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A co-dimension one critical surface in the momentum space can be either a familiar Fermi surface, which

separates occupied states from empty ones in the non-interacting fermion case, or a novel Bose surface, where

gapless bosonic excitations are anchored. Their presence gives rise to logarithmic violation of entanglement

entropy area law. When they are convex, we show that the shape of these critical surfaces can be determined

by inspecting the leading logarithmic term of real space entanglement entropy. The fundamental difference

between a Fermi surface and a Bose surface is revealed by the fact that the logarithmic terms in entanglement

entropies differ by a factor of two: SBose
log = 2SFermi

log , even when they have identical geometry. Our method

has remarkable similarity with determining Fermi surface shape using quantum oscillation. We also discuss

possible probes of concave critical surfaces in momentum space.

Introduction – Various aspects of quantum entanglement1

have been extensively studied in recent years. The most

widely used measure of entanglement is the entanglement en-

tropy (EE), which is the von Neumann entropy associated with

the reduced density matrix of a subsystem, obtained by tracing

out degrees of freedom outside it. For extended quantum sys-

tems, it is generally believed that ground states of all gapped

local Hamiltonians, as well as a large number of gapless sys-

tems, follow the so-called area law, which states that the EE is

proportional to the surface area of the subsystem2. Violations

of the area law, usually in a logarithmic fashion, do exist in

various systems. In one dimension (1D), they are found to be

associated with quantum criticality3–7. Above 1D such viola-

tions are very rare. The well-established examples are systems

with Fermi surfaces, including free fermion ground states8–10,

and Fermi liquid phases11. For the case of Bose surfaces, de-

fined as co-dimension one surfaces in momentum space where

gapless bosonic excitations live, we constructed harmonic lat-

tice models with short-range couplings and found a similar

area-law violation12, which realized a lattice version of the

Exciton Bose Liquid (EBL) phase13,14. Strongly-interacting

systems with emergent Fermi surfaces have also been studied

numerically with evidence of area-law violation as well15,16.

In the present paper we explicitly focus on the systems above

1D and refer to Fermi and Bose surfaces jointly as critical sur-

faces (in momentum space).

It is impossible to overstate the importance of such crit-

ical surfaces to the long-distance/low-energy physics of the

system. However unlike the free fermion/harmonic oscilla-

tor systems where their presence and shapes are “obvious”,

in strongly-interacting systems they may be associated with

heavily renormalized degrees of freedom or emergent, and

thus difficult to detect (either theoretically from the Hamil-

tonian or ground state wave function, or experimentally). Re-

cently it was suggested that logarithmic violation of entangle-

ment entropy area law is an effective, and sometimes unique

way to probe the presence of Fermi surfaces in strongly inter-

acting systems15–20.

The purpose of this paper is three-fold. First of all, as al-

ready mentioned above, Fermi and Bose surfaces both give

rise to logarithmic violation of entanglement entropy area

law; thus such violation indicates the presence of critical sur-

face(s), but not necessarily Fermi surface(s). Due to the sim-

ilar effect they have on EE, one might think they are equiva-

lent. We reveal their qualitative difference by demonstrating

the presence of a factor of two difference in their contribution

to the logarithmic term in EE. We further demonstrate that

not only the presence, but also the shape of such critical sur-

face can be determined from inspecting the scaling behavior

of EE. This is particularly true when these surfaces are con-

vex, in which case our (theoretical) method has remarkable

similarity with determining a Fermi surface shape experimen-

tally using quantum oscillation21. Lastly we argue that with

some additional input, we may be able to distinguish between

Bose and Fermi surfaces.

Critical surfaces: Bose v.s. Fermi– The left panel of Fig. 1

shows an extensive critical surface in momentum space. The

subtle difference between a Bose surface and a Fermi surface

is best revealed by inspecting the dispersion along a line that

cuts through the surface (as illustrated by the red line). The

corresponding dispersions are shown on the right panels of

Fig. 1. The top right panel shows the usual 1D fermion disper-

sion with a pair of left and right moving Fermi points cross-

ing the Fermi energy. The bottom right panel illustrates the

1D gapless Boson dispersion which touches the zero energy

twice. It should be clear that the low-energy modes at one

specific intersection point are chiral when it is of the Fermi

type, while they are non-chiral for the Bose-type intersection.

This leads to the factor of two difference in their contribution

to EE mentioned above, as we now elaborate. Before pro-

ceeding, we emphasize that the critical surface discussed in

the present work refers to the surface formed in the momen-

tum space by the gapless fermionic or bosonic degrees of free-

dom “emergent” at the long-wavelength (low energy) scale in

an interacting model system, instead of the trivially noninter-

acting cases. Furthermore, in the noninteracting limit, there

should be no (extended) Bose surface since for a typical crit-

ical bosonic system the gapless bosonic degree of freedom
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FIG. 1. (Color Online) A Fermi surface versus a Bose surface. Left

panel shows a critical (zero energy) surface represented by the closed

blue line in momentum space. The sharp difference between a Bose

and a Fermi surface can be revealed by inspecting the dispersion

along a line that cuts across the surface represented by the red line.

The top right (bottom left) panel shows the case of a Fermi sur-

face (Bose surface), where the blue line represents an 1D fermionic

(bosonic) dispersion, with one (two) pair(s) of left and right moving

modes crossing zero energy.

only live at a single gapless point instead of living in a ex-

tended Bose surface, which will not lead to a leading area-law

violated entanglement entropy22.

If we had 1D systems with the fermionic/bosonic disper-

sions of the top/bottom panels of Fig. 1, they would corre-

spond to conformal field theories (CFTs) with central charges

c = 1 and c = 2 respectively, and EE would scale with

subsystem size as S1D
F =̇1

3
lnL for Fermi and S1D

B =̇2

3
lnL =

2S1D
F for Bose, where L is the subsystem length and =̇ repre-

sents the leading contribution of the EE. In higher dimensions

the logarithmic enhancement of EE can be understood by di-

viding the critical surfaces into patches small enough so that

within each patch their curvatures may be neglected, and map

them onto effective 1D systems described by CFTs, and sum

up their contributions to EE10,11. We thus see that for Bose

and Fermi surfaces with identical shape, their contribution to

the leading term in EE differ by a factor of two, revealing their

qualitative difference.

For probing a critical surface in momentum space in d di-

mensions, we first present the general formula for the lead-

ing logarithmic term in EE. In d dimensions, we consider a

specific real-space partition in which the boundary between

the two subsystems is a plane whose normal direction is

n̂d. This partition preserves the translational symmetries in

d − 1 dimensions that are perpendicular to n̂d, and we fol-

low the similar procedures used in Refs.12,22 to perform par-

tial Fourier transformation for all the physical degrees of free-

dom along these d − 1 axes, since the momenta k1,2,··· ,n−1

are good quantum numbers. We thus view the momentum

space as consisting of arrays of parallel 1D chains with spac-

ings δk1,2,...,n−1 = 2π/L⊥, where L⊥ is the linear size of

these transverse directions.

As stated above, each 1D line intersecting the critical sur-

face contributes (ξa/3) lnL‖ to the leading term of the EE,

where ξa=F,B with ξF = 1(ξB = 2) for a Fermi (Bose) sur-

face, and L‖ is the linear size of the (smaller) subsystem along

n̂d. The total leading EE can be obtained by counting total

number of chains (in momentum space) intersecting the crit-

ical surface, which is the cross-sectional area of the critical

surface divided by the (d − 1) dimensional spacing area be-

tween each chain, (2π/L⊥)
d−1. Explicitly, the leading term

of the EE is

SdD =̇
ξa
3
lnL‖ ×

1

2
×
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where the factor of 1/2 at the first line is due to the over

counting of the cross-section. In second line, we rewrite n̂d as

real-space partition surface integral (with d~SA being the cor-

responding oriented area element whose direction is along the

local normal direction) divided by the partition surface area in

d− 1 dimensions, 2Ld−1

⊥ .
∫

∂Γ
represents the surface integral

along the critical surface in momentum space (with dŜΓ being

the corresponding oriented area element). While we arrived at

Eq. (1) by considering the special partition we will use later,

it is actually the correct formula for free fermion state for ar-

bitrary cuts9, if we replace L‖ by the generic linear size of the

smaller subsystem. Using arguments along those of Refs.10,11,

we conclude that it apply to systems with Bose surfaces with

arbitrary partition as well, which is a new result.

EE probing a convex critical surface– We discuss how to

reconstruct the critical surface using EE, based on Eq. (1).

The key point for the construction is that the prefactor of

(ξa/3) lnL‖ in Eq. (1) gives the critical surface’s cross-

sectional area along n̂d, when it is convex. We leave the dis-

cussions on a concave critical surface toward the end of the

paper.

Figure 2 illustrates how we reconstruct a convex critical sur-

face using EE in 2D. We note that in this Letter we focus on a

critical surface in momentum space with an inversion center.23

We start from a direction that gives the largest cross-section

represented by the black line 1. Now rotating the partition di-

rection by an angle θ to extract the second projected length

(green line) 2. In the real situation, the only information we

will have are the angles θ and the projected lengths at differ-

ent angles ℓ(θ), while the critical surface is an abstract object

that can not be seen (The critical surface shown in Fig. 2 is

for presentation purpose only). We now have projected lines

1 and 2, but in order to have a reference point for mapping out

the convex critical surface shape, we first fix the location of

1 and arbitrarily place 2 as long as the dashed lines of 1 and

2 intersect (which is always possible since the dashed lines

are infinitely long). The intersections between dashed lines 1
and 2 forms a parallelogram shown in the left panel of Fig. 2,

whose center is also the inversion center. At this point the

critical surface is approximated by this parallelogram (choice

of the location of the inversion center is arbitrary, as it is a

gauge-dependent quantity). We continue rotating the partition
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FIG. 2. (Color Online) Illustration of reconstructing a 2D critical sur-

face with an inversion center. (Left panel) We start from the largest

cross-section line 1 and rotate the partition to obtain cross-section

2. They form a parallelogram whose center is the inversion cen-

ter. (Middle panel) We again rotate the partition to extract 3, whose

dashed lines should be of equal distance to the inversion center. We

can keep rotating the partition to extract 4, 5, and etc. and appro-

priately place them around the inversion center. (Right panel) This

leads to an approximation of the critical surface by a polygon, with

arbitrary accuracy.

to extract the projected length 3 (purple line) in the middle

panel of Fig. 2. Since there is an inversion center, the dashed

line 3 must be placed in a position of equal distance to the

center. We can continue to rotate the partition to extract the

project length 4 and repeat the procedures, but in this illustra-

tion we stop at the fourth iteration. Connecting all the inter-

sected points represented by the red dots in middle panel of

Fig. 2, we can geometrically extract the qualitative shape of

the critical surface, right panel of Fig. 2. It is clear by now

that the critical surface can be approximated by a polygon in

this case, with arbitray accuracy.24

In three dimensions (3D), we find that the EE construction

of a convex critical surface shape share remarkable similar-

ities with experimentally identifying a Fermi surface shape

using quantum oscillation21. Figure 3 gives an illustration of

extracting the cross-section in 3D using Eq. (1). The relation

between them is the following. Quantum oscillation measure-

ment determines the cross-section areas of all Fermi surface

extrema perpendicular to the magnetic field direction, which

include both the maximum cross-section and the minimum

cross-section. The EE probes the projectional area of the crit-

ical surface along any direction (equivalent to magnetic field

direction in quantum oscillation experiment), which is equal

to the maximum cross-section. This is the only extremum

when the critical surface is convex, and in this case the two

methods are identical. One can thus use the same algorithm

in quantum oscillation measurements here to determine the

Fermi surface shape21.

Discussion– As discussed earlier, the presence of logarith-

mic enhancement of EE indicates presence of critical sur-

face(s) above 1D. However, if we do not know which type of

the critical surface (Fermi or Bose) leading to the logarithmic

enhancement, using the wrong version of Eq. (1) results in a

numerical error in the size of the critical surface, although one

would still get the correct shape. EE itself does not distinguish

between Fermi and Bose surfaces. We note when combined

with other indicators, one may be able to make a distinction.

Fermi surface volumes often obey the Luttinger’s theorem25,

FIG. 3. (Color Online) Illustration of extracting the 2D cross-section

of a 3D critical surface (blue region). We assume that momenta kx

and kz remain good quantum numbers and the momentum space

consists of these arrays of 1D chains (red lines). Remarkably, extract-

ing the cross-section using EE in 3D shares similarities with identi-

fying the Fermi surface shape using quantum oscillations. The two

approaches give the same cross-section for a convex critical surface.

from which one can check if it is consistent with that of the

critical surface obtained using the Fermi version of Eq. (1);

if not then a possible interpretation is that the logarithmic en-

hancement of EE originates from Bose surface(s). Another

example is a circular/spherical Fermi surface often gives rise

to Friedel oscillations in ground state density-density correla-

tion function with wave vector 2kF
26, which can be used to

perform a similar check.

So far we have focused on a convex critical surface, but in

general a concave critical surface is possible. For such a con-

cave surface, the method presented here cannot completely

determine its shape. However, applying our method can in

principle infer the location of the concave part; see Fig. 4 for

illustration. Fig. 4(a)(top panel) illustrates a typical concave

surface, whose concavity occurs between θ ∈ [θ1, θ2] with

θ1, θ2 ∈ [0, π] due to π-period in EE and θ1, θ2 being direc-

tions along which there exist tangential lines that go through

turning points of the curve. Blindly applying Eq. (1) to this

case the same way as the convex case would lead to a wrong

shape with its concave part replaced by a convex shape (in-

verted concave shape). The reason is due to the fact that the

EE probe effectively measures the total number of intersected

points between the 1D chains consisting of the momentum

space and the critical surface. At θ ∈ [θ1, θ2], some 1D chains

in the momentum space intersect the surface four times, as

shown in Fig. 4(a), and they contribute additional EE, result-

ing in the wrong shape. We note that the wrong shape alters

the volume (area) of the critical surface and would lead to the

violation of the Luttinger’s theorem, which can serve as an

alarm of the presence of the concavity of the surface.

There are, however, signs that the critical surface is actu-

ally concave. To reveal them we suggest that one measures

the leading EE, Slog , as a function of angle θ, as shown

in Fig. 4(b). For a convex shape, if we begin at an an-

gle θ ≡ 0 where Slog(θ) is the maximum, Slog(θ) should

smoothly decrease until it hits the minimum corresponding

to the minimum cross-section, after that Slog(θ) smoothly in-

creasing back to the initial value at θ = π. For a concavity at
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FIG. 4. (Color Online) Probing a concave critical surface using en-

tanglement entropy. (a) Applying the method for a convex criti-

cal surface may lead to a surface shape with the inverted concave

part, where we assume the concavity occurs at θ ∈ [θ1, θ2] with

θ1, θ2 ∈ [0, π] due to the π-period in EE. (b) The cusp-like signa-

tures due to the presence of a concave structure at θ ∈ [θ1, θ2] in the

angular dependence of EE, where we assume EE is maximum at the

starting angle.

θ ∈ [θ1, θ2], Fig. 4, if we start from the maximum Slog(θ) (we

assume it occurs at θ 6∈ [θ1, θ2] for a small concavity), Slog(θ)
would smoothly decrease until θ1, where the additional con-

tributions to Slog due to the additional intersected points be-

tween the 1D momentum-space chains (green lines in Fig. 4)

and the critical surface would upward the curve resulting in

a cusp-like structure at θ1.27 For θ > θ1, Slog(θ) increases

until it arrives at a maximum when the total number of inter-

sected points are maximum, and, after that point, it smoothly

decreases until θ = θ2. For θ > θ2, the Slog(θ) picks up the

correct convex structure and smoothly increase to the initial

maximum EE at θ = π, resulting in another cusp structure at

θ2. The pair of cusps can serve as evidence of the presence of

a concave part in the critical surface between θ ∈ [θ1, θ2].
We note that the method presented here uses a specific type

of partition (that respects translation symmetry in all trans-

verse directions). It does not fully utilizes the power of Eq.

(1). It is quite possible that by considering more general types

of partitioning we will be able to determine generic shapes of

critical surfaces. This will be left for future work.

The EE probes of the critical surfaces in momentum

space can be possibly applied to the quantum spin models

that realize the gapless spin liquids with fermionic spinon

surfaces28–37. The exactly solvable quantum spin models real-

izing the (Majorana) fermionic surfaces33,35–37 can serve as

the promising models to test the construction of the criti-

cal surfaces using EE since we know exactly the shapes of

the critical surfaces. For the more complex theoretical mod-

els which realize the spin Bose metal with fermionic spinon

Fermi sea coupled to U(1) gauge fields28–30,38,39, composite

fermion Fermi liquid state16, and certain theoretical models

realizing the non-Fermi liquid metal phases30,40,41, the EE

probes may well be the only method in mapping out the crit-

ical surfaces in momentum space. A possible issue regarding

these states is the U(1) gauge fluctuations42, which may mod-

ify Eq. (1) and may be viewed as indication of the breakdown

of Fermi liquid behavior.

More specifically, the effective central charge ξs associated

with the entanglement entropy contributed from each pair of

critical surface patches, which can be viewed as an effective

1D system without conformal invariance in the charge sectors

due to the presence of gauge fields, is unknown. The direct

consequence is that the EE probe can only gives the overall

value of the multiplication of the cross-sectional area and the

effective central charge, ξsA, after we eliminate the common

factor, (L/3) lnL. In order to apply our algorithm to map out

such critical surface, we need to determine ξs. Since ξs is as-

sociated with the effective 1D system of the critical surface

patches, it does not depend on the size or shape of the critical

surface. We can focus on the isotropic case and numerically

calculate a relevant correlation function for an arbitrary obser-

vation direction, i.e., the spin-spin correlation function for the

spin Bose metal phases with spinon Fermi sea. The power-

law correlations in the real space correspond to the singular-

ities in the momentum space and the corresponding structure

factor will show singular behaviors at wave vector q = 0 and

at wave vector q = kFR − kFL, where we introduce the

wavevector kFR = −kFL ≡ kF (since it’s a circular critical

surface), of a right/left patch of the critical surface whose unit

surface vector (which is perpendicular to the surface) paral-

lel/antiparallel to the observation direction. Most important

of all is that |kFR − kFL| is exactly the cross-section (diam-

eter) A of the spinon critical surface. Comparison between

the result obtained in the correlation function calculations and

that obtained in real-space EE calculation can determine ξs.

Conclusion – In this paper we have shown how to deter-

mine the geometries of critical surfaces in momentum space

using real space entanglement entropy of the ground state, and

possibly distinguish between Bose and Fermi surfaces, which

are qualitatively different.
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39 R. V. Mishmash, I. González, R. G. Melko, O. I. Motrunich, and

M. P. A. Fisher, Phys. Rev. B 91, 235140 (2015).
40 O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B 75, 235116

(2007).
41 H.-C. Jiang, M. S. Block, R. V. Mishmash, J. R. Garrison, D. N.

Sheng, O. I. Motrunich, and M. P. A. Fisher, Nature 493, 39

(2013).
42 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17

(2006).


