dimensional alkane chains as our
benchmark systems, including CH4 (methane), C8H18 ,
C16H34, and C33H68. We use norm-conserving Troullier
Martins pseudopotentials58, and Method I for computing
the separable approximation of the Hamiltonian. We ori-
ent the alkane chains along the x-direction and use C-C
and C-H bond lengths to be 2.91018 and 2.0598 a.u. with
the H-C-H and C-C-C bond angles taken to be 109.470.
Figure 8 shows the convergence of the ground-state en-
ergy with increasing Tucker rank rdx. For these sim-
ulations, we choose rdy = rdz = 46 for methane and
rdy = rdz = 55 for C8H18, C16H34 and C33H68. In the
case of alkane chains, the results indicate that the Tucker
rank required to achieve chemical accuracy in the ground-
state energy is —rdx ∼ 46 for CH4, rdx ∼ 55 for C8H18,
rdx ∼ 68 for C16H34, and rdx ∼ 85 for C33H68. Further-
more, the number of basis functions (rdxrdyrdz) grows
sublinearly with the system size as O(N0.3) for the range
of systems studied. The computed ground-state energies
with their Tucker ranks are tabulated in Table IV. The
computational CPU times per SCF iteration for these
systems plotted against the number of electrons are given
in Figure 9, and the scaling with system-size is found to
be O(N1.05). Figure 10 shows the electronic structure—
isocontours of the electron density—of CH4 and C8H18.

VI. SUMMARY

A new algorithm for the solution of the Kohn-Sham
problem is presented that exploits the low-rank approx-
imation of the electronic-structure afforded by Tucker-
tensor representations. A systematic procedure is de-
veloped for computing a localized Tucker-tensor basis
adapted to the Kohn-Sham eigenvalue problem. To this
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FIG. 8: Convergence of the ground-state energy with
respect to the Tucker rank (rdx) for the insulating

benchmark systems
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FIG. 9: Computational CPU-time per SCF iteration for
the insulating benchmark systems

end, in every iteration of the self-consistent field proce-
dure of the Kohn-Sham problem, a separable approxi-
mation of the Kohn-Sham Hamiltonian is constructed,
and the localized Tucker-tensor basis is computed us-
ing the eigenfunctions of the separable Hamiltonians in
each spatial dimension. The localized Tucker-tensor ba-
sis is subsequently used to solve the Kohn-Sham eigen-
value problem by using Chebyshev filtering and Fermi-
operator expansion techniques to compute the occupied
eigenspace and the electron-density. Numerical investi-
gations on representative benchmark examples reveal an
exponential convergence of the ground-state energy with
respect to the Tucker rank. In addition, the Tucker rank
required to obtain chemical accuracy in the computed
ground-state energies is found to only weakly depend on
the system size, with the number of Tucker-tensor basis
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TABLE II: Comparison of the proposed Tucker-tensor approach with plane-wave basis for a 3× 3× 3 FCC Al
cluster. Reference ground-state energy for this system is −56.69669 eV per atom.

Type of basis set Number of basis
functions

Absolute error in en-
ergy per atom (meV)

Time (CPU-hrs)

Plane-waves basis
(cutoff energy 20 Ha;
cell-size 60 a.u. )

461,165 3.8 910

Tucker basis 148,877 4.1 360

TABLE III: Comparison of the proposed Tucker-tensor approach with plane-wave basis for a 5× 5× 5 FCC Al
cluster. Reference ground-state energy for this system is −56.87822 eV per atom.

Type of basis set Number of basis
functions

Absolute error in en-
ergy per atom (meV)

Time (CPU-hrs)

Plane-waves basis
(cutoff energy 20 Ha;
cell-size 80 a.u. )

1,093,421 4.3 8640

Tucker basis 216,000 4.6 2364

functions exhibiting a sublinear dependence on the sys-
tem size for the range of benchmark systems considered
in this study. Our benchmark studies suggest further
that the proposed algorithm exhibits a close to linear-
scaling complexity with system size for both insulating
and metallic systems. This reduced-order scaling is a re-
sult of combining the low-rank Tucker-tensor basis with
localization techniques, and constitutes a promising di-
rection for large-scale DFT calculations. A comparative
numerical study for 3 × 3 × 3 and 5 × 5 × 5 aluminum
nanoclusters as benchmark systems shows about a 5-fold
reduction in the number of basis functions and about a
three to four-fold computational speedup for the current
implementation of the proposed algorithm over the plane-
wave implementation in ABINIT. We note that there is
much scope for optimizing our current Python implemen-
tation, and thus the computational efficiency afforded by
the proposed algorithm may potentially be much larger.
Finally, in the present work, we used a serial version of

TABLE IV: Ground-state energies per atom (eV) for
the various insulating systems computed using the

proposed algorithm.

Cluster Tucker rank(rdx) Energy Ref. energy

CH4 46 −43.73506 −43.73892

C8 H18 55 −58.77419 −58.77903

C16 H34 68 −60.49686 −60.50081

C33 H68 85 −61.43695 −61.44174

FIG. 10: Isocontours of the electron density of CH4 and
C8H18 computed with the proposed Tucker-tensor DFT

algorithm

the ALS algorithm to compute the Tucker-tensor decom-
position of the three-dimensional fields, thus limiting the
sizes of the materials systems to those systems where
the data corresponding to all relevant three-dimensional
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fields is accommodated in the memory of a single com-
pute node. Overcoming this limitation, and developing
an efficient and scalable parallel implementation of all
aspects of the proposed algorithm has the potential to
enabling DFT calculations on system sizes not accessible
heretofore.
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