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1Department of Physics, California State University, Northridge, CA 91330-8268, USA
2Department of Physics and Astronomy, University of Delaware, Newark, DE 19716-2570, USA

Motivated by recent experiments observing spin-orbit torque (SOT) acting on the magnetization
~m of a ferromagnetic (F) overlayer on the surface of a three-dimensional topological insulator (TI),
we investigate the origin of the SOT and the magnetization dynamics in such systems. We predict
that lateral F/TI bilayers of finite length, sandwiched between two normal metal leads, will generate
a large antidamping-like SOT per very low charge current injected parallel to the interface. The
large values of antidamping-like SOT are spatially localized around the transverse edges of the F
overlayer. Our analysis is based on adiabatic expansion (to first order in ∂ ~m/∂t) of time-dependent
nonequilibrium Green functions (NEGFs), describing electrons pushed out of equilibrium both by the
applied bias voltage and by the slow variation of a classical degree of freedom [such as ~m(t)]. From it
we extract formulas for spin torque and charge pumping, which show that they are reciprocal effects
to each other, as well as Gilbert damping in the presence of SO coupling. The NEGF-based formula
for SOT naturally splits into four components, determined by their behavior (even or odd) under the
time and bias voltage reversal. Their complex angular dependence is delineated and employed within
Landau-Lifshitz-Gilbert simulations of magnetization dynamics in order to demonstrate capability
of the predicted SOT to efficiently switch ~m of a perpendicularly magnetized F overlayer.

PACS numbers: 72.25.Dc, 75.70.Tj, 85.75.-d, 72.10.Bg

I. INTRODUCTION

The spin-orbit torque (SOT) is a recently discovered
phenomenon1–4 in ferromagnet/heavy-metal (F/HM)
lateral heterostructures involves unpolarized charge cur-
rent injected parallel to the F/HM interface induces
switching or steady-state precession5 of magnetization
in the F overlayer. Unlike conventional spin-transfer
torque (STT) in spin valves and magnetic tunnel junc-
tion (MTJs),6–8 where one F layer acts as spin-polarizer
of electrons that transfer torque to the second F layer
when its free magnetization is noncollinear to the direc-
tion of incoming spins, heterostructures exhibiting SOT
use a single F layer. Thus, in F/HM bilayers, spin-orbit
coupling (SOC) at the interface or in the bulk of the
HM layer is crucial to spin-polarized injected current
via the Edelstein effect (EE)9,10 or the spin Hall effect
(SHE),11,12 respectively.

The SOT offers potentially more efficient magnetiza-
tion switching than achieved by using MTJs underlying
present STT-magnetic random access memories (STT-
MRAM).13 Thus, substantial experimental and theo-
retical efforts have been focused on identifying physi-
cal mechanisms behind SOT whose understanding would
pave the way to maximize its value by using optimal
materials combinations. For example, very recent ex-
periments14–16 have replaced HM with three-dimensional
topological insulators (3D TIs).17 The TIs enhance18–20

(by a factor ~vF /αR, where vF is the Fermi velocity on
the surface of TI and αR is the Rashba SOC strength21,22

at the F/HM interface) the transverse nonequilibrium
spin density driven by the longitudinal charge current,
which is responsible for the large field-like SOT compo-
nent20,23 observed experimentally.14–16

FIG. 1. (Color online) Schematic view of F/TI lateral bilayer
operated by SOT. The F overlayer has finite length LFx and ~m
is the unit vector along its free magnetization. The TI layer
is attached to two N leads which are semi-infinite in the x-
direction and terminate into macroscopic reservoirs. We also
assume that F and TI layers, as well as N leads, are infinite in
the y-direction. The unpolarized charge current is injected by
the electrochemical potential difference between the left and
the right macroscopic reservoirs which sets the bias voltage,
µL−µR = eVb. We mention that the results do not change if
the TI surface is covered by the F overlayer partially or fully.

Furthermore, recent experiments have also observed
antidamping-like SOT in F/TI heterostructures with
surprisingly large figure of merit (i.e., antidamping
torque per unit applied charge current density) that sur-
passes14–16 those measured in a variety of F/HM het-
erostructures. This component competes against the
Gilbert damping which tries to restore magnetization
to equilibrium, and its large figure of merit is, there-
fore, of particular importance for increasing efficiency of
magnetization switching. Theoretical understanding of
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the physical origin of antidamping-like SOT is crucial to
resolve the key challenge for anticipated applications of
SOT generated by TIs—demonstration of magnetization
switching of the F overlayer at room temperature (thus
far, magnetization switching has been demonstrated only
at cryogenic temperature15).

However, the microscopic mechanism behind its large
magnitude14–16 and ability to efficiently (i.e., using as lit-
tle dc current density as possible) switch magnetization15

remains under scrutiny. For example, TI samples used
in these experiments are often unintentionally doped, so
that bulk charge carriers can generate antidamping-like
SOT via rather large24 SHE (but not sufficient to explain
all reported values14,15). The simplistic picture,14 in
which electrons spin-polarized by the EE diffuse into the
F overlayer14 to deposit spin angular momentum within
it, cannot operate in technologically relevant F overlayers
of ' 1 nm thickness16 or explain complex angular depen-
dence2,15,25 typically observed for SOT. The Berry cur-
vature mechanism25,26 for antidamping-like SOT applied
to lateral F/TI heterostructures predicts its peculiar de-
pendence on the magnetization orientation,27 vanishing
when magnetization ~m is parallel to the F/TI interface.
This feature has thus far not been observed experimen-
tally,15 and, furthermore, it makes such antidamping-like
SOT less efficient27 (by requiring larger injected currents
to initiate magnetization switching) than standard SHE-
driven3,4 antidamping-like SOT.

We note that the recent experimental14–16 and theo-
retical14,27 studies of SOT in lateral F/TI bilayer have
focused on the geometry where an infinite F overlayer
covers an infinite TI layer. Moreover, they assume14,27

purely two-dimensional transport where only the top sur-
face of the TI layer is explicitly taken into account by the
low-energy effective (Dirac) Hamiltonian supplemented
by the Zeeman term due to the magnetic proximity ef-
fect. On the other hand, transport in realistic TI-based
heterostructures is always three-dimensional, with unpo-
larized electrons being injected from normal metal con-
tacts, reflected from the F/TI edge to flow along the sur-
face of the TI in the yz-plane and then along the bottom
TI surface in Fig. 1. In fact, electrons also flow within a
thin layer (of thickness . 2 nm in Bi2Se3 as the prototyp-
ical TI material) underneath the top and bottom surfaces
due to top and bottom metallic surfaces of the TI doping
the bulk via evanescent wave functions.18 Therefore, in
this study we consider more realistic and experimentally
relevant28 F/TI bilayer geometries, illustrated in Fig. 1,
where the TI layer of finite length LTI

x and finite thick-
ness LTI

z is covered by the F overlayer of length LF
x . The

partial coverage of the TI surface by the F overlayer in
Fig. 1 is only for the purpose of clarity of the illustration
and the results are qualitatively independent of LF

x . The
two semi-infinite ideal N leads are directly attached to
the TI layer. we should mention that the result does not
depend on the length of TI layer that is covered by the
FM.

Our principal results are twofold and are summarized

as follows:

(i) Theoretical prediction for SOT: We predict that the
geometry in Fig. 1 will generate large antidamping-like
SOT per low injected charge current. By studying spatial
dependence of the SOT (see Fig. 4), we show that in a
clean FM/TI interface the electrons exert anti-damping
torque on the FM as they enter into the interface and un-
less interfacial roughness or impurities are included the
torque remains mainly concentrated around the edge of
the interface. Although the exact results show strong
nonperturbative features, based on second order pertur-
bation we present two different interpretations showing
that the origin of the antidamping SOT relies on the
spin-flip reflection of the chiral electrons injected into
the FM/TI interface. Its strong angular dependence (see
Fig. 2), i.e., dependence on the magnetization direction
~m, offers a unique signature that can be used to distin-
guish it from other possible physical mechanisms. By
numerically solving the Landau-Lifshitz-Gilbert (LLG)
equation in the macrospin approximation, we demon-
strate (see Figs. 5 and 6) that the obtained SOT is ca-
pable of switching of a single domain magnetization of a
perpendicularly magnetized F overlayer with bias voltage
in the oder of the Magneto-Crystaline Anisotropy (MCA)
energy.

(ii) Theoretical formalism for SOT: The widely used
quantum (such as the Kubo formula25–27,30) and semi-
classical (such as the Boltzmann equation31) transport
approaches to SOT are tailored for geometries where an
infinite F layer covers an infinite TI or HM layer. Due to
translational invariance, the nonequilibrium spin density
~S induced by the EE on the surface of TI or HM layer

has uniform orientation ~S = (0, Sy, 0) [in the coordinate
system in Fig. 1], which then provides reference direc-
tion for defining field-like, τf ~m × ŷ, and antidamping-
like, τad ~m × (~m × ŷ), components of SOT. In order to
analyze spatial dependence of SOT in the device geome-
try of Fig. 1, while not assuming anything a priori about
the orientation of field-like and antidamping-like compo-
nents of SOT, we employ adiabatic expansion32 of time-
dependent nonequilibrium Green functions (NEGFs)33,34

to derive formulas for torque, charge pumping35,36 and
Gilbert damping37 in the presence of SOC. The NEGF-
based formula for SOT naturally splits into four compo-
nents, determined by their behavior (even or odd) under
the time and bias voltage reversal. This gives us a general
framework in quantum mechanics to analyze the dissi-
pative (antidamping-like) and nondissipative (field-like)
force (torque) vector fields for a set of canonical variables
(magnetization directions). Their angular (see Fig. 2)
and spatial (see Fig. 4) dependence shows that although
field-like and antidamping-like SOTs are predominantly
along the ~m× ŷ and ~m× (~m× ŷ) directions, respectively,
they are not uniform and can exhibit significant devia-
tion from the trivial angular dependence defined by these
cross products [see Fig. 2(h)].

The paper is organized as follows. In Sec. II, we present
the adiabatic expansion of time-dependent NEGFs, in a
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representation that is alternative to Wigner representa-
tion34 (usually employed for this type of derivation32),
and derive expressions for torque, charge pumping and
Gilbert damping. In Sec. III, we decompose the NEGF-
based expression for SOT into four components, deter-
mined by their behavior (even or odd) under the time and
bias voltage reversal, and investigate their angular de-
pendence. Section IV discusses the angular dependence
of the zero-bias transmission function which identifies the
magnetization directions at which substantial reflection
occurs. In Sec. V, we study spatial dependence of SOT
components and discuss their physical origin. Section VI
presents LLG simulations of magnetization dynamics in
the presence of predicted SOT, as well as a switching
phase diagram of the magnetization state as a function
of the in-plane external magnetic field and SOT. We con-
clude in Sec. VII.

II. THEORETICAL FORMALISM

We first describe the time-dependent Hamiltonian
model, H(t) = H0+U(t), of the lateral F/TI heterostruc-
ture in Fig. 1. Here H0 is the minimal tight-binding
model for 3D TIs like Bi2Se3 on a cubic lattice of spacing
a with four orbitals per site.38 The thickness, LTI

z = 8a
of the TI layer is sufficient to prevent hybridization be-
tween its top and bottom metallic surface states.18 The
time-dependent potential

U(t) = −∆surf1m ~m(t) · ~σ/2, (1)

depends on time through the magnetization of the F over-
layer which acts as the slowly varying classical degree of
freedom. Here ~m(t) is the unit vector along the direc-
tion of magnetization, ∆surf = 0.28 eV is the proximity
induced exchange-field term and 1m is a diagonal matrix
with elements equal to unity for sites within the F/TI
contact region in Fig. 1 and zero elsewhere. The semi-
infinite ideal N leads in Fig. 1 are taken into account
through the self-energies33,34 ΣL,R computed for a tight-
binding model with one spin-degenerate orbital per site.
The details of how to properly couple ΣL,R to H0, while
taking into account that the spin operators for electrons
on the Bi and Se sublattices of the TI are inequivalent,39

can be found in Ref. 40.
Within the NEGF formalism33,34 the advanced

and lesser GFs matrix elements of the tight-binding
Hamiltonian, H0, are defined by Gii′,oo′,ss′(t, t

′) =

−iΘ(t − t′)〈{ĉios(t), ĉ†i′o′s′(t′)}〉, and G<ii′,oo′,ss′(t, t
′) =

i〈ĉ†i′o′s′(t′)ĉios(t)〉, respectively. Here, ĉ†ios (ĉios) is the
creation (annihilation) operator for an electron on site, i,
with orbital, o, and spin s, respectively, 〈. . .〉 denotes the
nonequilibrium statistical average, and ~ = 1 to simplify
the notation. These GFs are the matrix elements of the
corresponding matrices G and G< used throughout the
text.

Under stationary conditions, the two GFs depend on
the difference of the time arguments, t − t′, and can

be Fourier transformed to energy. In the strictly adi-
abatic limit one can employ41 the same retarded GF,
Gt(E) = [E −H(t)−ΣL −ΣR]−1, as under stationary
conditions, but where the GF depends parametrically on
time (denoted by the subscript t) and is computed for the
frozen-in-time configuration of U(t). However, even for
slow evolution of ~m(t) corrections32 to the adiabatic GF
are needed to describe dissipation effects such as Gilbert
damping or the charge current which can be pumped35

by the dynamics of ~m(t).
The so-called adiabatic expansion, which yields correc-

tions beyond the strictly adiabatic limit, is traditionally
performed using the Wigner representation34 in which
the fast and slow time scales are easily identifiable.32 The
slow motion implies that the NEGFs vary slowly with the
central time tc = (t + t′)/2 while they change fast with
the relative time tr = t − t′. By expanding the Wigner
transformation of NEGFs

G
(<)
W (E, tc) =

∫ ∞
−∞

dtr e
iEtrG(<)

(
tc +

tr
2
, tc −

tr
2

)
,

(2)
in the central time tc while keeping only terms contain-
ing first-order derivatives ∂/∂tc (due to the slow varia-
tion with tc) gives the first-order correction beyond the
strictly adiabatic limit.32 This route requires to han-
dle complicated expressions resulting from the Wigner
transform applied to convolutions of the type C(t1, t2) =∫
dt3 C1(t1, t3)C2(t3, t2).
Here we provide an alternative derivation of the first-

order nonadiabatic correction. Namely, we consider t
(observation time) and t − t′ (relative time) as the nat-
ural variables to describe the time evolution of NEGFs
and then perform the following Fourier transform42

G(t, t′) =

∫ ∞
−∞

dE

2π
eiE(t−t′)G(E, t). (3)

The standard equations of motion for G(t, t′) and
G<(t, t′) are cumbersome to manipulate42,43 or solve
numerically,44 so they are usually transformed to some
other representation.35 Here we replace G(t, t′) in the
standard equations of motion with the rhs of Eq. (3) to
arrive at:[(

E − i ∂
∂t

)
1−H0 −U(t)−Σ

(
E − i ∂

∂t

)]
G(E, t) = 1,

(4)

and

G<(t, t′) =

∫
dE

2π
G(E, t)Σ<(E)G†(E, t′)eiE(t−t′). (5)

For the two-terminal heterostructure in Fig. 1 in the
elastic transport regime,33,34 Σ(E) = ΣL(E) + ΣR(E)
and Σ<(E) = ifL(E)ΓL(E) + ifR(E)ΓR(E), where

ΓL,R = i(ΣL,R − Σ†L,R). The Fermi-Dirac distribution
functions of electrons in the macroscopic reservoirs into
which the left and right N leads terminate are fL,R(E) =
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f(E − µL,R), where the difference between the electro- chemical potentials, µL,R = EF + eVL,R, defines the bias
voltage eVb = µL − µR.

Using the following identity∑
α=L,R

iGΓαG† = (G−G†) + i
∂

∂E

(
G
∂U

∂t
G†
)

+O
(
∂2U

∂t2

)
, (6)

the lesser GF to first order in small ∂U(t)/∂t and in the low bias Vb regime (i.e., the linear-response transport regime)
can be expressed as,

G<(t, t) '
∫
dE

2π

[G(E, t)−G†(E, t)]f(E) +
∑

α=L,R

f ′eVαGtΓαG†t + if ′Gt
∂U(t)

∂t
G†t

 , (7)

where, the first term corresponds to the density matrix of the equilibrium electrons occupying the time dependent
single particle states, while the second and third terms describe the density matrix of the excited (nonequilibrium)
electrons occupying the states close to the Fermi energy due to the bias voltage and time dependent term in the
Hamiltonian, respectively. The retarded GF in the first term in Eq. (7) expanded to first order in ∂U(t)/∂t is of the
form

G(E, t) ' Gt + i
∂Gt

∂E

∂U(t)

∂t
Gt. (8)

The lesser GF determines the time-dependent nonequilibrium density matrix

ρ(t) =
1

i
G<(t, t), (9)

from which we determine the time-dependent expectation values of physical observables, A(t) = Tr [ρ(t)Â]. In
particular, the relevant quantities for the heterostructure in Fig. 1 are the charge current

Iα(t) = e

∫
dt′

i
Tr
{
Γα(t− t′)G<(t′, t) + iΣ<

α (t− t′)[G(t, t′)−G†(t, t′)]
}

≈ e2

2π

∫
dE f ′(E)

∑
β

(Vβ − Vα)Tαβ(E)− ∆surf

2e

∑
i

∂mi

∂t
Tαi(E)

 , (10)

and the spin density

si(t) =

∫
dE

2πi
Tr
[
σi1mG<

]
≈
∫
dE

2π

∑
α

fα(E)T iα(E)− ∆surf

2

∑
j

f ′(E)
∂mj

∂t
T ij(E)

 , (11)

where α, β ∈ {L,R} and i, j ∈ {x, y, z}.

The “trace-formulas” in Eqs. (10) and (11)

Tαβ(E) = Tr
[
ΓαGtΓβG†t

]
, (12a)

Tαi(E) = Tr
[
1mσiG

†
tΓαGt

]
, (12b)

T iα(E) = Tr
[
1mσiGtΓαG†t

]
, (12c)

T ij(E) = Tr
[
1mσi(G

†
t −Gt)1mσj(Gt −G†t)

]
,(12d)

determine charge current45 due to Vb, charge current
pumped35 by the dynamics of ~m(t) in the presence of

SOC, the spin torque, and Gilbert damping tensor, re-
spectively. In the expression for the spin density we ig-
nore the antisymmetric part of T ij which corresponds to
the renormalization of the precession frequency of mag-
netization dynamics.32 Note that Tαi in Eq. (12)(b) and
its time-reversal T iα in Eq. (12)(c) reveal a reciprocal46

relation between charge pumping by magnetization dy-
namics in the presence of SOC and current-driven SOT
at each instant of time t.

The spin density in Eq. (11) enters into the LL equa-
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tion for the magnetization dynamics

∂ ~m

∂t
= −∆surf

2
~m× ~s(t). (13)

The first term in Eq. (11) generates the spin torque in
Eq. (13) which has three contributions: (i) an equilib-
rium component responsible for the interlayer exchange
interaction in the presence of a second F layer and/or
magneto-crystalline anisotropy (MCA) in the presence of
SOC; (ii) a bias-induced field-like torque modifying the
equilibrium interlayer exchange and MCA fields; and (iii)
a damping (antidamping)-like torque describing angular
momentum loss (gain) due to the flux of Fermi surface
electrons.

III. ANGULAR DEPENDENCE OF SOT
COMPONENTS

In order to understand the different contributions to
T iα(E), we decompose it into even (e) or odd (o) terms

under time-reversal Gt 7→ G†t :

T iαe (E) = [T iα(E) + Tαi(E)]/2, (14)

T iαo (E) = [T iα(E)− Tαi(E)]/2. (15)

Since
∑
α T

iα
o (E) = 0, the contribution of the odd com-

ponent to the equilibrium spin density in Eq. (11) van-
ishes identically, while its nonzero values appear only for
E within the bias window around EF . This motivates
further splitting of T iα(E) into four components for the
case of two-terminal devices

T ie,ν(E) =
T iLν (E) + T iRν (E)

2
, (16a)

T io,ν(E) =
T iLν (E)− T iRν (E)

2
, (16b)

where the first and second subscripts denote their be-
havior (even or odd) under bias reversal Vb 7→ −Vb and
time reversal, respectively. The corresponding four com-
ponents of torque are determined by

~Te,ν =

∫
dE

2π
[fL(E) + fR(E)]~τe,ν(E), (16c)

~To,ν =

∫
dE

2π
[fL(E)− fR(E)]~τo,ν(E), (16d)

where the energy-resolved torque is given by

~τµ,ν(E) = −∆surf

2
~m× ~Tµ,ν(E), (17)

and µ, ν ∈ {e, o}. The terms ~To,o and ~To,e are non-zero
only in nonequilibrium driven by Vb 6= 0, and depend on
electronic states in the bias voltage window around the
Fermi energy (or on the Fermi surface states in the linear-
response regime where integrals are avoided by multiply-

ing integrand by eVb). The term ~Te,o ≡ 0 is zero, while

~Te,e is nonzero also in equilibrium and, therefore, depends
on all occupied electronic states.

Figures 2(a-c) show the net vector field (summed over
all sites of the F overlayer) of ~τµ,ν(EF ) at zero temper-
ature for different directions of ~m on the unit sphere.
Their angular behavior reveals that: (i) ~τo,o shown in
Fig. 4(a) is the field-like SOT generated by the EE, with
predominant orientation along the ~m × ŷ-direction; (ii)
~τo,e in Fig. 4(b) is the antidamping-like SOT with pre-
dominant orientation along the ~m × (~m × ŷ)-direction;
and (iii) ~τe,e in Fig. 4(c) along the ~m × ẑ direction is
the field-like component whose angular dependence be-
haves approximately as 2(~m · ẑ)|~m× ẑ| ≡ sin(2θ) typical
for torque components generated by the MCA field.2 The
asymmetry of the angular dependence of the MCA field
component which is magnified in Fig. 4(i) due to the divi-
sion by sin(2θ) ≈ 0 is attributed to the numerical factors
in the simulation such as the finite size of the device.

The corresponding angular dependence of the net
τ io,o(i ∈ {x, y, z}), |~τo,e|, and τ ie,e along the solid trajecto-
ries shown in Figs. 2(a-c) are plotted in Figs. 2(d-f),
respectively. We find that the magnitude of the max-
imum antidamping-like SOT is about a factor of four
larger than that of the field-like SOT. Additionally, the
field-like SOT peaks when the magnetization is in-plane.
In contrast, the antidamping-like SOT peaks when the
magnetization is out of plane, which can be attributed to
the gap opening of the Dirac cone which in turn enhances
the reflection (see Sec. IV) at the lateral boundaries of
the F overlayer.

Note that the magnitude of the net SOT components
shown in Figs. 2(g-i) exhibits strong angular dependence
because of the large SOC on the TI surface similar to that
found in F/HM heterostructures when the Rashba SOC
at the interface is sufficiently strong.25,26 In particular,
the significant deviation of the angular dependence of the
antidamping-like SOT from the trivial |~m× (~m× ŷ)| be-
havior in the limit of ~m → ŷ, shown quantitatively in
Fig. 2(h), indicates its nonperturbative variation with
respect to the magnetization direction. A similar nonper-
turbative angular behavior (i.e., strong deviation from
the standard ∝ sin2 θ dependence on the precession cone
angle θ) has been found for adiabatic charge pumping
from a precessing F overlayer attached to the edge of 2D
TIs47,48 or to the surface of 3D TIs.36

IV. ANGULAR DEPENDENCE OF
TRANSMISSION FUNCTION

Figure 3 shows the transmission function TRL(EF ) in
Eq. (12a) for the heterostructure in Fig. 1 versus the ori-
entation of ~m on the unit sphere. We find that the charge
current determined by TRL(E) is smallest49 when ~m ‖ ẑ
or ~m ‖ x̂. This is due to the reflection of Dirac elec-
trons on the TI surface from the lateral boundaries of
the F overlayer. Underneath the F overlayer, the ex-
change field, −∆surf ~m · ~σ/2, induced by the magnetic
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(a)                                         (b)                                         (c)

(d)                                         (e)                                         (f)

(g)                 (h)                                         (i)
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FIG. 2. (Color online) (a)–(c) The vector field of SOT components ~τµ,ν(EF ), defined by Eq. (16), for different directions of
~m on the unit sphere. The angular behavior in (a) and (c) shows that ~τo,o and ~τe,e behave as field-like torques, while that in
(b) shows that ~τo,e behaves as antidamping-like torque. Cartesian components [(d)-(f)] and magnitude of ~τµ,ν [(g)–(i)] along
the trajectories denoted by solid lines in the corresponding panels (a)-(c). The magnitude of ~τµ,ν is divided by: |~m× ŷ| in (g);
|~m× (~m× ŷ)| in (h) and 2(~m · ẑ)|~m× ẑ| in (i).

proximity effect is superimposed on the Dirac cone sur-
face dispersion. This opens an energy gap ∆surf when
~m ‖ ẑ (or smaller gap ∆surf cos θ for mz 6= 0) at the DP
of the TI region underneath the F overlayer, which in
turn gives rise to strong electronic reflection when ~m ‖ ẑ.
For ~m ‖ x̂, there is no energy gap at the DP and the
Dirac cone effectively shifts away from the center of the
Brillouin zone due to proximity exchange field. Neverthe-
less electrons polarized by the EE along the y-axis reflect
from the magnetization pointing along the x-axis.

V. SPATIAL DEPENDENCE OF SOT
COMPONENTS AND PHYSICAL ORIGIN OF

ANTIDAMPING-LIKE SOT

Figure 4(a) demonstrates that large values of
antidamping-like SOT from Fig. 2 are spatially localized
around the transverse edges of the F overlayer, for Fermi
energy inside and outside of the surface state gap induced
by out-of-plane magnetic exchange coupling. While con-
ductance in this system is close to zero at the Dirac point,
we observe that the anti-damping torque does not de-
pend strongly on the Fermi energy. This suggests a high

efficiency of SOT per injected current for the Fermi en-
ergy close to the Dirac point. For the field-like SOT
in Fig. 4(b) we see the torque independent of the co-
ordinate in the entire F/TI contact region, as expected
from the phenomenology of the EE. In Fig. 4(c) we plot
the contribution of the Fermi energy electrons to the
FM/TI interface induced MCA field. Even though to-
tal τ ie,o(EF ) ≡ 0, its spatially-resolved value plotted in
Fig. 4(d) is nonzero which can be removed by perform-
ing a proper gauge transformation.

To understand the origin of the anti-damping SOT let
us find an expression for the average of SOT around a
fixed axes ~m = ~m0+(~m⊥ cos(φ)+ ~m0× ~m⊥ sin(φ))δθ with
small cone angle δθ. By applying a rotation operator we
can align the fixed axes along z-axis such that ~m0 = êz
and ~m⊥ = êx. In this case we have

〈T z〉φ =
∆surfδθ

2
=
∫
dφ

2π

∫
dE

2π

∑
α

fαe
iφT−,α, (18)

where, T−,α = T xα− iT yα and = refers to the imaginary
part. Expanding the GFs in Eq. 12(b) to the lowest order
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FIG. 3. (Color online) The transmission function TRL(EF )
in Eq. (12a) for two-terminal heterostructure shown in Fig. 1
at different directions of magnetization ~m on the unit sphere.
The Fermi energy is set at EF = 3.1 eV (which is 0.1 eV above
the DP).
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FIG. 4. (Color online) (a)–(d) Spatial dependence of SOT
components, τ iµ,ν(EF ) (i ∈ {x, y, z} and µ, ν ∈ {e, o}), per
unit length, for Fermi energy inside the magnetization in-
duced gap around Dirac point (EF = 3.1eV ) and outside
the gap (EF = 3.3eV ), for ~m ‖ ẑ in Fig. 1. Their physical
meaning is explained in Fig. 2. The range of x-coordinate
corresponds to the length LFx = 40a of the F overlayer, while
the results are independent of the length of the TI layer un-
derneath, LTI

x .

with respect to δθe−iφ, we obtain,

T−,α =
∆surf

4
e−iφδθTr

[
1mσ

−Gt1mσ
+GtΓαG†t (19)

+ 1mσ
−GtΓαG†t1mσ

+G†t

]
.

Plugging this expression into Eq.(18), and using the iden-

tity, Gt − G†t = i
∑
α GtΓαG†t , in linear bias voltage

regime we obtain,

〈T z〉φ =
Vb∆

2
surfδθ

2

16
Tr[ρ↑↑L 1mρ

↓↓
R 1m − ρ↑↑R 1mρ

↓↓
L 1m],(20)

where, ρα = −iG<
α = GtΓαG†t , corresponds to the

density matrix inside the F overlayer for the electrons
(holes) at the Fermi surface being injected from the lead
α (β 6= α). The electron-hole analogy can be understood
by defining the hole density matrix, iG>

α , from the iden-
tity −i(G<

α −G>
α ) = 2=(G) = ρα +

∑
β 6=α ρβ . By con-

sidering left-lead induced holes instead of right-lead in-
duced electrons, we can interpret Eq.(20) as spin-resolved
electron-hole recombination rate, where opposite spins
have opposite contributions to the antidamping-like
SOT. This picture focuses on the energy anti-dissipative
aspect of the phenomena and, since ρσσL (ρσσR ) cor-
responds to the spin-σ right (left) moving electrons,
Eq. (20) suggests that spin-momentum locking natu-
rally has a significant effect on the enhancement of
the antidamping-like SOT magnitude. In particular,
in the case of F/TI interface, the enhancement of the
antidamping-like SOT occurs when the spin-up/down is
along the y-axis (~m0 ‖ ŷ) which is the spin-polarization
direction of electrons passing through the surface of the
TI induced by the EE. Additionally, in this case the
antidamping-like SOT gets smaller away from the F/TI
transverse edge because the contribution of both of the
leads to the spin density become identical. Therefore the
anti-damping torque in this case is more localized around
the edge. This effect is more significant when the magne-
tization is out of the plane and the Fermi energy is inside
the ∆surf cos θ gap on the TI surface.

A alternative interpretation of the results can be

achieved by considering Gt − G†t = i
∑
α G†tΓαGt. In

this case, the average of the antidamping-like SOT is ex-
pressed by

〈T z〉φ =
Vb
4

Tr[T ↑↓LR − T
↑↓
RL], (21)

where the F overlayer induced spin-flip transmission ma-
trix is defined as

T ↑↓αβ = (t↑↓αβ)†t↑↓αβ , (22)

and

t↑↓αβ =
∆surfδθ

2

√
ΓαGtσ

+Gt

√
Γβ . (23)

Although Eq. (21) is obtained from perturbative con-
siderations, it looks identical to the Eq. (8) of Ref. 48
where a spin-flip reflection mechanism at the edge of the
F/2D-TI interface was recognized to be responsible for
the giant charge pumping (i.e., anti-damping torque) ob-
served in the numerical simulation.48 Eq. (23) describes a
transmission event in which electrons injected from lead
α, get spin-flipped (from up to down) by the FM and then
transmit to the lead β. The path of the electrons describ-
ing this process is shown in Fig. 1. From the k-resolved
results of the anti-damping torque (not shown here) we
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FIG. 5. (Color online) SOT-induced magnetization trajecto-

ries ~m(t) under different Vb and ~Bext = 0. Higher color inten-
sity denotes denser bundle of trajectories which start from all
possible initial conditions ~m(t = 0) on the unit sphere. Solid
curves show examples of magnetization trajectories, while the
white circles denote attractors of trajectories.

observe that while for the in-plane magnetization elec-
trons moving in the same transverse direction (same sign
for ky) on both left and right edges of the FM/TI inter-
face contribute to the torque, in the case of out-of-plane
magnetization for the left (right) edge of the interface the
local anti-damping torque is induced mostly by the elec-
trons with ky > 0 (ky < 0). This observation shows that
the SOT at the edge of the interface originates from the
edge states formed around the F overlayer region, which
are highlighted as red strips in Fig. 1.

It is worth mentioning that due to nonperturbative na-
ture of the SOT induced by the chiral electrons, the ap-
proximation presented in this section which can as well
be obtained from the self energy corresponding to the
vacuum polarization Feynman diagrams of the electron-
magnon coupled system59, does not capture the phenom-
ena accurately. This is evident in the angular dependence
of the anti-damping torque which in the current section
is considered up to second order effect (δθ2), while the
divergence-like behavior in Figs.2(h) suggest a linear de-
pendence when the magnetization direction is close to the
y-axis. This signifies the importance of the higher order
terms with respect to δθ that can not be ignored. The ap-
proximation presented in this section also suggests that
blocking the lower surface leads to the reduction of the
anti-damping torque. However, in this case an electron
experiences multiple spin-flip reflections before transmit-
ting to the next lead and in fact it turns out that the ex-
act results stay intact even if the lower surface is blocked.
This is similar to the conclusion made in Ref. 48 which
shows the redundancy of blocking the lower edge of the
2D-TI to obtain a nonzero pumped charge current from
precessing FM as proposed in Ref. 47.

Although spin-momentum locking of the surface state
of the TI resembles the 2D Rashba plane, in the case of
TI surface state the cones with opposite spin-momentum
locking reside on opposite surface sides of the TI slab
while in the case of a Rashba plane they are only sepa-
rated by the SOC energy. This means one can expect a
smaller SOT for a FM on top of a 2D Rashba plane due
to cancellation of the effects of the two circles with op-
posite spin-momentum locking, where the nonzero anti-

damping torque can originate from the energy depen-
dence of the electronic transport (i.e. electron-hole asym-
metry).

VI. LLG SIMULATIONS OF MAGNETIZATION
DYNAMICS IN THE PRESENCE OF SOT

In order to investigate ability of predicted
antidamping-like SOT to switch the magnetization
direction of a perpendicularly magnetized F overlayer in
the geometry of Fig. 1, we study magnetization dynamics
in the macrospin approximation by numerically solving
LLG equation at zero temperature supplemented by
SOT components analyzed in Sec. III

∂ ~m

∂t
=

1

2π
[~τo,e(~m,EF ) + ~τo,o(~m,EF )]eVb + γ ~Bext × ~m

+~m×
[
α(~m) · ∂ ~m

∂t

]
+ (~m · ẑ)(~m× ẑ)∆MCA. (24)

Here γ is the gyromagnetic ratio, α(~m)ij =
∆2

surfT
ij(~m,EF )/8π is the dimensionless Gilbert damp-

ing tensor, and ∆MCA = ∆0
MCA + |~Te,e|/|(~m · ẑ)(~m× ẑ)|,

where ∆0
MCA represents the intrinsic MCA energy of the

FM. We solve Eq. (24) by assuming that the Gilbert
damping is a constant (its dependence on ~m is relegated
to future studies) and ignore the dependence of ∆MCA

on ~m and Vb while retaining its out-of-plane direction.
Figure 5 shows the magnetization trajectories for all

possible initial conditions ~m(t = 0) on the unit sphere
under different Vb. At Vb = 0, the two attractors are
located as the north and south poles of the sphere. At
finite Vb, the attractors shift away from the poles along
the z-axis within the xz-plane, while additional attractor
appears on the positive (negative) y-axis under negative
(positive) Vb. Note that the applied bias voltage Vb drives
dc current and SOT proportional to it in the assumed
linear-response transport regime.

Figure 6 shows the commonly constructed3,4,15,27

phase diagram of the magnetization state in the pres-
ence of an external in-plane magnetic field Bext ‖ x̂ and
the applied bias voltage Vb (i.e., SOT ∝ Vb). The thick
arrows in each panel of Fig. 6 denote the direction of the
sweeping variable—in Fig. 6(a) [6(b)] we increase [de-
crease] Vb slowly in time, and similarly in Fig. 6(c) [6(d)]
we increase [decrease] the external magnetic field gradu-
ally. The size of hysteretic region in the center of these
diagrams, enclosed by white dashed line in Figs. 6(b) and
6(d), measures the efficiency of switching.3,4,15,27 Since
this region, where both magnetization states mz > 0 and
mz < 0 are allowed, is relatively small in Figs. 6(a) and
6(b), magnetization can be switched by low Bext

x and
small Vb (or, equivalently, small injected dc current), akin
to the phase diagrams observed in recent experiments.15

Although we considered the FM as a single domain,
the fact that the anti-damping component of the SOT
is mainly peaked around the edge of the FM/TI inter-
face suggests that it is more feasible in realistic cases to



9

FIG. 6. (Color online) Phase diagram of the magnetization
state in lateral F/TI heterostructure from Fig. 1 as a function
of an in-plane external magnetic Bext ‖ x̂ and Vb (i.e., SOT
∝ Vb). Thick arrows on each of the panels (a)–(d) show the
direction of sweeping of Bext

x or Vb parameter. The small-
ness of central hysteretic region along the Vb-axis, enclosed
by white dashed line in panel (b) and (d), shows that low
currents are required to switch magnetization from mz > 0
to mz < 0 stable states.

have the local magnetic moments at the edge of the FM
switch first and then the total magnetization switches
by the propagation of the domain walls formed at the
edge throughout the FM60,61. Therefore, a micromag-
netic simulation of the system is required to investigate
switching phenomena in large size systems which we rel-
egate to future works.

VII. CONCLUSIONS

In conclusion, by performing adiabatic expansion of
time-dependent NEGFs,33,34 we have developed a frame-
work which yields formulas for spin torque and charge

pumping as reciprocal effects to each other connected by
time-reversal, as well as Gilbert damping due to SOC. It
also introduces a novel way to separate the SOT com-
ponents, based on their behavior (even or odd) under
time and bias voltage reversal, and can be applied to
arbitrary systems dealing with classical degrees of free-
dom coupled to electrons out of equilibrium. For the
geometry28 proposed in Fig. 1, where the F overlayer
covers (either partially or fully) the top surface of the TI
layer, we predict that low charge current flowing solely
on the surface of TI will induce antidamping-like SOT on
the F overlayer via a physical mechanism that requires
spin-momentum locking on the surface of TIs—spin-flip
reflection at the lateral edges of a ferromagnetic island
introduced by magnetic proximity effect onto the TI sur-
face. This mechanism has been overlooked in efforts to
understand why SO-coupled interface alone (i.e., in the
absence of SHE current from the bulk of SO-coupled non-
ferromagnetic materials) can generate antidamping-like
SOT, where other explored mechanisms have included
spin-dependent impurity scattering at the interface,55

Berry curvature mechanism,25,26 as well as their com-
bination.56

The key feature for connecting experimentally ob-
served SOT and other related phenomena in F/TI het-
erostructures (such as spin-to-charge conversion28,36,58)
to theoretical predictions is their dependence2,24 on the
magnetization direction. The antidamping-like SOT pre-
dicted in our study exhibits complex angular dependence,
exhibiting “nonperturbative” change with the magnetiza-
tion direction in Fig. 2(h), which should make it possible
to easily differentiate it from other competing physical
mechanisms.
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