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Quantum-disordering a discrete-symmetry breaking state by condensing domain-walls can lead
to a trivial symmetric insulator state. In this work, we show that if we bind a 1D representation of
the symmetry (such as a charge) to the intersection point of several domain walls, condensing such
modified domain-walls can lead to a non-trivial symmetry-protected topological (SPT) state. This
result is obtained by showing that the modified domain-wall condensed state has a non-trivial SPT
invariant – the symmetry-twist dependent partition function. We propose two different kinds of field
theories that can describe the above mentioned SPT states. The first one is a Ginzburg-Landau-
type non-linear sigma model theory, but with an additional multi-kink domain-wall topological term.
Such theory has an anomalous Uk(1) symmetry but an anomaly-free ZkN symmetry. The second
one is a gauge theory, which is beyond Abelian Chern-Simons/BF gauge theories. We argue that
the two field theories are equivalent at low energies. After coupling to the symmetry twists, both
theories produce the desired SPT invariant.
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I. INTRODUCTION

A. SPT states and their effective field theories

Recently, it has been realized that many-body ground
states can be divided into two classes:[1] long-range en-
tangled (LRE) states and short-range entangled (SRE)
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states. The LRE states can belong to many differ-
ent phases that correspond to topologically ordered
phases.[2, 3] When there is a global symmetry (described
by a group G), even SRE states can belong to many
different phases, and these phases are called symmetry-
protected topological (SPT) states.[4–9] A large class
of bosonic SPT states whose boundary has a pure
“gauge anomaly”[10–12] can be systematically classified
via group cohomology classes Hd+1(G,R/Z).[13–15] All
these SPT states can be realized by exactly-soluble lat-
tice non-linear σ-model with the symmetry group G
as the target space plus a 2π quantized topological θ-
term. They can also be realized by exactly-soluble lat-
tice Hamiltonians that contain seven-body interactions.
In addition, bosonic SPT states whose boundary has a
“gauge gravitational mixed anomaly” can all be realized
by lattice non-linear σ-model with SO∞ ×G as the tar-
get space and with a 2π quantized topological θ-term.[20]
The potentially possible SPT invariants of the first and
the second classes of SPT states can also be studied di-
rectly via cobordism theory,[16–19] but the cobordism
theory does not give rise to a realization of the SPT
states.

Many of the SPT states protected by discrete group
symmetry can also be realized by condensing domain
walls in symmetry breaking states, if we decorate the do-
main walls with lower dimensional SPT states and/or in-
vertible topologically ordered states.[20–23] In this work,
we will realize some additional SPT states by condensing
domain walls, such that the intersection point of several
domain walls carries the quantum number of the unbro-
ken symmetries. More general SPT states protected by
discrete group symmetry can be obtained by decorating
the intersection lines (or surfaces) of several domain walls
with 1D (or 2D) SPT states (as indicated by the Kunneth
formula for the group cohomology [20, 21]).

In addition to the above systematic constructions of
all the bosonic SPT phases, people have also developed
many field theory realizations for some special simple
SPT states (under the name of bosonic topological insula-
tor (BTI)[23–31, 46]) which lead to some simple physical
pictures and mechanisms for bosonic SPT states. Due
to the incompressibility of topological phases, it is suffi-
cient to only consider quantum fluctuations of collective
modes at low energies and long wave-lengths, e.g., den-
sity and current fluctuations. Such an approach is the
so-called “hydrodynamical approach” or effective quan-
tum field theory for topological phases. The field theory
realizations of SPT states belong to this approach.

Historically, the “hydrodynamical approach” turns out
to be extremely powerful to understand the underlying
physics of topological phases. For example, the fractional
quantum Hall effect (FQHE) can be understood by the
Ginzburg-Landau Chern-Simons theory[32] or more sys-
tematically by pure Chern-Simons theory[33–39]. Those
bulk dynamic effective theories that capture the low en-
ergies and long wave-length physics are also very useful
to study phase transitions among different topological

phases, e.g, phase transitions between FQHE at different
filling fractions. Thus, the bulk dynamical Chern-Simons
action approach to FQHE phases can be viewed as the
Ginzburg-Landau action approach to symmetry breaking
phases. Therefore, it is very natural to ask what is the
“hydrodynamical approach” to SPT states.

Very recently, Chern Simons/BF theories have been
proposed [23, 40–45] as bulk dynamical effective ac-
tions to describe 2D/3D bosonic SPT states protected
by Abelian symmetry group (the so-called Abelian SPT
states). Nevertheless, it has been pointed out[42] that
the Abelian Chern Simons/BF theory approach is incom-
plete. Thererfore, a much more general theoretical frame-
work for bulk dynamical actions of SPT states is very de-
sired. In this paper, we will focus on the mechanisms and
bulk dynamical effective actions for bosonic SPT states
with finite Abelian group symmetry within group coho-
mology classification. We propose a class of new topolog-
ical actions to characterize bosonic Abelian SPT states
in arbitrary dimensions that are beyond Abelian Chern-
Simons/BF theory. We will show that such a class of
generalized topological actions serves as a complete de-
scription for bosonic Abelian SPT states in 1D and 2D. In
3D, there are still some Abelian SPT states beyond the
proposed bulk dynamical effective action; however, we
believe that the basic principle and method developed in
this paper are still applicable. We will leave these studies
for future work. It is also worthwhile to mention that in
a parallel work[46], a bulk dynamical effective action for
Abelian SPT states beyond group cohomology classifica-
tions is also proposed. In principle, the “hydrodynam-
ical approach” can also be generalized into interacting
fermionic systems.

B. Summary of results

1. A mechanism of SPT states

Let us start by summarizing the mechanism that gen-
erate SPT states at intuitive level. It is well-known that
if we disorder a discrete-symmetry breaking state by con-
densing domain walls, we can obtain a symmetry restored
state. Our approach is basically analogous to this line
of thinking, except that we generalize the approach by
including additional multi-kink topological terms to the
domain walls, see Fig.1.

There are two ways to view the multi-kink topologi-
cal terms: the space picture and the space-time picture.
In the space picture, we create the symmetry-breaking
domain walls and trap some charges (not fractionalized)
of the remained unbroken symmetry at the intersecting
points, then we proliferate and condense the domain walls
to restore the broken symmetry. On the other hand, in
the spacetime picture, we have an intersecting profile that
contributes a nontrivial phase to the path integral (see
Fig.1 (b)), and we then disorder the symmetry breaking
state with such nontrivial multi-kink topological term.
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Ginzburg-Landau NLσM Dynamical gauge theory SPT invariants:
Probed field theory
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TABLE I: First column: the Uk(1) non-linear σ-model (NLσM) realization of the ZN1 × ZN2 × ZN3 × · · · SPT states in
the χ < χc disordered limit. The additional multi-kink topological term (bi-kink for 1+1D, tri-kink for 2+1D, quad-kink for
3+1D, etc) are listed. The phase fluctuating term ∂µθ

I ≡ ∂µθIs + bIµ contain a smooth piece ∂µθ
I
s and a singular piece bIµ. Here

CIJ... is a totally anti-symmetric tensor, with: C12 = 1
(2π)

N1N2 pII
N12

, C123 = 1
(2π)22!

N1N2N3 pIII
N123

, C1234 = 1
(2π)33!

N1N2N3N4 pIV
N1234

,

etc., with N12... ≡ gcd(N1, N2, . . . ). Second column: the dynamical gauge theory realization of the ZN1 × ZN2 × ZN3 × · · ·
SPT states. The important global constraints on the fields are not specified, moreover we need to well-define the SPT path
integral more than just the SPT Lagrangian; we will discuss this issues of path integral in depth in Sec.VII. Third column: the
SPT invariants after integrating out the matter fields. Here the non-dynamical flat AI field describes the ZNI -symmetry twist,
which satisfies

∮
AIµdxµ = 0 mod 2π/NI . The main result of our work is that the field theories in the first and the second

columns are equivalent at low energies at the χ < χc disordered limit. We can derive their SPT invariants by integrating out

the matter field. The SPT invariant is of the form:
∫

ddx
iCI1I2...Id

d
εµν...σAI1µ A

I2
ν . . . A

Id
σ given in [19].

!

"

#

with multi-kink topological term 
SPT state 

Symmetry-breaking state 

Symmetry-breaking state 

Superfluid Trivial Mott Insulator 

Symmetric state 

FIG. 1: (a) Disordering a U(1)-symmetry breaking super-
fluid with an action by condensing the vortices, e.g., tuning
some coupling constant U to increase the charge repulsion.
[47–49]. (b) Disordering a discrete-symmetry breaking state
by condensing the domain walls. The gray region qualita-
tively indicates the phase transition region, such as a critical
point or a different phase. (c) In this work, we generalize the
previous process by condensing domain walls with a multi-
kink topological terms. We obtain nontrivial SPT states with
SPT invariants listed in Table I.

As we will show explicitly and quantitatively using field
theories, both processes lead to a nontrivial SPT state.

Using the above domain-wall condensation picture, we
also obtain two kinds of field theory realization of the
corresponding ZN1

× ZN2
× ZN3

× · · · SPT states (see
Table I). The first one is a Uk(1) non-linear σ-model
with a multi-kink topological term. The second one is a
dynamical gauge theory that is beyond Abelian Chern-
Simons/BF theory. Throughout the whole paper, we will
implement the Euclidean spacetime approach with the

Euclidean time tE = it as the Minkowski time Wick-
rotated by an imaginary i . We define the derivative ∂0

as ∂tE . We choose the Euclidean spacetime for the future
convenience of the lattice regularization.

In the first column of Table I, we list the Uk(1) non-
linear σ-models with the multi-kink topological terms of
the form i

dCIJK...ε
µνλ...∂µθ

I∂νθ
J∂λθ

K . . . with CIJK... a
fully anti-symmetric tensor and d the spacetime dimen-
sion. In the second column of Table I, we list the gauge
theory realization of the same ZN1

× ZN2
× ZN3

× · · ·
SPT states. Our local field theories in the first and the
second columns can produce the desired SPT invariants
dictated by group cohomology [19] (after integrating out
the dynamical fields). We list the SPT invariants in the
third column of Table I.

2. Field theory with anomalous U(1) symmetry

We stress that although the proposed Uk(1) non-linear
σ-model with the multi-kink topological terms formally
has a Uk(1) global symmetry θI(x

µ) → θI(x
µ) + ∆fI .

However, due to the presence of multi-kink topological
terms, the Uk(1) global symmetry is actually anoma-
lous, i.e. cannot be realized by an on-site-symmetry[12]
in any lattice regularization of the field theories. Or more
precisely, the Uk(1) non-linear σ-models have anoma-
lous Uk(1) symmetry if the multi-kink topological terms
are quantized as C12 = 0 mod 1

(2π) in 1+1D, C123 =

0 mod 1
(2π)22! in 2+1D, and C1234 = 0 mod 1

(2π)33! in

3+1D.
Here we use a 1 + 1D example to explain the above

statement (the higher dimensional cases can be under-
stood in a similar way). Let us consider an ideal exper-
iment by inserting a 2π flux corresponding to the first
U(1) symmetry through a closed 1D ring, the bi-kink
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topological term i
2CIJε

µν∂µθ
I∂νθ

J will induce a charge
2πC12 associate with the second U(1) symmetry. So if
the 2πCIJ is not an integer, the Uk(1) non-linear σ-model
does not even have the Uk(1) symmetry at quantum level.
When 2πCIJ ∈ Z, the U2(1) symmetry is anomalous,
since adding the flux of the first U(1) can cause a non-
conservation of the second U(1).

The above charge pumping phenomena via flux inser-
tion can happen on a boundary of a 2+1D system, where
an integer charge is created in the bulk and the total
Uk(1) charges are conserved.

However, the above charge pumping phenomena can-
not happen in a strict 1 + 1D system with on-site Uk(1)
symmetry. This is because the on-site Uk(1) symmetry
is gaugable (i.e. we can add U(1)-flux without breaking
the Uk(1) symmetry). The presence of the charge pump-
ing phenomena implies that, at quantum level, the Uk(1)
symmetry is broken by the U(1)-flux, which in turn im-
plies that the Uk(1) symmetry is anomalous (or non-on-
site). Or in other words, in a strict 1 + 1D system with
U2(1) on-site symmetry, C12 must vanish.

On the other hand, if the 2πC12 = 0 mod N1N2

N12
,

the ZN1
× ZN2

subgroup of the U2(1) correspond to
an anomaly-free symmetry (i.e. an on-site symmetry).
This is because the 2π-flux of U(1) induce a charge
2πC12 = N1N2

N12
× integer, which is essentially trivial since

ZN2
charge is only conserved mod N2. Therefore, the

ZN1
× ZN2

subgroup of the U2(1) is no anomalous.
The U2(1) non-linear σ-model describe a system with
ZN1
× ZN2

on-site symmetry, if 2πC12 = 0 mod N1N2

N12
.

Similarly, the Uk(1) non-linear σ-model have a ZN1 ×
ZN2 × ZN3 × · · · on-site symmetry only when proper
quantized values is assigned for CIJK.... For example,
in 1 + 1D, 2 + 1D and 3 + 1D, we require that C12 =

1
(2π)

N1N2 pII
N12

, C123 = 1
(2π)22!

N1N2N3 pIII
N123

and C1234 =
1

(2π)33!
N1N2N3N4 pIV

N1234
, where pI, pII, pIII ∈ Z.

C. Organization of the paper

The rest of the paper is organized as follows: In Section
II, we briefly review how to use SPT invariants to define
SPT states. In Section III, we propose a bulk dynamical
effective action to describe 1+1D bosonic Abelian SPT
states and use it to derive the corresponding SPT invari-
ants. In Section III, we briefly review the Chern-Simons
action approach for 2+1D bosonic Abelian SPT states
and discuss its limitation. In Section IV, we compute
the SPT invariants for 2+1D ZN1

×ZN2
×ZN3

SPT state
and propose a bulk dynamical effective action to describe
such 2+1D SPT states. In Section VI, we generalize our
results to 3+1D bosonic Abelian SPT states and pro-
pose a bulk dynamical action beyond BF theory. In Sec-
tion VII, edge theories for Abelian SPT states beyond
Chern-Simons/BF actions are discussed via a standard
dimension reduction scheme. Finally, there are conclu-
sion remarks and discussions for future directions.

In Appendix A, we review the derivation of disordering
the superfluid state to the Mott insulator, see the pioneer
work[47–49] and Ref.[50, 51]. In Appendix B, we provide
an explicit calculation of an effective bulk action of SPT
state. In Appendix VII, we verify that the partition func-
tion with the proposed SPT action has the GSD=1. In
Appendix C, we provide some words of caution by com-
paring our effective action of SPT state to topological
gauge theories with non-semi-simple Lie algebra. In Ap-
pendix D, we compute the edge mode GSD by counting
the degenerate zero modes.

II. A REVIEW OF SPT STATES DEFINED BY
SPT INVARIANTS

It has been shown that SPT states (within group co-
homology or beyond group cohomology classifications)
can be probed or even defined through the so-called SPT
invariants[21, 52] that may completely characterize dif-
ferent SPT states. In this section, we will review and
discuss such a point of view.

A. Universal wavefunction overlap: a complete
SPT invariant for SPT orders

We start from reviewing the results of the SPT invari-
ants in Ref. 52, using 2+1D systems as examples. It
was conjectured that the degenerate ground states |Ψα〉,
α = 1, 2, · · · , of a 2+1D topological phase on a torus have
the following properties:[53]

Sαβ e
−fSL2+o(L−1) = 〈Ψα|Ŝ|Ψβ〉

Tαβ e
−fTL2+o(L−1) = 〈Ψα|T̂ |Ψβ〉 (1)

where Ŝ is the 90◦ rotation operation (x, y) → (−y, x)

and T̂ is the Dehn twist rotation operation (x, y) →
(x+y, y). It was conjectured that while the complex num-
bers fS and fT are not universal, the complex matricies
Sαβ and Tαβ are universal. Sαβ and Tαβ can change only
via phase transitions. Thus we can use them to charac-
terize different topological orders. In fact, we believe that
Sαβ and Tαβ completely define 2+1D topological ordered
phases with gappable edges.

Can we use the similar idea to completely define 2+1D
SPT order? The wavefunction overlap for SPT state also
has the following universal structure

S e−fSL
2+o(L−1) = 〈Ψ0|Ŝ|Ψ0〉

T e−fTL
2+o(L−1) = 〈Ψ0|T̂ |Ψ0〉 (2)

where the 1× 1 unitary matrices S and T are universal.
In fact S = T = 1, due to the trivial bulk excitations in
SPT state. Thus S and T are trivial and could not be
used to distinguish different SPT states.
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FIG. 2: (a) Symmetry twist along the boundary ∂R is gen-
erated by the symmetry transformation that act only within
R. (b) The symmetry twist hx, hy on torus gives rise to the
twisted ground state |Ψ(hx,hy)〉.
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h

h
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FIG. 3: Ŝ-move is 90◦ rotation.

To obtain a non-trivial wavefunction overlap, we intro-
duce symmetry twist: a symmetric transformation gen-
erated by h ∈ G within the region R. The Hamiltonian
is not invariant under such a local symmetry transforma-
tion (see Fig. 2(a)):

H =
∑

Hijk → Hh =
∑

in R, R̄

Hijk +
∑

on ∂R

Hh
ijk (3)

where Hijk acts on sites i, j, k and Hh
ijk is on the bound-

ary of R, ∂R, if the sites i, j, k are not all on one side of
∂R. We call

∑
on ∂RH

h
ijk the h-symmetry twist.

Note that H and Hh have the same energy spectrum.
So the symmetry twist costs no energy. Let |Ψ(hx,hy)〉
be the ground state of Hhx,hy on a torus with symmetry
twists hx, hy in x- and y-directions. |Ψ(hx,hy)〉 simulates
the degenerate ground states for topologically ordered
phases. We can use |Ψ(hx,hy)〉 to construct S, T matrices
that characterize the SPT order (see Fig. 3 and Fig. 4):

Ŝ move: 〈Ψ(h−1
y ,hx)|Ŝ|Ψ(hx,hy)〉 = Shx,hy e

−fSL2+o(L−1)

T̂ move: 〈Ψ(hx,hyhx)|T̂ |Ψ(hx,hy)〉 = Thx,hy e
−fTL2+o(L−1)

Û move: 〈Ψ(hthxh
−1
t ,hthyh

−1
t )|Û(ht)|Ψ(hx,hy)〉 = Uhx,hy (ht)

Note that in addition to the Ŝ- and T̂ -moves, the SPT
invariants also contain Û -move generated by the global
symmetry transformation ht ∈ G.

The Ŝ-, T̂ -, and Û -moves shift (hx, hy)→ (h′x, h
′
y):

Ŝ : (hx, hy)→ (h′x, h
′
y) = (h−1

y , hx);

T̂ : (hx, hy)→ (h′x, h
′
y) = (hx, hyhx);

Û(ht) : (hx, hy)→ (h′x, h
′
y) = (hthxh

−1
t , hthyh

−1
t ). (4)

When (h′x, h
′
y) 6= (hx, hy), the complex phases

Shx,hy , Thx,hy , Uhx,hy (ht) are not well defined, since

h

h

x

y h y

h x

(a) (b)

h x

(c)

h y h x

FIG. 4: T̂ -move is the Dehn twist followed by a symmetry
transformation hx in the shaded area.

hy

hx

S

T

U

FIG. 5: A closed orbit in the (hx, hy) space.

they depend on the choices of the phases of
|Ψ(hx,hy)〉 and |Ψ(h′x,h

′
y)〉. However, the product

of Shx,hy , Thx,hy , Uhx,hy (ht) around a closed orbit
(hx, hy) → (h′x, h

′
y) → · · · → (hx, hy) is universal (see

Fig. 5). We believe that those products for various closed
orbits completely characterize the 2+1D SPT states.

For example, N T̂ -moves always form a closed orbit
for Abelian ZN = {h = 0, · · · , N − 1} group. For 2+1D
ZN SPT state labeled by k ∈ H3[ZN , U(1)] = ZN , it has
one SPT invariant:

ThxhN−1
y ,hy

· · ·Thxh2
y,hy

Thxhy,hyThx,hy = e2π i (hx−1)2k/N ,

hx, hy ∈ ZN . (5)

Such an SPT invariant completely characterizes the
2+1D ZN SPT state.

B. Universal wavefunction overlap in 1+1D

In 1+1D, the SPT invariants are very simple. We only
have the Û -move: 〈Ψ(hthxh

−1
t )|Û(ht)|Ψ(hx)〉 = Uhx(ht),

which generates the shift hx → hthxh
−1
t . Similar to the

2+1D cases, the product of Uhx(ht) around a closed orbit
is well defined and universal (see Fig 6). In particular,
for Abelian symmetry group, Uhx(ht) itself is universal.

hx

FIG. 6: Two closed orbits in hx space.
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FIG. 7: Space-time S1 × S1 with two symmetry twists in x, t
directions.

III. A 1+1D ZN1 × ZN2 SPT STATE AND ITS
BI-KINK BULK DYNAMICAL ACTION

A. A simple example

Now let us apply the results obtained in the last Sec-
tion to a 1+1D ZN1

× ZN2
bosonic SPT state, which is

classified by

H2[ZN1
× ZN2

, U(1)] = ZN12
= {0, 1, · · · , N12 − 1} (6)

where N12 = gcd(N1, N2). We consider an SPT state la-
beled by k ∈ ZN12 .

The group elements of ZN1 × ZN2 are labeled by
h = (h1, h2), h1 ∈ ZN1 , h

2 ∈ ZN2 . The universal wave-
function overlap (the SPT invariant Uhx(ht)) is

〈Ψ(h1
x,h

2
x)|Û(h1

t , h
2
t )|Ψ(h1

x,h
2
x)〉

= Uh1
x,h

2
x
(h1
t , h

2
t ) = e ik 2π

N12
(h1
xh

2
t−h

2
xh

1
t ), (7)

which can also be viewed as the fixed-point partition
function on space-time T 2 = S1 × S1 with symmetry
twists in x, t directions (see Fig 7):

Zfixed-point = Uh1
x,h

2
x
(h1
t , h

2
t ) = e ik 2π

N12
(h1
xh

2
t−h

2
xh

1
t ) (8)

Both wavefunction overlap and partition function pic-
tures imply the following physical meaning for the above
SPT invariant: a symmetry twist of ZN1

carries ZN2
-

charge k.

〈Ψ(h1
x,h

2
x)=(1,0)|Û(h1

t = 0, h2
t = 1)|Ψ(h1

x,h
2
x)=(1,0)〉 = e ik 2π

N12 ,

(9)

Let us discuss a concrete example for the above 1+1D
SPT invariant. We consider a spin-1 chain with the spin-
rotation symmetry Z2 × Z2 = D2 = 180◦ in Sx, Sz. The
Hamiltonian on a ring is given by (untwisted case)

HD2
=

L−1∑
i=1

(JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1)

+ JxS
x
LS

x
1 + JyS

y
LS

y
1 + JzS

z
LS

z
1 (10)

where Jx = Jy = Jz > 0. The ground state carries a

trivial quantum number eiπ
∑
Szi with eiπ

∑
Szi = 1.

If we add a twist by eiπ
∑
Sxi , the Hamiltonian becomes

Htwist
D2

=

L−1∑
i=1

(JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1)

+ JxS
x
LS

x
1 − JyS

y
LS

y
1 − JzSzLSz1 (11)

2J J Jz z z

FIG. 8: Two kinds of domain walls with the same energy, but
different Zz2 -charges, 0 (mod 2) and 1 (mod 2) respectively on

a lattice. Eq.(14)’s Hhop
1 is a hopping operator for the first

kind of domain wall. Eq.(15)’s Hhop
2 is a hopping operator for

the second kind of domain wall.

The twisted ground state carries a non-trivial quantum
number eiπ

∑
Szi with eiπ

∑
Szi = −1. Such a dependence

of the ground state quantum number eiπ
∑
Szi on the

eiπ
∑
Sxi twist is the 1+1D SPT invariant discussed above.

The above SPT invariant also suggests a mechanism for
the 1+1D ZN1

× ZN2
SPT state. We notice that the SPT

invariant implies a symmetry twist of ZN1
that carries a

“charge” of ZN2
. Since the symmetry twist of ZN1

is the
domain wall of ZN1

in a ZN1
symmetry breaking state, we

may (1) start with a ZN1
symmetry breaking state, (2)

bind k ZN2
-charge to the domain wall of ZN1

, and (3)
restore the ZN1

symmetry by proliferating the domain
walls. In this way, we obtain a 1+1D ZN1

× ZN2
SPT

state labeled by k ∈ H2[ZN1
× ZN2

, U(1)].
For example, let us consider a 1D Zx2 × Zz2 spin-1 chain

with symmetry

Zx2 : (| ↑x〉, |0x〉, | ↓x〉)→ (| ↑x〉,−|0x〉, | ↓x〉)
Zz2 : (| ↑z〉, |0z〉, | ↓z〉)→ (| ↑z〉,−|0z〉, | ↓z〉). (12)

The following Hamiltonian has the Zx2 × Zz2 symmetry

H0
Z2×Z2

=
∑
i

−JzSzi Szi+1 (13)

but its ground state breaks the Zx2 symmetry. Such a
symmetry breaking state has two kinds of domain walls
which happen to have the same energy, but different Zz2 -
charges. The two kinds of domain walls, shown in Fig.8,
have different hopping operators:

Hhop
1 =

∑
i−

K
2

(
(S+
i )2 + (S−i )2

)
=
∑
i−K

(
(Sxi )2 − (Syi )2

)
, (14)

Hhop
2 = −

∑
i
Jxy
2 (S+

i S
+
i+1 + S−i S

−
i+1)

=
∑
i Jxy(−Sxi Sxi+1 + Syi S

y
i+1). (15)

Here we used the fact that S+
i ≡ Sxi + iSyi and S−i ≡ Sxi −

iSyi . It is straightforward to see the (S+
i )2 operator hops

the first kind of domain wall of Fig.8 in one direction,
while the (S−i )2 operator hops the first kind of domain
wall of Fig.8 in the opposite direction. On the other hand,
the S+

i S
+
i+1 operator hops the second kind of domain wall

of Fig.8 in one direction, while the S−i S
−
i+1 operator hops

the second kind of domain wall of Fig.8 in the opposite
direction.

Adding a strong enough hopping operator can make
a domain wall subject to a negative energy cost, which
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restores the Zx2 symmetry by proliferating the domain

walls. We find that H0
Z2×Z2

+Hhop
1 leads to a trivial

SPT state, while H0
Z2×Z2

+Hhop
2 leads to a non-trivial

Z2 × Z2 SPT state. Via a unitary transformation, the

Hamiltonian H0
Z2×Z2

+Hhop
2 is equivalent to the Hamil-

tonian of Eq.(10) discussed above, as the Haldane phase
of a spin-1 anti-ferromagnetic Heisenberg chain.

B. Bi-kink topological term NLσM and dynamic
gauge theory

The underlying physics of the above 1+1D ZN1 ×ZN2

SPT state can also be captured by the following Higgs
action with a bi-kink topological term:

Lbi-kink =
χ

2
(∂µθ

I)2 +
i

2
CIJεµν∂µθ

I∂νθ
J

' χ

2
(∂µθ

I
s + bIµ)2 (16)

+
i

2
CIJεµν(∂µθ

I
s + bIµ)(∂νθ

J
s + bJν ) + LbMaxwell,

where I = 1, 2 and the structure constant CIJ is totally
antisymmetric with CIJ = −CJI . We assume Einstein
summations for repeated indices throughout the whole
paper. The quantum phase fluctuation can be captured
by a real scalar compact field θI ≡ θIs +θIv with a smooth
piece and a singular piece θIs and θIv. To achieve the
disordered insulator state, we can condense the vortex,
namely strongly disorder the superfluid coherent phase.
We will write ∂µθ

I
s +∂µθ

I
v ≡ ∂µθIs +bIµ. The ∂µθ

I
s captures

the smooth piece ∂µθ
I
s , and the additional bIµ captures

the singular piece ∂µθ
I
v. We note that the real scalar

fields θIs can be viewed as the phase fluctuations of ZNI
symmetry in a ZN1

×ZN2
symmetry breaking phase while

vector fields bIµ (with LbMaxwell the corresponding Maxwell
term) describe the proliferations of domain walls, which
restore the ZN1

× ZN2
symmetry. Such a Higgs action

with a bi-kink topological term will enforce a ZN1
domain

wall that carries a “charge” of ZN2
, and vice versa. It is

clear that the bi-kink topological term is just a boundary
term in the absence of gauge fields bIµ. In the following
we will show that such a bulk action with the bi-kink
topological term indeed describes the ZN1 × ZN2 SPT
physics in 1+1D.

After dropping the total derivative term, we can
rewrite the above action as:

Lbi-kink =
χ

2
(∂µθ

I
s + bIµ)2 (17)

+
i

2
CIJεµν(−2θIs ∂µb

J
ν + bIµb

J
ν ) + LbMaxwell,

Next, we introduce the Hubbard-Stratonovich fields jµI
to decouple the quadratic term as

Lbi-kink =
1

2χ
(jµI )2− iθIs ∂µj

µ
I + ibIµj

µ
I

+
i

2
CIJεµν(−2θIs ∂µb

J
ν + bIµb

J
ν ) + LbMaxwell,

Integrating out the smooth fluctuations θIs leads to the
following constraint:

∂µ(jµI + CIJεµνbJν ) = 0. (18)

The above constraints can be solved by:

jµI =
1

2π
εµν∂νa

I − CIJεµνbJν . (19)

where aI do not need to be globally defined. To disorder
the U(1) phase, we take χ � χc, we can drop out the
1

2χ (jµI )2 term as well as the Maxwell term of gauge fields

bIµ thanks to their RG irrelevancy [51]. We end up with
an effective topological action:

Ltop =
i

2π
εµνbIµ∂νa

I +
− i

2
CIJεµνbIµb

J
ν , (20)

The gauge transformation of bIµ in the above action will

induce a shift on the scalar fields aI :

aI → aI + 2πCIJgJ ; bIµ → bIµ + ∂µg
I . (21)

The above functions do not necessarily need to be globally
defined. In fact, the compactness condition of aI and bIµ
implies the closed loop or the closed surface integral has
the constraints:∮

da/(2π) ∈ Z,
∫����∫ dbI/(2π) ∈ Z. (22)

In Sec.VII, we will derive the same constraints in the
path integral level, from the constraints of U(1) charge
and the vortex number on a closed-surface.

Now, let us compute the quantization condition for
the coefficients CIJ . We note that the average of θI =
θIs +θIv is quantized as 2π/NI× integer. In the disordered
phase which restores the ZN1

×ZN2
symmetry, θI ’s have

many fluctuating kinks. Let us consider a configuration
where θ1 has a kink ∆θ1 = 2πk1/N1 on the t axis and
θ2 has a kink ∆θ2 = 2πk2/N2 on the x axis. For such
a configuration, the action from the bi-kink topological
term is given by

S =

∫
dxdt

i

2
CIJε

µν∂µθ
I∂νθ

J

= 8π2 iC12
k1k2

N1N2
. (23)

This means that the θ1 kink carries a ZN2
-charge

2πC12
k1
N1

mod N2. Since k1 = 0 ∼ k1 = N1, C12 must be
quantized:

2πC12 = 0 mod N2, 2πC12 = 0 mod N1. (24)

Thus

C12 =
pII

2π

N1N2

N12
, pII = 0, · · · , N12 − 1 (25)
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where N12 = gcd(N1, N2). Also we note that C12 has
only N12 distinct quantized values, corresponding to N12

distinct charge assignments.
The above argument for the quantization condition of

C12 due to global ZN1
× ZN2

symmetry can also be de-
rived in a rigorous way by adding a coupling term to
external background gauge field AI :

Lcoupling =
i

2π
εµνAIµ∂νa

I , (26)

As the physical meanings of A1 and A2 are ZN1
and

ZN2
symmetry twists, AI must be a flat connection with

dAI = 0 and
∮
AI = 2πnI/NI . On the other hand, since∫

dxdtLcoupling must be invariant under gauge transfor-
mation Eq.(21), C12 can not take arbitrary value. A
shot calculation suggests the same quantization condi-
tion Eq.(24).

In Sec.VII, we will define a rigorous SPT internal gauge
theory path integral, and we confirm that the GSD of our
theory is unique on a closed manifold, GSD=1,in agree-
ment with SPT state. We will also derive the SPT in-
variant in Ref.[19] by coupling the internal gauge theory
to semi-classical probed field A. In this way, it becomes
manifested that C12 can only take N12 distinguishable
value derived in Eq.(24). In the following, we generalize
the above results to higher dimensions.

IV. A REVIEW OF CHERN-SIMONS ACTION
APPROACH TO 2 + 1D ABELIAN SPT STATES

In this section, we will start with a brief review on
the Chern-Simons action approach for 2+1D Abelian
SPT states. Then we explain the physical meaning of
the Chern-Simons action approach and discuss its limi-
tations.

It is well known that a vortex condensation can turn
a boson superfluid into a trivial bosonic insulator. A
bosonic U(1) SPT state is also a bosonic insulator, but
a non-trivial one. It turns out that a condensation of
vortex-charge bound state can turn a boson superfluid
into a non-trivial U(1) SPT state.

To show this, let us consider a boson superfluid for
one specie of bosons, which can be described by an XY
model:

LXY =
1

2
(∂µθ)

2, (27)

If the vortex of the boson condenses, θ in the XY model
is no longer a smooth function of space-time. We can
introduce the singular part by replacing ∂µθ by ∂µθs +bµ,
where the field strength of gauge field bµ corresponds to

the vortex current density J̃µ = 1
2π ε

µνλ∂νbλ.
The charge of gauge field bµ is the number of vor-

tices minus the number of anti-vortices and is quantized.
In the vortex condensed phase, the phase fluctuation of
the vortex condensate can be described by another XY
model, which is dual to the Maxwell term of the gauge

field bµ. Now the boson superfluid is described by the
following Lagrangian

LHiggs =
1

2
[(∂µθs + bµ)2 +

1

4π2
F̃µν F̃

µν ], (28)

where F̃µν = ∂µbν − ∂νbµ and we have normalized with
v = 1, χ = 1.

We can introduce a Hubbard-Stratonovich field jµ to
decouple the quadratic term as

LHiggs =
1

2
(jµ)2 − iθs∂µj

µ + ibµj
µ +

1

8π2
F̃µν F̃

µν .

Integrating out the θs field results in a constraint ∂µj
µ =

0. From this constraint, we can write jµ = 1
2π ε

µνλ∂νaλ.
The charge of aµ is equal to the boson number and is
quantized. With these results, the path integral becomes

LBF =
i

2π
εµνλbµ∂νaλ +

1

8π2
[F̃µν F̃

µν + FµνF
µν ],(29)

where Fµν = ∂µaν − ∂νaµ. Note that the boson cur-
rent jbµ = 1

2π ε
µνλ∂νbλ, while the vortex current jvµ =

1
2π ε

µνλ∂νaλ.
The above can be generalized to the case with k-species

of bosons with Uk(1) symmetry. The bosonic insulator
induced by the vortex condensation is described by the
following Chern-Simons action:

LCS =
i

4π
εµνλK0

IJa
I
µ∂νa

J
λ ; I = 1, 2, · · · , 2k (30)

with

K0
IJ =

(
0 1
1 0

)
⊗ Ik×k (31)

where a2k
µ ∼ aµ and a2k−1

µ ∼ bµ. Since |det[K]| = 1, the
above Chern-Simons action has a unique ground state 1
on any closed manifold. The chiral central charge for the
edge states is given by the signature of K which is zero.
So the bosonic insulator has a trivial topological order.

However, the bosonic insulator may have a non-trivial
Uk(1) SPT order. To see this, we turn on the external
Uk(1) gauge field Aαµ to reveal the Uk(1) symmetry of
the theory:

Lcoupling =
i

2π
εµνλqIαA

α
µ∂νa

I
λ; α = 1, 2, · · · , k (32)

Here qα are integer-value charge vectors. q2l−1
α is the

Aα-charge carried by the lth-species of bosons, and q2β
α is

the Aα-charge carried by the vortex of the lth-species of
bosons. We see that charge vectors qα reveal the infor-
mation on what kinds of vortex-charge bound states are
condensing to produce the bosonic insulator. Different
vortex-charge bound states (i.e. different charge vectors)
will lead to different Uk(1) SPT orders.

The full theory is given by L = LCS + Lcoupling, Af-
ter integrating out internal gauge fields aIµ (the matter



9

fields), we obtain an effective theory for the external fields
Aα:

Leff = − i

4π
εµνλAαµq

I
αK

0
IJq

J
β∂νA

β
λ. (33)

By considering equivalent class of response K matrix

K̃αβ ≡ qIαK
0
IJq

J
β , we can “classify” 2+1D Uk(1) SPT

states described by the Chern-Simons theory Eq.(30).
We can also break the Uk(1) symmetry down to ZN1 ×
· · · × ZNk symmetry and obtain a “classification” of
ZN1

× · · · × ZNk SPT states in 2+1D. Since ZNα group
can always be embedded into Uk(1) group, it is not a sur-
prise that the ZN1

×· · ·×ZNk SPT state can be described
by the same Chern-Simons action.

However, sinceH3[ZN1
×· · ·×ZNk , U(1)] = ⊕iZNi⊕i<j

ZNij ⊕i<j<k ZNijk( Nijk = gcd(Ni, Nj , Nk)), the above
classification turns out to be incomplete and it can only
describe a subclass of Abelian SPT states labeled by
⊕iZNi ⊕i<j ZNij , namely, the type I and type II SPT
phases. In the following, we will develop an effective
field theory description for type-III SPT order in 2+1D,
which is labeled by ⊕i<j<kZNijk .

V. A 2+1D ZN1 × ZN2 × ZN3 SPT STATE AND ITS
TRI-KINK BULK DYNAMICAL ACTION

A. A 2+1D ZN1 × ZN2 × ZN3 SPT state

Without loss of generality, it is sufficient to discuss
a 2+1D ZN1

× ZN2
× ZN3

bosonic SPT state, which is
classified by

H3[ZN1 × ZN2 × ZN3 , U(1)] (34)

= ZN1
× ZN2

⊕ ZN3
⊕ ZN12

⊕ ZN23
⊕ ZN13

⊕ ZN123

We consider a type III SPT state labeled by k ∈ ZN123

The group elemenets of ZN1
× ZN2

× ZN3
are labeled

by h = (h1, h2, h3), h1 ∈ ZN1
, h2 ∈ ZN2

, h3 ∈ ZN3
. The

SPT invariant Uhx,hy (ht) for the above SPT state is the

fixed-point partition function on space-time T 3 = (S1)3

with symmetry twists in x, y, t directions:

Zfixed-point = Uhx,hy (ht) = e ik 2π
N123

εabch
a
xh
b
yh
c
t (35)

The physical meaning of the SPT invariant is the follow-
ing: Consider the ground state of the Hamiltonian with
symmetry twists in ZN1

and ZN2
, the intersection of the

symmetry twist in ZN1
and the symmetry twist in ZN2

carries ZN3
-charge k.

The above SPT invariant also allows us to calculate the
dimension reduction of the 2+1D SPT state to a 1+1D
SPT state: We view the space-time as T 3 = T 2

x,t × S1
y ,

and put ZN3
symmetry twist (h1

y, h
2
y, h

3
y) = (0, 0, 1) in the

small circle S1
y . The 2+1D partition function reduces to

a 1+1D partition function

Zfixed-point = e ik2π(h1
xh

2
t−h

2
xh

1
t ) (36)

which is the SPT invariant of a 1+1D SPT state. We find
that the resulting 1+1D SPT state is the one labeled by
k ∈ H2[ZN1

× ZN2
, U(1)] = ZN12

. The boundary of such
a 1+1D SPT state carries degenerated states that form a
projective representation of ZN1 × ZN2 . This leads to an
experimental probe of the ZN1 × ZN2 × ZN3 SPT state:
a ZN3 “vortex” (end of ZN3 symmetry twist) carries de-
generated states that form a projective representation of
ZN1 × ZN2 .

The result of the above dimension reduction can also
be viewed as each ZN3 twist (which is a 1D curve in
2D space) carries a 1+1D ZN1

× ZN2
SPT state labeled

by k ∈ H2[ZN1
× ZN2

,U(1)]. This picture leads to an-
other mechanism for the 2+1D ZN1

× ZN2
× ZN3

SPT
state: (1) start with a ZN3

symmetry breaking state, (2)
bind a 1+1D ZN1

× ZN2
SPT state to the domain wall

of ZN3
, and (3) restore the ZN3

symmetry by prolifer-
ating the domain walls. In this way, we obtain a 2+1D
ZN1
× ZN2

× ZN3
SPT state labeled by k ∈ ZN123

.
The 2+1D SPT invariant Eq. (35) on space-time

T 3 = (S1)3 can also be expressed as a topological term
of probe fields AI :

Ztwist
fixed-point(T

3) = e
ipIII

N1N2N3
(2π)2N123

∫
A1∧A2∧A3

, dAI = 0,

(37)

with an integer pIII. Again, since AI describes symme-
try twists on the boundary, it must be flat connection
with dAI = 0.

∫
A1 ∧A2 ∧A3 is also gauge invariant

if dAI = 0. The field theory representation of the SPT
invariants Eq. (37), should be valid for any space-time
topologies. In the following we will show how to derive
such a topological response from a bulk dynamical effec-
tive action.

B. Tri-kink topological term NLσM

To describe the so-called type-III ZN1×ZN2×ZN3 SPT
orders in 2 + 1D, we consider the following effective ac-
tion for three species of bosons with vortex condensation.
The action contains a new tri-kink topological term – the
CIJK-term (the following is a generalization of Eq. (28)):

Ltri-kink =
1

2
(∂µθ

I)2 +
i

3
CIJKε

µνλ∂µθ
I∂νθ

J∂λθ
K

' 1

2
(∂µθ

I
s + bIµ)2 + LbMaxwell (38)

+
i

3
CIJKε

µνλ(∂µθ
I
s + bIµ)(∂νθ

J
s + bJν )(∂λθ

K
s + bKλ )

where I = 1, 2, 3 and the structure constant CIJK is to-
tally antisymmetric with CIJK = −CJIK = −CIKJ . It
is clear that the tri-kink topological term is just a bound-
ary term in the absence of gauge fields bIµ.

To understand the physical meaning of the tri-kink
topological term, we first note that the type-III SPT or-
ders in 2+1D only exist for a finite group ZN1

×ZN2
×ZN3

.
So we need to break the U(1)3 symmetry down to
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ZN1
× ZN2

× ZN3
symmetry. The average of θI is quan-

tized as 2π/NI× integer. In the disordered phase which
restores the ZN1

×ZN2
×ZN3

symmetry, θI ’s have many
fluctuating kinks along space-time surfaces. Let us con-
sider a configuration in the space-time where θ1 has a
kink ∆θ1 = 2πk1/N1 on the y-t plane, θ2 has a kink
∆θ2 = 2πk2/N2 on the t-x plane, and θ3 has a kink
∆θ3 = 2πk3/N3 on the x-y plane. For such a configu-
ration (bIµ = 0), the action from the tri-kink topological
term is given by

S =

∫
dxdydt

i

3
CIJKε

µνλ∂µθ
I∂νθ

J∂λθ
K

= 16π3 iC123
k1k2k3

N1N2N3
. (39)

This means that the intersection of the kinks in θ1 and
θ2 carries a ZN3

-charge 8π2C123
k1k2
N1N2

mod N3. Since
k1 = 0 ∼ k1 = N1, C123 must be quantized:

8π2C123
k2

N2
= 0 mod N3, 8π2C123

k1

N1
= 0 mod N3.

(40)

Thus

C123 =
pIII

(2π)22!

N1N2N3

N123
, pIII = 0, · · · , N123 − 1

(41)

where N123 = gcd(N1, N2, N3). Also we note that C123

has only N123 distinct quantized values, corresponding to
N123 distinct charge assignments.

Now the physical meaning of the tri-kink topological
term is clear: It is well known that the fluctuations of the
kinks will turn a ZN1 × ZN2 × ZN3 symmetry-breaking
state into a ZN1 × ZN2 × ZN3 symmetric state with a
trivial SPT order. However, if we bound a ZN3-charge
to the intersection of the kinks in θ1 and θ2 etc , the
resulting ZN1 × ZN2 × ZN3 symmetric state will have a
non-trivial SPT order, as we will show below. In this way,
we can produce N123 distinct type-III ZN1 × ZN2 × ZN3

SPT orders, consistent with the group cohomology result.

By integrating out the smooth fluctuations θI and in-
troducing auxiliary gauge fields aIλ and λIµ, we can derive
the following bulk dynamical action:

Ltri-kink =
i

2π
εµνλλIµ∂νa

I
λ +

i

3
CIJKε

µνλ
(
λIµλ

J
νλ

K
λ + (bIµ − λIµ)(bJν − λJν )(bKλ − λKλ )

)
+

1

2
(bIµ − λIµ)2 + LbMaxwell. (42)

The derivation from Eq.(38) to Eq.(42) is preserved in Appendix B with details. Interestingly, the field strength
of gauge field aIµ is formally akin to a non-Abelian gauge field and its infinitesimal gauge transformation should be
modified as:

aIµ → aIµ + ∂µf
I − 4πCIJK

(
gJλKµ +

1

2
gJ∂µg

K

)
; bIµ → bIµ + ∂µg

I ; λIµ → λIµ + ∂µg
I . (43)

C. Saddle point approximation and internal gauge
theory

If we assume the field bIµ has a weak fluctuation, we

can apply the saddle point approximation for bIµ. The
saddle point equation reads:

CIJKε
µνλ(bJν − λJν )(bKλ − λKλ ) + (bIµ − λIµ)+

higher order terms = 0, (44)

clearly bIµ = λIµ is a stable saddle point. Since the λ
field is a Lagrangian multiplier and b is a more-restricted
U(1) field, we should replace λ by b. At the level of this
approximation, we can simplify the bulk effective action
by:

Leff =
iεµνλ

2π
bIµ∂νa

I
λ +

iCIJK
3

εµνλbIµb
J
ν b
K
λ , (45)

and with the gauge redundancy given by:

bIµ → bIµ + ∂µg
I ;

aIµ → aIµ + ∂µf
I − 4πCIJK

(
gJbKµ +

1

2
gJ∂µg

K

)
. (46)

We also have the global constraints:∫����∫ da/(2π) ∈ Z,
∫����∫ dbI/(2π) ∈ Z (47)

Similar to the 1 + 1D case, there is a rigorous way to
compute the quantization of coefficients C123 protected
by global ZN1

× ZN2
× ZN3

symmetry. Let us add a
coupling term to the external gauge field AI .

Lcoupling = iAIµj
µ
I =

i

2π
εµνλAIµ∂νa

I
λ, (48)

Again, AI are ZNI symmetry twists, thus AI must be
a flat connection with dAI = 0 and

∮
AI = 2πnI/NI .



11

Similar to the 1 + 1D case, since
∫

dxdydtLcoupling must
be invariant under gauge transformation Eq.(46), C123

can not take arbitrary value, and a short calculation gives
rise to exactly the same condition Eq.(40).

It turns out that the above gauge transformation cor-
responds to a non-semisimple Lie algebra of symmetry.
We will discuss a generic class of such Lie algebra, called
the symmetric-self dual Lie algebra in Appendix C. In
Sec.VII, we will define a rigorous SPT internal gauge the-
ory path integral, and we confirm that the GSD of our
theory is unique on a closed manifold, GSD=1, just like
the SPT state. We will also derive the SPT invariant
by coupling the internal gauge theory to semi-classical
probed field A claimed in Ref.[19], which suggests that
Eq.(41) indeed gives rise to N123 distinguishable SPT
phases.

VI. A 3+1D GENERALIZATION

The above tri-kink topological term can be general-
ized into higher dimensions as well, such as a quad-kink

topological action in 3+1D:

Lq-kink =
1

2
(∂µθ

I)2 +
i

4
CIJKLε

µνλσ∂µθ
I∂νθ

J∂λθ
K∂σθ

L

' 1

2
(∂µθ

I
s + bIµ)2 +

i

4
CIJKLε

µνλσ(∂µθ
I
s + bIµ)

·(∂νθJs + bJν )(∂λθ
K
s + bKλ )(∂σθ

L
s + bLσ ). (49)

The quantization condition on CIJKL can be worked
out in a similar way, and finally we obtain C1234 =
pIV

(2π)33!
N1N2N3N4

N1234
, where pIV is an integer on pIV =

0, · · · , N1234 − 1.

For example, in 3 + 1D, we can use the following
quartic-kink term to describe the so-called type-IV SPT
state. Parallel to our previous derivation in Sec.V B, we
can derive the SPT bulk dynamical action:

Lq-kink =
i

2π
εµνλρλIµ∂νa

I
λρ−

i

4
CIJKLε

µνλρ
(
λIµλ

J
νλ

K
λ λ

L
ρ −(bIµ−λIµ)(bJν−λJν )(bKλ −λKλ )(bLρ −λLρ )

)
+

1

2
(bIµ−λIµ)2+LbMaxwell

(50)
and its gauge transformation:

aIµν → aIµν + ∂µf
I
ν − ∂νf Iµ+24πCIJKLg

JλKµ λ
L
ν+ . . .; bIµ → bIµ + ∂µg

I + . . . ; λIµ → λIµ + ∂µg
I + . . . . (51)

Here LbMaxwell terms contain non-topological Maxwell
term. If we further apply the saddle-point approxima-
tion, we obtain:

Leff =
iεµνρσ

4π
bIµ∂νa

I
σρ−

iCIJKL
4

εµνσρbIµb
J
ν b
K
σ b

L
ρ . (52)

The corresponding infinitesimal gauge transformation(we
only keep the leading order term here and use . . . to
represent higher order terms) of arbitrary functions f
and g reads:

aIµν → aIµν + ∂µf
I
ν − ∂νf Iµ+24πCIJKLg

JbKµ b
L
ν+ . . .,

bIµ → bIµ + ∂µg
I+ . . .. (53)

Here gI and bI are globally defined, but f I is not globally
defined. The analogous global constraint can be derived:∫����∫∫ da/(2π) ∈ Z,

∫����∫ dbI/(2π) ∈ Z. (54)

VII. PARTITION FUNCTION, GSD AND SPT
INVARIANTS COMPUTED FROM THE SPT

INTERNAL GAUGE THEORY

Here we will analytically show the path integral defi-
nition of internal gauge field theory, Eq.(20) for 1+1D,
Eq.(45) for 2+1D, Eq.(52) for 3+1D. In particular, we
will show three key issues:
•(i) Define the partition function Z using field theory
path integral.
•(ii) Derive the SPT invariants of semi-classical flat
probed field theory in Ref.[19] by coupling the SPT in-
ternal gauge theory to probed fields A.
•(iii) The internal gauge theory on any compact closed
spatial manifold has a unique ground state, namely
GSD=1. This means that the absolute value of the phase
space volume ratio between the case with topological
term and the case without topological term: | Z

Z(p=0) | = 1.

This procedure also applies to the SPT internal gauge
field theory in any other dimensions. We know that
the SPT state has no intrinsic topological order and the
SPT’s GSD=1 on any compact closed spatial manifold.
Therefore, this GSD computation serves as the consis-
tency check that the internal field theory shows a gapped
phase with nontrivial symmetry transformation — the
internal gauge field theory realizes SPT state.

We emphasize that knowing the field theory action is
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not enough to fully understand the SPT field theory. We
stress that defining the partition function Z using field
theory path integral is necessary to fully understand the
SPT field theory. Below we especially remark the global

constraints of fields in order to define the SPT path inte-
gral. The partition function in terms of the path integral
form with a total spacetime dimension d is

Z =

∫
[Db][Da] exp

( ∫ ( i

2π
bI ∧ daI +

i(−1)d−1CIJK...
d

bI ∧ bJ ∧ bK ∧ . . .
))
, (55)

here I, J,K, · · · ∈ {1, 2, 3, . . . , d}. Here b is 1-form, a
is (d − 2)-form, and f = da is (d − 1)-form. In the
presence of symmetry-twist semi-classical background 1-

form gauge field A, we can write the partition function
Z as

Z =

∫
[Db][Da] exp

( ∫ ( i

2π
(bI −AI) ∧ daI +

i(−1)d−1CIJK...
d

bI ∧ bJ ∧ bK ∧ . . .
))

=

∫
[Db][Df ] exp

( ∫ ( i

2π
(bI −AI) ∧ f I +

i(−1)d−1CIJK...
d

bI ∧ bJ ∧ bK ∧ . . .
))
, (56)

with the field strength of charges f ≡ da. Importantly,
we view bI and aI all dynamical internal gauge fields, so
they are involved in the path integral measure.

Now let us define this path integral properly. Let us
impose the constraints for this field function in the path
integral, based on the dual equivalent theory using the
non-linear σ-model. We recall that the a is related to
the current density j specified by the U(1) or ZN charge,
where we have the total number of charges quantized:∫����∫ ∗j =

∫����∫ da/(2π) =

∫����∫ f/(2π) ∈ Z, (57)

The current density ∗j is a (d− 1)-form, thus

∫����∫ of da

represents the surface integral of a (d − 1)-closed mani-
fold, such as a 1-surface for 1+1D spacetime, 2-surface
for 2+1D spacetime.

Now we integrate over the field variable f for the parti-
tion function Eq.(56), which procedure analogous to the
discrete Fourier summation yields a constraint:∑

n∈Z

e iϕn = δ(ϕ mod 2π). (58)

For
∫

[Df ]e
∫

i
2π (bI−AI)∧fI with

∫����∫ f/(2π) ∈ Z or ZN , we

obtain an analogous constraint on a 1D loop:

∮
(bI −AI) = 0 mod 2π (59)

⇒
∮
bI =

∮
AI mod 2π =

2πnI
NI

mod 2π. (60)

The first line constraint is true for both U(1) charge
and ZN charge. The second line constraint Eq.(60) with

nI ∈ Z is an additional constrain if

∫����∫ f/(2π) ∈ ZNI

for our case of discrete ZN charge for SPT state with
ZN -symmetry. We can still view b-field sa a U(1) con-
nection but with a constraint from the ZN symmetry-
twist probed-field A. This means that the internal gauge
field b is subject to the global constraint from the semi-
classical symmetry-twist probed field A. After integrat-
ing out the f , the partition function Eq.(56) subject to
the global constraint Eq.(60) of the symmetry-twist fields
A becomes

Z =

∫
[Db] exp

( ∫ i(−1)d−1CI1I2...Id
d

bI1 ∧ bI2 ∧ · · · ∧ bId
)

= exp
( ∫ ( i(−1)d−1CI1I2...Id

d
AI1 ∧AI2 ∧ · · · ∧AId

))
. (61)

Thus so far by using SPT internal gauge theory path integral, we have recovered the SPT invariant of Ref.[19] claimed
in the item (ii).
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Next, without losing generality, let us take 2+1D SPT as
an example, with an explicit CIJK = 1

(2π)22!
N1N2N3 pIII

N123
.

Let us do the explicit partition function calculation on
the two topologies, a sphere and a torus respectively,
by comparing the nontrivial class Z to the trivial class
Z(pIII = 0). For each calculation below we will fix a par-
ticular set of nI for the global constraint Eq.(60).

The 1st topology: On a spatial sphere S2 with a
time loop S1, there is only a non-contractible loop along
the time direction. So there is only a nonzero nI for the
global constraints in Eq.(60), and other nJ must be zeros.
We have:

Z

Z(pIII = 0)
=

exp
(

i 2πpIII
N123

0 · 0 · nI
)

1
= 1. (62)

The 2nd topology: On a spacetime T 3 torus, with-
out losing generality, let us assume, A1, A2, A3 along
x, y, t-directions have nontrivial global constraints with
some generic n1, n2 and n3. For example, analogous to
Sec.V B’s setup, we can assume dxµ = dx, dxν = dy,
dxρ = dt.

Z

Z(pIII = 0)
=

exp
(

ipIII
2π·n1n2n3

N123

)
1

= e ipIII
2π·n1n2n3

N123 .

(63)
Since for both on a sphere and on a torus, the ab-

solute value of the above, | Z
Z(pIII=0) |, measures the GSD

ratio between the nontrivial phases and the trivial insula-
tor. Since the trivial insulator has GSD=1 here, all other
phases have GSD=1, so the pIII 6= 0 phase is a generic
SPT state.

We thus confirm that the path integral Eq.(55) with
dynamical variables describes nontrivial type III SPT
states in 2+1D. The same procedure can be generalized
to other dimensions, such as Eq.(20) as SPT states in
1+1D and Eq.(52) as SPT states in 3+1D. The GSD for
these theories defined by the partition function is 1. The
procedure works in more general closed topology, we thus
show the claim in the item (iii).

One further extension of our work is to study the dual-
ity [10] between SPT (which is non-topologically ordered)
and dynamical topological gauge theory (which is topo-
logically ordered). More precisely, we can start from the
SPT internal gauge theory path integral of Eq.(56) and
then dynamically gauge the theory to a dynamical topo-
logical gauge theory equivalent to the Dijkgraaf-Witten
theory [55]. In Appendix.IX, we will outline such a proce-
dure using field theory path integral, and we will propose
the continuous dynamical topological gauge theory dual to
the Dijkgraaf-Witten theory with a discrete gauge group.

VIII. EDGE THEORY

The bulk effective field theory can also describe inter-
esting edge physics. For the 1+1D case, by integrating

out the Lagrange multiplier fields aI in Eq.(20), the cor-
responding edge theory takes a very simple form:

L0
edge =

i

2
CIJϕ

I∂0ϕ
J , (64)

with scalar fields ϕI define the gauge transformation
ϕI → ϕI − gI to cancel the gauge transformation of
bI → bI + dgI . which is nothing but a quantized topo-
logical term for a quantum mechanical system with de-
generate ground states. Such a Berry phase implies the
following quantization condition:

[ϕ1, ϕ2] =
i

C12
=

2π iN12

pIIN1N2
=

2π i

pIIN12
, (65)

Here N12 is defined as the least common multiplier (lcm)
where N12 ≡ lcm(N1, N2) = N1N2/N12. Due to the
compactification and the quantization constraint, shown
in Appendix D 3, the symmetry generators are Sϕ1 =

e iN1ϕ
1 pII
N12 and Sϕ2 = e iN2ϕ

2 pII
N12 . It is straightforward to

check that SϕI (
∫

dtL0
edge)S−1

ϕI
= (
∫

dtL0
edge)+2π·integer,

so the partition function Z =
∫
Dϕ1Dϕ2e−

∫
dtL0

edge is
invariant under the symmetry transformation SϕI . We
find that the symmetry is realized in a projective repre-
sentation manner on the 0D edge, because the symmetry
generators do not commute:

Sϕ1Sϕ2 = e−
2π ipII
N12 Sϕ2Sϕ1 . (66)

Here pII is defined as a pII (mod N12) variable. If
gcd(pII, N12) = 1, it is the ZN12

Heisenberg algebra and
requires a N12-dimensional representation for the sym-
metry generators Sϕ1 and Sϕ2 . This implies the 0+1D
edge mode of the ground state has a N12-fold degeneracy,
consistent with the edge mode physics analysis via the
dimensional reduction approach in Ref.[45]. In general,
even if gcd(pII, N12) 6= 1, we have a generic N12

gcd(pII,N12) -

dimensional representation for the symmetry generators,
thus the zero mode degeneracy is

GSD =
N12

gcd(pII, N12)
. (67)

For the 2+1D bulk system with its 1+1D edge theory,
we have an analogous derivation as follows. Integrating
out aµ leads to the constraint:

εµνλ∂µλ
I
ν = 0, (68)

The constraint can be solved by requiring:

λIν = ∂νϕ
I , (69)

We see that Leff is nothing but a total derivative:

Leff =
i

3
CIJKε

µνλ∂µϕ
I∂νϕ

J∂λϕ
K , (70)
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which actually describes a 1 + 1D edge with effective ac-
tion:

L1
edge =

i

3
CIJKε

µνϕI∂µϕ
J∂νϕ

K . (71)

The higher dimensional generalization is also straight-
forward, e.g., the type-IV SPT in 3+1D can have a 2+1D
edge theory described by:

L2
edge =

i

4
CIJKLε

µνρϕI∂µϕ
J∂νϕ

K∂ρϕ
L. (72)

The gapless nature of these boundary terms can be
proved via dimension reduction to the 1+1D case we dis-
cussed at the beginning of this section. Finally, we note
that if we view ϕI as scaling dimension zero fields, L1

edge

and L2
edge can be regarded as a fractionalized version of

O(3) and O(4) topological theta terms. For future work,
it would be of great interest to understand the underlying
conformal field theory described by these fractionalized
theta terms.

IX. TOPOLOGICAL FIELD THEORY FOR
DIJKGRAAF-WITTEN LATTICE MODEL

In Sec.VII, we had established the SPT field theory
by defining the SPT path integral. It is known that

there exists a duality [10] between SPT (which is non-
topologically ordered) and dynamical topological gauge
theory (which is topologically ordered). More precisely,
we can start from the SPT internal gauge theory path
integral of Eq.(56) and then dynamically gauge the the-
ory by coupling the SPT matter field to external probed
fields A, and make the A dynamical gauge fields. This
procedure of gauging SPT with a finite symmetry group
in principle yields a dynamical topological gauge theory
equivalent to the Dijkgraaf-Witten theory[55]. Here we
describe such a procedure using field theory path inte-
gral, and we propose some continuous dynamical topo-
logical gauge theory dual to the Dijkgraaf-Witten theory
with a discrete gauge group.

Naively, one approach is starting from the path integral
Eq.(56), if we promote the semi-classical probed fieldA to
a dynamical field by including the path integral measure
[DA], we obtain:

Z =

∫
[Db][Da][DA] exp

( ∫ ( i

2π
(bI −AI) ∧ daI +

iCIJK...
N

bI ∧ bJ ∧ bK ∧ . . .
))

(73)

One can see that if A is still subject to some global
constraint: ∮

AI mod 2π =
2πnI
NI

mod 2π. (74)

but now nI ∈ ZNI needs not to be fixed. The dynami-
cal gauge theory of A would sum over all possible nI . If
we compute the GSD of this field theory on a spacetime
manifold, then we essentially reproduce the same calcula-
tion using the group cohomology cocycle while summing
over all possible group elements nI ∈ ZNI . Eq.(73) can
produce the same physical observables such as GSD of
Dijkgraaf-Witten theory. This suggests that Eq.(73) can
be an equivalent description of Dijkgraaf-Witten theory.

Another approach to obtain the dynamical gauge the-
ory is through the minimal coupling the internal gauge
field a to the external gauge field A, and then integrating
out all the internal gauge fields a and b. We describe it
below.

2+1D: Now, we are ready to discuss the bulk response
theory. The external probe gauge field AIµ will couple to

the internal charge current in a standard way:

Lcoupling = iAIµj
µ
I =

i

2π
εµνλAIµ∂νa

I
λ, (75)

However, since AIµ is in the Higgs phase with ZNI charge
condensation, we need to introduce a BF term[42] for
response guage field AIµ as well:

iNI
2π

εµνλBIµ∂µA
I
ν , (76)

Actually such a term is crucial for maintaining the gauge
invariance for the total action.(It is easy to check that
Lcoupling is not gauge invariant under the gauge trans-
formation of aIµ and we need to shift BIµ to restore the
gauge invariance.) Finally, by integrating out the inter-
nal gauge field aIµ and bIµ, we end up with an effective

action iNI
2π ε

µνλBIµ∂µA
I
ν + i

3CIJKε
µνλAIµA

J
νA

K
λ :

Lresponse =
iNI
2π

εµνλBIµ∂µA
I
ν +

ipIIIN1N2N3

(2π)2N123
εµνλA1

µA
2
νA

3
λ.

(77)
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If we view AIµ as background gauge fields describing the
symmetry twists on the boundary, the above action is
equivalent to the SPT invariants Eq. (37). However,
if we view both AIµ and BIµ as dynamical gauge fields,
the above action potentially describes non-Abelian Berry
phases, though the original global symmetry is Abelian
and all the gauge fields are Abelian in its own sec-
tors. The whole Lie algebra becomes non-Abelian fea-
ture due to the central extension Eq.(C4). It will be in-
teresting to verify whether the fully-dynamical topolog-
ical gauge theory is equivalent to the Dijkgraaf-Witten
gauge theory[55]. Our word of caution is that the non-
semi-simple Lie algebra detailed in Appendix C suggests
a more conservative side of this claim. It is also likely
that method beyond the-saddle-point approximation is
required to capture the global constraints and missing
pieces that we may omit in Eqs.(42) and (45).

3+1D: Similarly, we can discuss the bulk response the-
ory. The external probe gauge field AIµ will couple to the
internal charge current in a standard way:

Lcoupling = iAIµj
µ
I =

i

4π
εµνρσAIµ∂νa

I
ρσ, (78)

Similar to the 2+1D case, we also need to introduce a BF
term to describe the ZNI external gauge field in 3+1D:

iNI
4π

εµνρσBIµν∂ρA
I
σ, (79)

By integrating out the internal gauge field aIµν and λIµ,
we end up with an effective action:

Lresponse =
iNI
4π

εµνρσBIµν∂ρA
I
σ

− i

4
CIJKLε

µνρσAIµA
J
νA

K
ρ A

L
σ + . . . . (80)

We warn the reader that there is a potential danger to
view Eq.(80) as the dynamical topological gauge the-
ory, as one needs to further confirm the physical prop-
erties such as topological GSD and braiding statistics
must match with the 3+1D Dijkgraaf-Witten topologi-
cal gauge theory[55] computed in Ref.[56]. We will leave
the study of topological gauge theories for future work.
The minimum claim of our approach is that viewing the
B field as a Lagrangian multiplier constrains the flatness
of A with dA = 0, we essentially derive the SPT invariant
in terms of the semi-classical probed field A agreed with
[19]. This confirms our multi-kink topological term and
vortex condensation mechanism do generate nontrivial
SPT states.

X. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have discussed the multi-kink topo-
logical term and vortex condensation mechanism for
bosonic Abelian SPT states that cannot be described by
Abelian Chern-Simons/BF actions. We have pointed out

that nontrivial SPT states can be viewed as certain Higgs
phases via defects proliferating in various nontrivial ways.
Thus, the formalism and concepts developed in this pa-
per can provide further insights for understanding the
universal mechanism for bosonic SPT states, especially
for those protected by non-Abelian symmetry.

Moreover, the general concept of “hydrodynamical ap-
proach” is applicable for fermion systems as well, if the
spin-manifold is taken into account. Just like we can use
the spin Chern-Simons theory to describe certain spe-
cial Abelian fermionic SPT states[42], the bulk effective
actions beyond Chern-Simons/BF theory proposed here
should also have their corresponding “spin” version that
can describe new classes of fermion Abelian SPT states.

The field theory based on the saddle-point approxi-
mation (detailed in Appendix C) may or may not fully
capture the topological properties of the gapped SPT
state. However, in Sec.VII, we show that at least for
the level-1 trivial class of our theory, it has GSD=1 on a
compact closed manifold just like the SPT state. More-
over, so far as the SPT invariant is concerned, we con-
firm that the bulk SPT response theory induced by the
multi-kink topological term does reproduce the desired
SPT invariant. Even though our theory exhibits the so-
called symmetric-self dual non-semi simple Lie algebra
[58]; however, due to the extra set of global constraints:
Eqs.(57), (60), our theory is not equivalent to the usual
gauge theory with non-semi simple Lie algebra studied
in the high energy literature (see Appendix C). We be-
lieve our theory is unitary and has finite ground state
degeneracy on a closed manifold.

Another important research direction is to study the
phase transition between superfluids and SPT states,
analogous to the usual case where we have superfluid
and insulator phase transition. We will leave these fur-
ther developments for future work.
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Appendix A: Disorder a superfluid state into a Mott
insulator or an SPT state

To guide the readers understanding our formalism,
here we briefly review this approach using field theory
(see the pioneer work[47–49] and Ref.[50, 51] for a field
theory approach). We plan to study SPT states for a
discrete Abelian symmetry group. First, we will embed
our discrete Abelian symmetry group into the symmetry
group of several U(1) symmetries. Instead of starting
with a discrete-symmetry breaking state, we will start
with a symmetry breaking state that break several U(1)
symmetries. When we restore the U(1) symmetries, we
also restore our real discrete symmetry.

The superfluid state (the U(1) symmetry breaking
state) in any d-spacetime dimension is described by a
bosonic U(1) quantum phase kinetic term, whose the par-
tition function Z is:

Z =

∫
[Dθ] exp(−

∫
ddx

χ

2
(∂µθs + ∂µθv)2) (A1)

with a smooth piece θs and a singular piece θv for the
bosonic phase, and the superfluid compressibility χ. We
stress that the θv is essential to capture the vortex core.
We can introduce an auxiliary field jµ and implement the
Hubbard-Stratonovich technique[50],

Z =

∫
[Dθ][Djµ] exp(−

∫
ddx

1

2χ
(jµI )2− ijµ(∂µθs+∂µθv)).

(A2)
By integrating out the smooth part

∫
[Dθs], we obtain a

constraint δ(∂µj
µ) in the measure of the path integral.

We can define a generic form

jµ =
1

2π(d− 2)!
εµµ2...µd∂µ2

aµ3...µd ,

with an anti-symmetric a and the total spacetime dimen-
sion d, to satisfy this constraint. More conveniently, in
the differential form notation, the constraint is d(∗j) = 0
and the resolution is j = 1

2π (∗da) with ∗ the Hodge star,

with an a gauge field in real values. To disorder the su-
perfluid, we have to make the θ-angle strongly fluctuates
— namely we should take the χ < χc or χ → 0 limit
[51] to achieve large (∂µθ)

2. We will however drop the
Maxwell term due to its irrelevancy in the renormaliza-
tion group (RG) sense. The partition function becomes:
Z =

∫
[Dθv][Da] exp(i

∫
1

2πa∧(d2θv)). Hereafter we com-
pensate the dropped ±-sign by redefining the fields. Even
though naively d2 = 0, due to the singularity core of
θv, the (d2θv) can be nonzero. Thus, (d2θv) describes
the vortex core density and the vortex current, which we
shall denote (d2θv)/(2π) = ∗jvortex. In addition, the ac-
tion has a symmetry of a → a + dξ, or more explicitly
aµ3...µd → aµ3...µd + ∂[µ3

ξµ4...µd]. By Noether theorem,
this symmetry leads to the conservation of the vortex
current: the continuity equation d ∗ jvortex = 0, this im-
plies that

∗jvortex ≡ (d2θv)/(2π) = db/(2π)
for some gauge field b. We can thus define the singular
part of bosonic phase dθv = b as a 1-form gauge field, to
describe the vortex core, so

dθs + dθv = dθs + b. (A3)

The partition function in the disordered state away from
the superfluid, now becomes that of an insulator state,
Z =

∫
[Db][Da] exp( i

2π

∫
b∧da ) with a topological BF ac-

tion. More explicitly, the path integral formalism shows

Z =

∫
[Db][Da] exp(i

∫
ddx

2π(d− 2)!
εµµ2...µdbµ∂µ2aµ3...µd).

(A4)
The Hamiltonian of Eq.(A4) is zero, which describes an

insulator with an energy gap separating the ground state
from excitations. It has no intrinsic topological order in
the sense that it has a unique ground state degeneracy
(GSD, see Ref.[54], this action is a level-1 BF theory with
GSD=1). This is known as the mechanism of disorder-
ing the charge while condensing the vortices generates a
trivial insulator: a Mott insulator without SPT order.

Appendix B: Derivation of the dynamical effective bulk action of SPT

In the following, we list some details for deriving the internal field theory of SPT in Sec.V B, specifically for type
III 2+1D SPT with ZN1

× ZN2
× ZN3

symmetry. We note that up to a total derivative, the tri-kink action Eq.(38)
can be simplified as:

Ltri-kink =
1

2
(∂µθ

I
s + bIµ)2 +

i

3
CIJKε

µνλ[−3θIs ∂µ(bJν b
K
λ )− 3θIs ∂µ(∂νθ

J
s b
K
λ ) + bIµb

J
ν b
K
λ ] + LbMaxwell, (B1)

Again, we can introduce Hubbard-Stratonovich fields jµI to decouple the quadratic term as

Ltri-kink =
1

2
(jµI )2 − iθIs ∂µj

µ
I + ibIµj

µ
I +

i

3
CIJKε

µνλ[−3θIs ∂µ(bJν b
K
λ )− 3θIs ∂µ(∂νθ

J
s b
K
λ ) + bIµb

J
ν b
K
λ ] + LbMaxwell, (B2)
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We further introduce Lagrangian multiplier fields ξµI and λIµ to decouple the −CIJKεµνλθI∂µ(∂νθ
JbKλ ) term. We

have:

Ltri-kink =
1

2
(jµI )2 − iθIs ∂µj

µ
I + ibIµj

µ
I +

i

3
CIJKε

µνλ[−3θIs ∂µ(bJν b
K
λ ) + bIµb

J
ν b
K
λ ]− iθIs ∂µξ

µ
I

+iλIµ(ξµI − CIJKε
µνλ∂νθ

J
s b
K
λ ) + LbMaxwell

=
1

2
(jµI )2 − iθIs ∂µ(jµI + ξµI + CIJKε

µνλbJν b
K
λ ) + ibIµj

µ
I +

i

3
CIJKε

µνλbIµb
J
ν b
K
λ

+iλIµ(ξµI − CIJKε
µνλ∂νθ

J
s b
K
λ ) + LbMaxwell

=
1

2
(jµI )2 − iθIs ∂µ

[
jµI + ξµI + CIJKε

µνλ(bJν b
K
λ − λJν bKλ )

]
+ ibIµj

µ
I +

i

3
CIJKε

µνλbIµb
J
ν b
K
λ + iλIµξ

µ
I + LbMaxwell,

(B3)

Integrating out the θIs fields result in a constraint: ∂µ
[
jµI + ξµI + CIJKε

µνλ(bJν b
K
λ − λJν bKλ )

]
= 0. From this con-

straint, we can write the conserved jµI = 1
2π ε

µνλ∂νa
I
λ − ξ

µ
I − CIJKεµνλ(bJν b

K
λ − λJν bKλ ). Finally, we obtain:

Ltri-kink =
i

2π
εµνλbIµ∂νa

I
λ −

2i

3
CIJKε

µνλbIµb
J
ν b
K
λ + iCIJKε

µνλbIµλ
J
ν b
K
λ +

1

2

[
1

2π
εµνλ∂νa

I
λ − CIJKεµνλ(bJν b

K
λ − λJν bKλ )

]2

+
1

2
(ξµI )2 +

[
i(λIµ − bIµ)− 1

2π
εµνλ∂νa

I
λ + CIJKε

µνλ(bJν b
K
λ − λJν bKλ )

]
ξµI + LbMaxwell, (B4)

Integrating out the ξµI fields, we end up with:

Ltri-kink =
i

2π
εµνλbIµ∂νa

I
λ −

2i

3
CIJKε

µνλbIµb
J
ν b
K
λ + iCIJKε

µνλbIµλ
J
ν b
K
λ +

1

2

[
1

2π
εµνλ∂νa

I
λ − CIJKεµνλ(bJν b

K
λ − λJν bKλ )

]2

−1

2

[
i(λIµ − bIµ)− 1

2π
εµνλ∂νa

I
λ + CIJKε

µνλ(bJν b
K
λ − λJν bKλ )

]2

+ LbMaxwell

=
i

2π
εµνλbIµ∂νa

I
λ −

2i

3
CIJKε

µνλbIµb
J
ν b
K
λ + iCIJKε

µνλbIµλ
J
ν b
K
λ +

1

2
(λIµ − bIµ)2

+i(λIµ − bIµ)

[
1

2π
εµνλ∂νa

I
λ − CIJKεµνλ(bJν b

K
λ − λJν bKλ )

]
+ LbMaxwell

=
i

2π
εµνλλIµ∂νa

I
λ +

i

3
CIJKε

µνλbIµb
J
ν b
K
λ − iCIJKε

µνλbIµλ
J
ν b
K
λ +iCIJKε

µνλλIµλ
J
ν b
K
λ +

1

2
(λIµ − bIµ)2 + LbMaxwell,

=
i

2π
εµνλλIµ∂νa

I
λ +

i

3
CIJKε

µνλ
(
λIµλ

J
νλ

K
λ + (bIµ − λIµ)(bJν − λJν )(bKλ − λKλ )

)
+

1

2
(bIµ − λIµ)2 + LbMaxwell, (B5)

Appendix C: Comments on non-semi-simple Lie
algebra and topological field theory

In Section V C, we learn that the saddle point approx-
imation leads us to an intrinsic field theory and a bulk
dynamical theory with non-semi simple Lie algebra. If
we write the gauge connection in terms of its gauge field
components and its generators:

ãαµT
α ≡ bIµXI + aIµH

∗
I . (C1)

(ã1
µT

1, ã2
µT

2, ã3
µT

3) = (b1µX1, b
2
µX2, b

3
µX3), (C2)

(ã4
µT

4, ã5
µT

5, ã6
µT

6) = (a1
µH
∗
1 , a

2
µH
∗
2 , a

3
µH
∗
3 ). (C3)

Here α = 1, . . . , 6 and I = 1, . . . , 3.
The corresponding generators HI and XI satisfy:

[H∗I , H
∗
J ] = [H∗I , XJ ] = 0; [XI , XJ ] = CIJKH

∗
K , (C4)

where CIJK serves as the structure constant now. The
full Lie algebra consists of an Abelian Lie algebra X (X)
with a central extension by another Abelian Lie algebra
H∗(H∗). Here X (X) contains the set of generators XI ,
and H∗(H∗) contains the set of generators H∗I .

For the specific case of level-1 Chern-Simons theory in
Sec.VII, we are able to show the GSD=1. However, for
the general level-k case, the structure of the phase space
volume is changed (see for example, Appendix D). This
Appendix is meant to provide some word of caution to
prevent us from making a stronger claim that the Chern-
Simons theory with this non-semi simple Lie algebra is
exactly the dynamical Dijkgraaf-Witten field theory we
look for, unless we carefully specify the global constraints
analogous to Sec.VII.

The particular type of the non-semi simple Lie algebra
we derived in Eq.(C4) is in the class of symmetric-self
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dual Lie algebra [58]. Even if the Killing form κab de-
generates, we can replace the κab by an invariant nonde-
generate symmetric bilinear form KGaα′ if it satisfies the
criteria below.

For a Lie algebra given by [Ta, Tb] = fab
cTc, the struc-

ture constant fab satisfies the Jacobi identity: fbc
dfad

e+
fca

dfbd
e + fab

dfcd
e = 0. The Killing form as a bilinear

matrix in the adjoin representation can be determined
from the structure constant.

κab = κ(Ta, Tb) = −Tr(Ta, Tb) = −
∑
α,β

faα
β fbβ

α. (C5)

The Killing form is called degenerate, if there exists a
nonzero generator T ′ such that κ(T ′, T ) = 0 for any T .

In the Euclidean spacetime, we have a Chern-Simons
theory:

L =
i

4π
εµνρKGaα′

(
Aaµ(x)∂νAα

′

ρ (x)

+
1

3
fbc

aAα
′

µ (x)Abν(x)Acρ(x)
)
. (C6)

Even if the Killing form is degenerate, as long as this
(KG)IJ can be found, the (KG)IJ can replace the degen-
erate Killing form to make sense of the Chern-Simons
theory Eq.(C6) with the symmetric-self dual Lie algebra.

The (KG)IJ is a symmetric non-degenerate invariant
bilinear form, constrained by:

fa`
i(KG)bi + fab

i(KG)`i = 0 (C7)

The finite and infinitesimal gauge transformations are:

Aµ → AUµ = U−1(Aµ + ∂µ)U = e−α
aTa(Aµ + ∂µ)eα

aTa ,

Aaµ(x)→ (Aaµ(x) + fbc
aAbµ(x)αc(x) + ∂µα

a(x)). (C8)

The Lie algebra we find out in Section V C is a sub-
algebra of the most generic symmetric-self dual Lie alge-
bra [58]:

[Xa, Xb] = if
(X)
ab

cX + if
(H∗)
ab

αH∗α, (C9)

[Ha, Hb] = if
(H)
ab

cHc, (C10)

[Xa, Hb] = if
(xH)
ab

cXc, (C11)

[Ha, H
∗
b ] = −if (H)

ac
bH∗c , (C12)

[Xa, H
∗
α] = [H∗α, H

∗
β ] = 0. (C13)

Notice that the subalgebra spanned by X (X) and
H∗(H∗), is the Abelian extension of X (X) by H∗(H∗).
The full algebra is the semidirect product of H(H) by
this Abelian extension. The particular non-semi-simple
symmetric-self dual Lie algebra in Eq.(C4) is nilpotent,
non-abelian, non-reductive and solvable. The corre-
sponding Lie group is non-compact.

Our theory in Appendix VII is a special case such that
the GSD is still 1 which can describe the gapped SPT.
Due to the non-compact Lie group, however, it is likely

the generic gauge theory of symmetric-self-dual Lie alge-
bra can capture an infinite degenerate gapless phase in-
stead of a phase with finite topological degenerate ground
states. The concern of (non-)unitarity has been investi-
gated, for example, in Ref.57.

We believe that the generic difference between our SPT
path integral and the usual non-semi-simple-Lie-algebra
gauge theory is the set of global constraints: Eqs. (57)
and (60). For our SPT path integral, the global con-
straints lead to the finite ground state degeneracy, for
the usual non-semi-simple-Lie-algebra gauge theory, the
ground state degeneracy can be infinite. It is possi-
ble a more generic theory can describe a state close to
the potential gapless phase transition between superflu-
ids, symmetry-breaking states and SPT/topologically or-
dered states. We will leave the further investigation open
for future work.

Appendix D: Counting the degenerate zero modes

1. GSD for a gapped system with a 0+1D
topological term

We first review a simple ground state degeneracy
(GSD) calculation by counting the zero mode for a 0+1D
system. Namely we will count the volume of the phase
space volume,

GSD = the volume of the phase space, (D1)

up to some normalization factor.
The first system we consider is described by a Berry

phase term L0 = ẊP . On one hand, in the path integral
formalism, we have a partition function:

Z =

∫
[DX][DP ] exp[i k

∫
ẊP ], (D2)

Ẋ = ∂0X is the time derivative X.
On the other hand, in the quantum operator formal-

ism, we have the commutator [X, ∂L
0

∂Ẋ
] = i:

[X,P ] = i
1

k
. (D3)

X and P are some matrix operators acting on the 0+1D
space. Here we will consider a compact phase space,
so that the phase space volume is finite. In particular,
without losing generality, the identification we assume is
X ∼ X + 2π and P ∼ P + 1. Since the Hamiltonian
is essentially H = ẊP − L0 = 0, the system seems to
be trivial without kinetic terms or potential terms. How-
ever, there can be degenerated ground states. All ground
states Ψ satisfy HΨ = 0. But these Ψ may not be all
independent. To count the GSD thus to count the in-
dependent degree of freedom, we can construct a generic
ground state Ψ in terms of the function of X if we choose
X as the basis:

Ψ(X) =
∑
n∈Z

cne
inX (D4)
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The form is obtained by satisfying the constraint:
Ψ(X) = Ψ(X + 2π) as X ∼ X + 2π. The 2π shift in
the exponent will not affect the form of the Ψ(X) func-
tion. On the other hand, by doing the Fourier transfor-
mation, we can transform the X basis to the P basis via
Ψ̃(P ) =

∫
e ikPXΨ(X) dP . Up to some normalization

factor, this yields,

Ψ̃(P ) =
∑
n∈Z

cnδ(kP + n) (D5)

Meanwhile, the form satisfies the constraint: Ψ̃(P ) =

Ψ̃(P + 1) as P ∼ P + 1. This implies that cnδ(kP +n) =
cn−kδ(kP + k + (n− k)). This means that

cn = cn−k (D6)

with k ∈ Z. The volume of the phase space is |k|.
We have |k| independent degenerate ground states de-
termined by k independent coefficients, thus GSD = |k|.
The strategy for this example is basically the same as the
approach in Ref.54.

2. Compactification and Quantization

For the later convenience, we now set up a relation
between the constraint of compactification and quantiza-
tion using an angular rotational system as an example,
with the angle Θ and the angular momentum L. First,
Θ is compactified and identified via:

Θ ∼ Θ + 2π.

The compactness of Θ leads to the quantization or the
discretization of its dual variable L, in order to have e iΘL

stays invariant as Θ→ Θ + 2π. That means, the quanti-
zation is

∆L = 1.

On the other hand, if we consider the angle Θ is also
discretized as rotor angle with

∆Θ =
2π

N
,

then this quantization must come from the compactifica-
tion of L, with

L ∼ L+N.

In short, due to the constraint of compactification and
quantization, we have a set of relations:

Θ ∼ Θ + 2π ⇔ ∆L = 1, (D7)

L ∼ L+N ⇔ ∆Θ =
2π

N
. (D8)

The volume of the phase space is N . It can be counted in
Θ-space as well as in L-space as (2π/∆Θ) = (N/∆L) =
N .

3. GSD for a gapped system at the 0+1D edge of
1+1D SPTs

After the previous simple first part of calculation, in
the second part, we consider the 0+1D edge of 1+1D
SPT. The system we consider is described by a Berry
phase term in the partition function for the path integral
formalism:

Z =

∫
[Dϕ1][Dϕ2] exp[

i

2

∫
CIJϕ

I∂0ϕ
J ], (D9)

with C12 = pIIN1N2

2πN12
.

On the other hand, for the canonical quantization with
quantum opearators, the commutation relation satisfies

[ϕ1, ϕ2] =
i

C12
=

2π iN12

pIIN1N2
. (D10)

To well-define the denominator for the trivial class pII =
0, the trivial class’s pII is identified as pII = N12.
We may define the conjugate variables as [ϕ1, Pϕ1 ] =
[ϕ1, C12ϕ

2] = i and [ϕ2, Pϕ2 ] = [ϕ2,−C12ϕ
1] = i.

The 1st approach: The compactified size of ϕ1 and
ϕ2 is no larger than 2π,

ϕ1 ∼ ϕ1 + 2π, ϕ2 ∼ ϕ2 + 2π. (D11)

The quantization and the discreteness of these rotor clock
is no smaller than:

∆ϕ1 =
2π

N1
, ∆ϕ2 =

2π

N2
. (D12)

Due to the conjugation relation, following the logic of
Eq.(D7), the compactness in Eq.(D11) of ϕ1 ∼ ϕ1 + 2π
leads to ∆Pϕ1 = C12∆ϕ2 = 1. Similarly, the compact-
ness of ϕ2 leads to ∆Pϕ2 = C12∆ϕ1 = 1. Namely, the
quantization can be:

∆ϕ1 =
2πN12

pIIN1N2
, ∆ϕ2 =

2πN12

pIIN1N2
. (D13)

On the other hand, following the logic of Eq.(D8), the
quantization Eq.(D12) implies the possible compactness
size of Pϕ1 and Pϕ2 as: Pϕ1 ∼ Pϕ1 + N1 and Pϕ2 ∼
Pϕ2 +N2. namely,

ϕ1 ∼ ϕ1 +
2πN12

pIIN1
, ϕ2 ∼ ϕ2 +

2πN12

pIIN2
. (D14)

To construct the refined phase space, we need to take
the largest quantization size in the discretized lattice
among Eq.(D12) and Eq.(D13), and the smallest com-
pactification size among Eq.(D11) and Eq.(D14). This
means that we will require Eq.(D12) and Eq.(D14):

∆ϕ1 =
2π

N1
, ∆ϕ2 =

2π

N2
,

ϕ1 ∼ ϕ1 +
2πN12

pIIN1
, ϕ2 ∼ ϕ2 +

2πN12

pIIN2
.
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Therefore the phase-space-volume counting from both
ϕ1-space and its dual space, ϕ2-space, is both
2πN12

pIIN1
/∆ϕ1 = 2πN12

pIIN2
/∆ϕ2 = N12

pII
. However, N12

pII
may not

be integer in general. We will need to multiply a minimal
factor on the size of the phase space until it becomes an
integer. This means that in general we will multiply it by
the minimal phase factor pII

gcd(pII,N12) until we have an in-

teger size of phase volume: N12

gcd(pII,N12) = N12

pII
· pII
gcd(pII,N12) .

The phase-space-volume counting from both ϕ1-space
and ϕ2-space results in

GSD =
N12

gcd(pII, N12)
. (D15)

It is straightforward to construct the functional Ψ(ϕ1)

and its Fourier transformation Ψ̃(ϕ2) with a number of
N12

gcd(pII,N12) independent coefficients as in Sec.D 1.

The 2nd approach: We can verify this GSD re-
sult from an alternative viewpoint, by considering the
projective representation of the symmetry group G =
ZN1
× ZN2

:
We propose the symmetry generators as

Sϕ1 = e iN1ϕ
1 pII
N12 , (D16)

Sϕ2 = e iN2ϕ
2 pII
N12 , (D17)

in order to have the symmetry generators invariant under
the shift over a full compactification size ϕ1 → ϕ1+ 2πN12

pIIN1

and ϕ2 → ϕ2 + 2πN12

pIIN2
. Namely, our choice is guaranteed

to satisfy: Sϕ1(ϕ1) = Sϕ1(ϕ1 + 2πN12

pIIN1
) and Sϕ2(ϕ2) =

Sϕ2(ϕ2 + 2πN12

pIIN2
). Our choice also obeys the ZN1 and

ZN2
symmetry: (Sϕ1)N1 = (Sϕ2)N2 = 1 when we have

impose the discretization as Eq.(D12).
One can check that SϕI (

∫
dtL0

edge)S−1
ϕI

=

(
∫

dtL0
edge) + 2π · integer, so the partition function

Z =
∫
Dϕ1Dϕ2e−

∫
dtL0

edge is invariant under the sym-
metry transformation SϕI . To calculate the ground

state degeneracy at the 0+1D edge, we can study the
projective representation of the symmetry group acting
on the zero energy modes, we find:

Sϕ1Sϕ2 = e−
2π ipII
N12 Sϕ2Sϕ1 . (D18)

If pII = 0, the symmetry generators are commutative,
so it can be written as a linear representation; and the
GSD=1. In general, the symmetry generators are not
commutative, so it shall be written as a higher dimen-
sional matrix representation. If gcd(pII, N12) = 1, it is
the ZN12

Heisenberg algebra and it requires a N12 dimen-
sional representation. This implies the 0+1D edge mode
of the ground state has GSD = N12, consistent with the
edge mode physics analysis via the dimensional reduction
approach in Ref.[45]. If gcd(pII, N12) 6= 1, we can reduce
the rank of the representation matrix to a smaller rank,
we rewrite

Sϕ1Sϕ2 = e
−2π i 1

N12
gcd(pII,N12)

pII
gcd(pII,N12)

Sϕ2Sϕ1 .

In this way, we obtain a relative-prime factor pII
gcd(pII,N12) ,

and the GSD is the reduced rank of the matrix represen-
tation of the symmetry generators:

GSD =
N12

gcd(pII, N12)
.

We have shown the degenerate zero modes happening
on the 0D edge of 1D bulk SPT. In general, if we cre-
ate various symmetry breaking domain wall to gap the
gapless boundary mods of the higher dimensional bound-
aries, we can study the zero modes trapped at the gapped
domain wall via the dimensional reduction approach. As
an example, we can look into the 0+1D kink on a 1+1D
domain-wall edge Eq.(71) of 2+1D bulk SPTs. This re-
sult is consistent with Refs.19 and 45.
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