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Geometrically imposed force cancellations lead to ultra-low friction between rigid incommensurate
crystalline asperities. Elastic deformations may avert this cancellation but are difficult to treat
analytically in finite and 3D systems. We use atomic-scale simulations to show that elasticity affects
the friction only after the contact radius a exceeds a characteristic length set by the core width of
interfacial dislocations bcore. As a increases past bcore, the frictional stress for both incommensurate
and commensurate surfaces decreases to a constant value. This plateau corresponds to a Peierls
stress that drops exponentially with increasing bcore but remains finite.
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Friction is omnipresent but large gaps remain in our
understanding of its atomic origins and our ability to
control it to reduce energy loss or improve braking.
One fascinating phenomenon observed at nanometer
scales is structural lubricity, a state of ultra-low friction
that results from the systematic cancellation of forces
across an interface between solids that have no com-
mon periodicity.1–3 Experiments have observed this can-
cellation between identical crystalline surfaces that are
rotated to become incommensurate,2,4–7 different crys-
talline surfaces8,9 and between amorphous and crystalline
surfaces.9,10 Superlubricity has been suggested to un-
derlie the mechanism of solid lubrication by plates of
graphite and MoS2,3,11 and to have the potential to lower
friction in a range of applications.

Theoretical treatments of superlubricity have usually
considered the limit of rigid solids illustrated in Fig.
1(a,c). If surfaces share no common period, then atoms
sample all relative positions with equal probability in the
thermodynamic limit. The resulting energy is transla-
tionally invariant and there is no friction. For finite sys-
tems the cancellation is incomplete. The frictional stress
(force per unit area) scales as a power of the contact
radius a for incommensurate and amorphous surfaces,
approaching zero as a increases.9,12,13

The elastic compliance of the surfaces has the potential
to dramatically alter superlubricity because atoms move
to preferentially sample low energy configurations (Fig.
1(b,d)). If elasticity leads to multiple metastable states,
there can be finite friction.14–16 The one-dimensional case
corresponds to the well-studied Frenkel-Kontorova chain
model.14 The infinite chain shows a non-analytic transi-
tion from zero to finite friction with increasing compli-
ance, but finite chains have friction associated with dislo-
cations (solitons) at chain ends.14 Several groups have in-
vestigated the two dimensional case of a compliant mono-
layer on a rigid substrate,17–20 but there have been com-
paratively few studies of frictional contacts where com-
pliant three-dimensional objects interact at a two dimen-
sional interface. It has been suggested that dislocations

at the interface could lead to friction,21,22 but Müser
found that incommensurate interfaces became unstable
to interdiffusion before the friction force become finite23.
Friction due to internal elasticity at incommensurate in-
terfaces has only been observed for a very compliant sys-
tem with just a few contacting atoms that could lock in
multiple metastable states.24

In this paper we study the scaling of friction with com-
pliance and contact size for circular contacts between in-
commensurate or commensurate crystals. An efficient
Greens function method allows us to vary the radius a
from less than a nanometer to a fraction of a microm-
eter. The studies show that there is a transition as a
exceeds the core width bcore of interfacial dislocations.
For a < bcore the frictional stress τfric is consistent with
previous results for rigid surfaces, dropping to zero with
increasing a for incommensurate surfaces and remaining
constant for commensurate surfaces. For a > bcore com-
pliance leads to new behavior. At intermediate a/bcore,
τfric is controlled by dislocation nucleation near the edge
of the contact where there is a diverging stress in contin-
uum theory.25 At large a/bcore, τfric saturates at a finite
value that is related to the Peierls stress for dislocation
motion. There is never true superlubricity with zero fric-
tion. However the Peierls stress drops exponentially to
zero as bcore increases and the friction in large contacts
may be extremely small.

We consider the simplified geometry of a circular disk
interacting with a semi-infinite elastic substrate. This
mimics the islands studied by Dietzel et al.9 or contact
between a sphere and flat substrate. Separate simula-
tions for the latter geometry exhibit the same behavior
reported below. The disk is rigid and the substrate has
shear modulus G and Poisson ratio ν. This case can be
mapped to contact of two compliant objects in continuum
theory.26

Atoms on both surfaces form a square lattice with
nearest-neighbor spacing d, corresponding to (001) sur-
faces of fcc crystals. The nearest-neighbor direction of
the substrate is rotated by an angle θ relative to that of
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FIG. 1: (a,b) Gray scale plot of traction in the sliding direc-
tion and (c,d) enlarged view of atomic positions (blue) and en-
ergy minima of the substrate potential (gray) for incommen-
surate crystals with θ = 0.03radians, λ ∼ 33d and a = 62d.
In (a,c) the substrate is effectively rigid, G/τmax = 256, and
all atoms advance together. The traction forces alternate in
sign and sum to nearly zero. In (b,d) the substrate is com-
pliant, G/τmax = 1, and sliding occurs through the motion of
dislocations between regions that have locked in registry (see
movie in supplemental materials).

the disk. At θ = 0 the system is commensurate with all
atoms in phase. Rotating the system out of alignment by
an angle θ creates an incommensurate contact that is like
a twist grain boundary (Fig. 1). Similar results were ob-
tained with surfaces made incommensurate by changing
the lattice constant.

The interaction of the substrate surface atoms with the
rigid disk is represented by a simple sinusoidal force in
the x − y plane of the substrate like that used for the
Frenkel-Kontorova chain and two dimensional Peierls-
Nabarro model:14,27

f(x, y) = τmaxd
2(sin(2πx/d)x̂ + sin(2πy/d)ŷ) (1)

for r < a, where τmax represents the maximum local
frictional stress or traction. The competition between
bulk deformation and interfacial slip can be characterized
by a core width bcore ≡ dG/τmax. For all cases studied,
bcore equaled the distance from the center of an interfacial
edge dislocation to the line where the stress drops to
τmax/2.

The displacement of substrate atoms is calculated with
a Greens function technique that describes the linear
response of a semi-infinite substrate.28–30 The results
presented below are for the commonly studied case of

an isotropic substrate with ν = 0.5, but other interac-
tions gave equivalent results.31 The substrate is displaced
quasi-statically and the energy minimized after each step
using LAMMPS.32 The static friction is determined from
the maximum force between the surfaces during sliding.
Normalizing by contact area gives the macroscopic fric-
tional stress, τfric. Results are shown for sliding at θ/2
to the x axis, but other sliding directions give similar
scaling.

Figure 1 contrasts the behavior of rigid and compliant
substrates for an incommensurate case of θ = 0.03. For
the stiff case, substrate atoms remain on an ideal rotated
square lattice and atoms are equally likely to be above
or between atoms of the disk. The force resisting sliding
oscillates as the registry changes with a characteristic
period λ ∼ d/θ at small angles. The cancellation in forces
for a > λ leads to structural superlubricity.1–3

For rigid incommensurate lattices with circular contact
area, the static friction stress has an upper bound that
decreases as a power of a, τfric ∼ τmax(a/d)−3/2 at large
a.6,9,13,23 Figure 2(a) shows the static friction stress of
a contact with θ = 25o. When the shear modulus G
is large, the friction follows the predicted rigid scaling
shown by the dashed line. Elasticity is unimportant since
bcore = dG/τmax is much greater than a. Note that there
are special radii where the cancellation of forces is nearly
exact and the friction is anomalously small compared to
the power law fit. To minimize fluctuations, these special
radii are not included in Fig. 2(b).

For the compliant case shown in Fig. 1(b,d), mis-
registry becomes localized into dislocation cores. Be-
tween dislocations the surfaces lock together to effectively
resist sliding. As has been observed in the simpler case
of 1D systems14 and suggested for 2D systems21,22, slid-
ing occurs through dislocation motion along the interface
rather than rigid translation of the entire surface. Con-
tact produces an initial network of misfit dislocations. In
the case shown, there were three horizontal dislocations
separated by λ at locations where the force changes sign
in the rigid case. The supplemental material shows how
these disclocations evolve during sliding. Sliding pro-
duces a nonuniform stress distribution with singularities
near the edge of the contact26 as discussed below. This
causes the dislocations to curve as they move and nu-
cleates new dislocations at the contact edge. Fig. 1(b)
shows a snapshot from steady state sliding. As sliding
continues, the dislocations move inwards towards the cen-
tral ellipse and annihilate while new dislocations nucleate
at the edge. The number of dislocations at the peak force
corresponding to static friction, increases with a/bcore.

Figure 2(a) reveals how compliance affects the static
friction. As G and bcore decrease, the friction deviates
from the rigid scaling at smaller and smaller a. At large a
the shear stress approaches a constant limiting value that
increases as bcore decreases. Similar behavior is observed
for all rotation angles that produce an incommensurate
interface.

The importance of bcore is illustrated by the rescaled
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FIG. 2: Static friction stress vs. contact radius for the values of bcore/d indicated by symbols in the legend. (a) For incom-

mensurate contacts τfric decreases as a−3/2 (dashed line) and then saturates at a plateau that decreases with increasing bcore.
(b) Scaling by bcore and τfric(bcore) shows that rigid scaling holds for a < bcore and τfric saturates for a� bcore. The rotation
angles are (a) 25◦ and (b) 3.4◦ to illustrate that similar behavior occurs for all incommensurate surfaces. (c) For commensurate

(θ = 0◦) surfaces τfric is constant at a < bcore and then drops as a−1/2 to a plateau value that decreases with increasing bcore.

data for θ = 3.4o in Fig. 2(b). The radius is normal-
ized by bcore and the friction by the rigid prediction for
a = bcore. For a < bcore the stress exhibits the power law
scaling predicted for rigid surfaces. For a > bcore dislo-
cations can enter the contact and the interface deforms
to lock into local registry. The friction is above the rigid
prediction, dropping more slowly and then saturating at
large a/bcore. Given our limited simluation size it is diffi-
cult to reach the asymptotic limit for bcore > 5d, but the
arguments below suggest that the saturating value drops
exponentially with increasing bcore.

Previous work on interfacial dislocations in circular
contacts between 3d solids25,27,33 has focussed on the
commensurate case, θ = 0. Results for this special case
are shown in Fig. 2(c). Because all atoms are in phase
in the rigid limit, the shear stress is independent of a.
As a becomes larger than bcore, the friction drops be-
low the rigid limit. The initial decrease scales as a−1/2.
As shown in a one-dimensional model by Hurtado and
Kim,25 this can be understood from the fact that con-
tinuum theory predicts that a uniform displacement in
the contact produces a singular shear stress at the edge
of the contact. The stress within bcore of the edge scales
as (a/bcore)

1/2 times the stress in the center. When this
edge stress reaches τmax, a dislocation can nucleate at
the circumference and propagate across the interface, al-
lowing the whole contact to advance by d. Gao has ob-
served this regime27 in two dimensional simulations up
to a/bcore ∼ 50 and Fig. 2(c) extends the scaling regime
by more than an order of magnitude.

At very large a/bcore, many dislocations are stable in
the contact. In this limit one expects33 that the shear
stress approaches the Peierls stress for dislocation motion
τPeierls. Our simulations access this regime for the first

τ fr
ic
/τ

m
ax

      1            2    
bcore/d = G/τmax

 0
3.4
5.7
10
15
20
25
45

τPeierls θ (deg)
edge

a/bcore ∞

      3            4            5

10-4

10-3

10-2

10-1

100

FIG. 3: Plateau stress for a/bcore → ∞ at the indicated ro-
tation angles (symbols) and the Peierls stress for edge dislo-
cations in a periodic system (solid line). There are significant
errorbars at large bcore where it is difficult to reach full satu-
ration. The top of each errorbar represents an upper bound
corresponding to τfric at the largest a studied (512 to 1024d).
The bottom was estimated by linearly extrapolating the tail
of log-log plots like Fig. 2 to ten times the largest a studied.

time, showing a clear saturation at a force that decreases
with increasing bcore.

The results shown in Fig. 2 suggest that for both
incommensurate and commensurate systems the shear
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stress in large contacts approaches the Peierls stress for
dislocation motion. As shown in Fig. 1, dislocations
make a loop and thus change from edge character at the
front and back, to screw dislocations at the sides. We
performed a set of simulations with periodic boundary
conditions to determine τPeierls. The same compliant
substrate was used but the rigid periodic potential was
stretched or skewed to impose a single dislocation per
unit cell at the desired orientation. The stress on the
top surface was then increased to determine the Peierls
stress at which the dislocation moved. As predicted from
continuum theory,34,35 τPeierls/τmax ∝ exp(−bcore/d) =
exp(−G/τmax). The solid line in Fig. 3 shows a fit to
data for an edge dislocation perpendicular to the sliding
direction. Stresses for other orientations were both larger
and smaller, but also show exponential scaling at large
core widths.

Also shown in Fig. 3 are the saturation friction stresses
for a wide range of θ and bcore. A striking conclusion is
that similar physics determines the saturating stress in
both commensurate and incommensurate contacts. In
the limit of small θ or small bcore commensurate and in-
commensurate surfaces have similar shear stresses that
scale with the Peierls stress for a single edge dislocation.
At larger θ and bcore, τfric is depressed and results for
each θ seem to decay with a more rapid exponential. In
this limit, local locking into the θ = 0 commensurate
state gives an intrinsic dislocation spacing λ = d/θ that
is smaller than bcore. Interactions between nearby dislo-
cations are known to reduce the effective Peierls stress.
The system can also lock into a higher order commen-
surate state. Independent simulations of these states in
systems with periodic boundary conditions show expo-
nentially decaying frictional stresses that are similar to
the results in Fig. 3. There is no friction in the rigid
limit (bcore → ∞), because our interfacial interaction is
a purely sinusoidal with no harmonics.12 More realistic
potentials lead to significant friction in the rigid limit.

Given the strong dependence of Peierls stress on bcore
it is interesting to consider typical values for real mate-
rials. For contact between two identical solids, Eq. 1
should give a simple model for interactions between lat-
tice planes in the bulk as well as at the interface. In this
case, G/τmax ∼ 2πh/d where h is the spacing between
lattice planes. Our geometry is consistent with the (001)
surface of an fcc crystal and thus G/τmax ∼ 4.4. Experi-
mental studies of the friction force on islands may be able
to reach scales where saturation to the Peierls stress can
be observed.9 The core width would be smaller and the
Peierls stress much larger if the interaction between solids
was stronger than the internal interactions. As noted
by Müser,23 such interfaces are likely to be metastable
against alloying. However he found no mixing on simu-
lation time scales for systems that would correspond to
bcore ∼ d where our calculated Peierls stress is large.

The directional covalent bonding in silicon and dia-
mond can lead to large yield stresses and small disloca-
tion core widths bcore ∼ d.36,37 As expected from Fig. 3,

unpassivated incommensurate surfaces of these materials
spontaneously deform to form an interface with a yield
stress that is comparable to the bulk. Passivating the
dangling covalent bonds at the surface with hydrogen re-
duces τmax to ∼ 10MPa, which is characteristic of van
der Waals interactions.38 The resulting bcore ∼ 10µm and
the corresponding Peierls stress would be below the limit
of detection in practical experiments. Of course it is dif-
ficult to make crystalline surfaces of diamond and silicon
that are atomically flat on this scale. For multiasper-
ity rough contacts or disordered surfaces there can be a
new mechanism of elastic pinning beyond an elastic cor-
relation length determined by the competition between
elasticity and the strength of disorder.39–42 One source
of disorder is the variation in phase and magnitude of
friction forces from individual asperities like those con-
sidered here.

Large atomically flat surfaces are readily obtained for
layer materials like MoS2 and graphite. In these highly
anisotropic materials, the width of interfacial dislocations
is determined by the competition between stiff covalent
bonds within layers and the weak van der Waals inter-
actions between layers.43 The value of bcore/d will be so
large that the Peierls stress is negligible and this must
contribute to the success of these materials as solid lu-
bricants.

The results presented above provide new insight into
the competition between geometry, elasticity and inter-
facial shear stress in determining the friction of two di-
mensional contacts between crystalline three dimensional
solids. For small contact radii we find the friction scales
according to previously derived rules for rigid solids.
For commensurate surfaces there is a constant frictional
stress, while τfric decreases as a power of radius for in-
commensurate surfaces.

Elasticity becomes important when the radius exceeds
the width of edge dislocation cores, bcore = dG/τmax. For
commensurate surfaces, nucleation at the circular con-
tact boundary leads to a universal decrease in stress as
τfric ∼ (a/bcore)

−1/2. The friction stress then saturates
at the Peierls stress for dislocation loops to move across
the interface. The stress also saturates at large a/bcore
for incommensurate surfaces. Moreover, the Peierls stress
is nearly the same for commensurate and incommensu-
rate systems at small bcore and λ. This result is in stark
contrast to the rigid limit.1–3,9 In all cases studied the
saturation stress drops exponentially with G/τmax. Thus
there is no true zero friction state but the friction stress
may be extremely small in stiff systems.
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