
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Interaction-enabled topological crystalline phases
Matthew F. Lapa, Jeffrey C. Y. Teo, and Taylor L. Hughes
Phys. Rev. B 93, 115131 — Published 18 March 2016

DOI: 10.1103/PhysRevB.93.115131

http://dx.doi.org/10.1103/PhysRevB.93.115131


Interaction Enabled Topological Crystalline Phases

Matthew F. Lapa, Jeffrey C. Y. Teo & Taylor L. Hughes
Department of Physics, Institute for Condensed Matter Theory,

University of Illinois, 1110 W. Green St., Urbana IL 61801-3080, U.S.A.

In this article we provide a general mechanism for generating interaction-enabled fermionic topo-
logical phases. We illustrate the mechanism with crystalline symmetry-protected topological phases
in one, two and three spatial dimensions. These non-trivial phases require interactions for their
existence and, in the cases we consider, the free-fermion classification yields only a trivial phase.
For the 1D and 2D phases we consider, we provide explicit exactly solvable models which realize
the interaction-enabled phases. Similar to the interpretation of the Kitaev Majorana wire as a
mean-field p-wave superconductor Hamiltonian arising from an interacting model with quartic in-
teractions, we show that our systems can be interpreted as “mean-field” charge-4e superconductors
arising, e.g., from an interacting model with eight-body interactions, or through another physical
mechanism. The quartet superconducting nature allows for the teleportation of full Cooper pairs,
and in 2D for interesting semiclassical crystalline defects with non-Abelian anyon boundstates.

I. INTRODUCTION

Symmetry protected topological phases (SPTs) have
risen to the forefront of condensed matter physics. The
impetus for such an explosion of interest began with the
theoretical prediction and experimental discovery of 2D
and 3D topological insulators protected by time-reversal
symmetry1, and has carried on through the classifica-
tion of all weakly-interacting fermionic topological phases
protected by discrete (anti-unitary) symmetries2–4. From
here the field has now spread to encompass topological
crystalline phases protected by spatial symmetries5–19,
and bosonic counterparts of the fermionic phases20–24,
which recently culminated into a classification of some
interacting SPTs25–27.

In this article we develop a mechanism for interaction-
enabled fermionic crystalline SPTs, and provide explicit
1D and 2D models that realize the putative strongly-
interacting topological phases28. We show that, with-
out interactions, the symmetry classes we consider have
no non-trivial topological phases, yet with interactions
a non-trivial SPT exists. This is quite different from
the case of, for example, 3D time-reversal invariant in-
sulators, where it was shown in Ref. 27 that interactions
extend the classification from Z2 to Z3

2. In that case
the non-interacting classification still yields a non-trivial
phase, whereas in our examples only the trivial phase is
possible without interactions. It is also known that inter-
actions can extend the classification of two-dimensional
fermions in the unitary class A from Z to Z × Z29, but
in this case as well, non-trivial phases still exist with-
out interactions. The models we consider are essen-
tially related to charge-4e superconductors and have no
mean-field (free-fermion) description. We also discuss the
strongly interacting topological phase transition between
the trivial and interaction-enabled topological phase, and
the properties of topological bound states on defects.

This paper is organized in the following way. In Sec. II
we give an example and introduce a general mechanism
for the generation of interaction-enabled crystalline topo-

logical phases. In Sec. III we expand on the arguments
from Sec. II and show the possibility of a topological
phase in 1D fermionic systems (in symmetry class BDI
with additional inversion symmetry) which requires in-
teractions for its existence. In Sec. IV we construct an
exactly solvable 1D fermionic model which realizes this
interaction-enabled topological phase and we discuss its
properties, paying particular attention to the projective
action of symmetry operators at the boundary of the sys-
tem, and to the stability of the model away from the ex-
actly solvable point. We also discuss an interpretation of
our 1D model as a “mean-field” description of a charge-4e
topological superconductor. In Sec. V we discuss 2D and
3D examples of interaction-enabled topological phases as
well. Finally, in Sec. VI we summarize the results of
the paper and propose an experimental signature which
could in principle identify a charge-4e topological super-
conductor of the type predicted here.

II. A GENERAL MECHANISM FOR
INTERACTION-ENABLED TOPOLOGICAL

PHASES

In this section we describe a general mechanism
for generating interaction-enabled topological phases of
fermions. We start by introducing the mechanism via
a simple example: the Kitaev p-wave wire (also known
as a Majorana chain), with an additional time-reversal
symmetry T (T 2 = +1)30. This model belongs to the
BDI Altland-Zirnbauer class3,31, and is classified, in the
non-interacting limit, by an integer winding number ν. A
model of spinless fermions ψn in this class realizing the
ν = 1 phase is given by the following Hamiltonian (and
illustrated in Fig. 1a)

HKitaev =

N−1∑
n=1

ibnan+1 , (2.1)

where an and bn are Majorana fermions, related to the
original spinless fermions by ψn = 1

2 (an + ibn). The
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Majorana fermions an and bn are Hermitian, they anti-
commute with each other, and square to 1. The spin-
less fermions ψn annihilate the Fock vacuum state |0〉.
The time-reversal operator preserves the Fock vacuum,
T |0〉 = |0〉, and acts as TψnT

−1 = ψn on each fermion
operator. This means that the time-reversal operator
acts on the Majorana fermions as TanT

−1 = an and
TbnT

−1 = −bn. This model is time-reversal invariant
and gapped in the bulk, but possesses low-energy un-
paired Majorana zero modes, e.g., in this limit the modes
are just a1 on the left end and bN on the right end. The
bulk-boundary correspondence dictates that the number
of boundary zero modes of a-type minus the number of
b-type on a single end is |ν|, so the system in Eq. (2.1)
realizes the ν = 1 phase. Larger values of ν are topolog-
ically equivalent to multiple copies of the ν = 1 case and
exhibit |ν| stable Majorana modes of an identical type on
a single end. Negative values of ν correspond to chains
with unpaired a-modes (b-modes) on the right (left).

Next we wish to consider the possibility of a topological
crystalline superconductor (TCS) in this class by requir-
ing inversion symmetry R with R2 = 1 and [R, T ] = 0,
which is natural for spinless (or spin-polarized) fermions.
Unfortunately the classification is not very interesting.
In class BDI, the fact that R and T commute means
that R does not act within a unit cell to interchange a
and b type modes. We can see from Fig. 1a that act-
ing with R just flips the chain from left to right, which
converts an a-type end to a b-type end, and so we find
that R : ν → −ν. Thus, when the symmetry is enforced
we must have ν = −ν, but the only solution is ν = 0
since ν is an integer. Hence, there are no free-fermion
SPTs for the BDI class with the inversion symmetry of
this type, nor any weakly-interacting SPTs in this sym-
metry class that can be adiabatically connected to the
non-interacting limit. In fact, in Sec. III we give a more
formal proof that the winding number for free fermions
in class BDI vanishes when the additional inversion sym-
metry R, with [R, T ] = 0, is imposed.

Recently, however, it has been explicitly shown that
the classification of the vanilla BDI class with interac-
tions is deformed from its non-interacting limit21,32–34.
In a seminal paper, Fidkowski and Kitaev showed that
eight copies of the ν = 1 chain (i.e., ν = 8) can be
adiabatically deformed to ν = 0 by passing through a
gapped, interacting phase that preserves all of the re-
quired symmetries32. Hence, the classification is reduced
from Z to Z8. Now if we add inversion symmetry, we find
that the constraint ν = −ν has a non-trivial solution!
Since ν ∈ Z8, the solution ν = 4 ≡ −4 mod 8 indi-
cates the existence of a non-trivial crystalline SPT that
requires strong interactions for its existence. We provide
further evidence for the existence of a non-trivial phase
with ν = 4 in Sec. III where we construct a general ar-
gument which shows that for a 1D system in class BDI,
either zero or four Majorana end modes are consistent
with the additional inversion symmetry R. Additionally,
we then provide an explicit, exactly-solvable model which

realizes the non-trivial ν = 4 phase in Sec. IV, thereby
acting as a proof of principle for the existence of this
phase as the ground state of a local Hamiltonian.

This mechanism for, what we call, an interaction-
enabled SPT is quite general. Given any topological
integer property ν, and a symmetry R under which ν
transforms non-trivially, then the constraint ν = Rν has
no non-trivial solutions, i.e., ν ≡ 0 is the only solution.
The property ν could be a scalar, vector, tensor etc., but
for now let us focus on the scalar case where ν can only
transform non-trivially to −ν. By including interactions,
the integer classification of ν could be reduced to a cyclic
group Zn. If n is even, then ν = n/2 is a non-trivial
solution, and the classification of the interacting system
with R symmetry is Z2 valued where ν = 0 mod n and
ν = n/2 mod n are the trivial and non-trivial values
respectively. In the remainder of the article we will con-
struct and discuss the properties of 1D and 2D models
which have interaction-enabled topological phases.

III. INVERSION SYMMETRY AND 1D
FERMIONS IN CLASS BDI

In this section we reinforce the results argued for in
the previous section by providing: (i) an explicit proof
that the winding number ν for free 1D fermions in class
BDI vanishes when the additional inversion symmetry R
is required, and (ii) a general argument, closely parallel-
ing the arguments in Refs. 33 and 34, which shows that
interacting fermions in class BDI with the extra symme-
try R can have zero or four unpaired Majorana fermions
at the end of an open chain. Our argument (ii) repre-
sents an extension of the classification of 1D fermionic
systems in class BDI, worked out in Refs. 33 and 34 (see
also Ref. 21), to the case with additional inversion sym-
metry R. Since in Sec. IV we construct a concrete model
realizing the interaction-enabled ν = 4 phase, the results
of these two sections imply that the interacting classifica-
tion for 1D fermions in class BDI with the extra inversion
symmetry R is indeed Z2, i.e., it has a non-trivial topo-
logical phase, contrary to the non-interacting limit.

A. Vanishing of the BDI winding number when
inversion is added and [R, T ] = 0

We now prove that the winding number ν ∈ Z of
class BDI vanishes when the extra inversion symmetry
R, which satisfies R2 = 1 and [R, T ] = 0, is enforced.
We first briefly review the construction of the wind-
ing number (for translationally invariant systems) from
the Bogoliubov-de-Gennes (BdG) Hamiltonian following
Ref. 35, and then show that incorporating the inversion
symmetry R forces the winding number to be zero. In
this subsection we use Im to denote the m ×m identity
matrix for any positive integer m, and σa, a = x, y, z, are
the usual Pauli matrices.
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Consider a system of M flavors of spinless fermions
on a one-dimensional lattice, and write the M annihi-

lation operators as an M -component vector ~ψn, where
n is the position on the lattice. The anti-unitary time-

reversal operator is defined by the relations T ~ψnT
−1 =

~ψn and T |0〉 = |0〉, where |0〉 is the Fock vacuum an-

nihilated by the fermions ~ψn, and we have T 2 = 1.
We Fourier transform to momentum space by defin-

ing ~ψk = 1√
N

∑
n
~ψne
−ikn, where N is the number of

unit cells. Time-reversal now acts as T ~ψkT
−1 = ~ψ−k.

The Hamiltonian operator for a generic system of free
fermions then takes the form

H =
1

2

∑
k

~Ψ†kH(k)~Ψk , (3.1)

where ~Ψk = (~ψk, ~ψ
†
−k)T and H(k) is the 2M × 2M BdG

Hamiltonian.
For a system in class BDI, the BdG Hamiltonian takes

the special form

H(k) =

(
h0(k) i∆(k)
−i∆(k) −h0(k)

)
(3.2)

= σz ⊗ h0(k)− σy ⊗∆(k) , (3.3)

where h0(k) and ∆(k) are M×M matrices. The fact that
the Hamiltonian should be Hermitian and time-reversal
invariant implies that these matrices satisfy the relations

∆T (k) = ∆∗(k) (3.4)

∆∗(k) = −∆(−k) (3.5)

and

hT0 (k) = h∗0(k) (3.6)

h∗0(k) = h0(−k) . (3.7)

In this case, applying the unitary transformation S =

e−i
π
4 σ

y⊗IM gives us

SH(k)S† =

(
0 A(k)

AT (−k) 0

)
≡ H̃(k) , (3.8)

where A(k) = h0(k) + i∆(k) and satisfies

A∗(k) = A(−k) . (3.9)

For later use we note that this relation implies that

det(A(k))∗ = det(A(−k)) . (3.10)

A winding number for the BdG Hamiltonians of class
BDI can be defined from the phase of the determinant of
A(k). Write

det(A(k)) = |det(A(k))|eiθ(k) . (3.11)

In terms of z(k) = eiθ(k), the expression for the winding
number given in Ref. 35 is

ν =
−i
π

∫ k=π

k=0

dz(k)

z(k)
=

1

π
(θ(π)− θ(0)) . (3.12)

Next we consider adding (unitary) inversion symmetry

R to the system. We define R to act on ~ψn as R~ψnR
−1 =

UR ~ψ−n, where UR is an M ×M matrix. The relations
R2 = 1 and [R, T ] = 0 imply that U2

R = IM and that
UR is a real matrix. These properties imply that R acts

on ~Ψk as R~ΨkR
−1 = (I2 ⊗ UR)~Ψk. For inversion to be a

symmetry of the system we require RHR−1 = H. This
implies that

(I2 ⊗ UR)H(k)(I2 ⊗ UR) = H(−k) . (3.13)

Multiplying both sides of this equation by S on the left
and S† on the right gives

(I2 ⊗ UR)H̃(k)(I2 ⊗ UR) = H̃(−k) , (3.14)

which reduces to

UTRA(k)UR = A(−k) . (3.15)

Now since U2
R = IM , this relation implies that

det(A(k)) = det(A(−k)) . (3.16)

Combined with Eq. (3.10), we see that the extra inversion
symmetry R forces det(A(k)) to be real. This means
that the phase of det(A(k)) cannot vary smoothly in the
Brillouin zone, and so the BDI winding number ν must
vanish!

B. Class BDI with extra inversion symmetry
allows 0 or 4 Majorana end modes

In this subsection we give a general argument which
shows that for 1D systems in class BDI with the extra
inversion symmetry R, satisfying R2 = 1 and [R, T ] = 0,
it is possible to have zero or four Majorana modes at the
ends of an open chain, the latter representing the non-
trivial topological phase. Our argument is an extension
of the classification in Refs. 33 and 34 of 1D fermions
in class BDI to the case with additional inversion sym-
metry R. Briefly, the classification in Refs. 33 and 34
was determined by studying the algebra obeyed by the
symmetry operators relevant for class BDI (the operators
T, P and TP discussed below), and then considering all
possible projective representations of this algebra when
the operators act on the degrees of freedom localized at
a single end of an open chain. In our case there is an
additional complication because the inversion operator
R maps degrees of freedom at one end of the chain to
those at the other end of the chain. We show that this
extra complication places consistency conditions on how
all the symmetry operators act in the total ground state
subspace of both ends of an open chain, which allows us
to determine which numbers of Majorana end modes are
consistent with the additional inversion symmetry.

To derive this result we consider a generic 1D chain in
class BDI with open boundary conditions on both ends
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of the chain. We assume that the degrees of freedom in
the bulk of the chain are gapped, but that there are ν
unpaired Majorana fermions at each end of the chain.
Based on the arguments of Ref. 32, we only need to con-
sider ν = 1, . . . , 8. We will deduce the allowed numbers
of Majorana end modes consistent with all symmetries
of the system by carefully considering the action of the
symmetry operators within the ground state subspace of
an open chain.

Before we describe our general argument, we first re-
view the symmetries of a 1D system in class BDI. For a
system in class BDI the Hamiltonian H commutes with
the time-reversal operator T , the fermion parity operator
P , and the composite operator TP . These operators sat-
isfy P 2 = T 2 = 1 and [P, T ] = 0 as operator relations in
the Hilbert space of a chain which is open at both ends.
We now add the inversion symmetry R to this setup, and
require R2 = 1 and [R, T ] = [R,P ] = 0 (R should com-
mute with P and T since the latter are local operators
whereas R acts globally).

Since R,P, and T all commute with each other and
with the Hamiltonian H, it follows that R will commute
with T and P in each constant energy subspace of the
Hilbert space. In particular, R should commute with T
and P in the ground state subspace of the open chain.
Now comes the crucial observation, which is based on
the results of Refs. 33 and 34. When the Hilbert space
is restricted to the ground state subspace of the open
chain, the operators T and P may be written in terms of
the Majorana zero modes located at the two ends of the
chain. We will determine the number of allowed Majo-
rana zero modes at the ends of an open chain by requiring
that [R,P ] = [R, T ] = 0 in the ground state subspace of
an open chain.

We consider the case of ν = 1, . . . , 8 Majorana modes
at each end of the chain (since ν = 8 can be adiabatically
connected to ν = 0 via the FK interaction). A basic point
is that the relation [R, T ] = 0 requires the Majorana
modes on the two ends of the chain to be of the same
type (a-type or b-type) so that they transform in the

same way under T . We may therefore suppose that there
are ν Majorana modes aJl at the left end of the chain
and another ν Majorana modes aJr at the right end of
the chain, where J = 1, . . . , ν (a similar argument will
hold if we instead take the end modes to be of b-type).
In this section we assume that the inversion operator R
acts by simply switching a right end-mode with a left
one, i.e. RaJl R

−1 = aJr .

In the ground state subspace, and up to an overall
minus sign, the fermion parity operator P can be written
as

P =

ν∏
J=1

(iaJl a
J
r ) . (3.17)

We find that RPR−1 = (−1)νP , which means that
[R,P ] = 0 only if ν is even. We conclude that in the
presence of inversion symmetry R, only an even number
of Majorana zero modes are allowed at each end of the
chain.

Next we consider the action of time-reversal symmetry
in the ground state subspace. We now have to consider
only the case where ν is even, so we write ν = 2m for
m = 1, 2, 3, 4. Following Ref. 34, T can be written in the
form T = TlTrK∗, where Tl (Tr) is an operator localized
at the left (right) end of the chain, and in this case K∗ is
complex conjugation in the basis defined by locally pair-
ing up Majorana fermions at each end of the chain. The
precise definition of K∗ is a subtle point, so we describe
it here following the definition given in Ref. 33. Pair up
the Majorana zero modes aJl at the left end of the chain
into new complex fermions ζIl as

ζIl =
1

2

(
a2I
l + ia2I−1

l

)
, I = 1, . . . ,m , (3.18)

and likewise for ζIr . Let |ω〉 be the state annihilated by
all of the ζIl and ζIr . Then we can write a state in this
basis as

|ψ〉 =
∑
αi=0,1

∑
βi=0,1

Cα1···αmβ1···βm(ζ1,†
l )α1 · · · (ζm,†l )αm(ζ1,†

r )β1 · · · (ζm,†r )βm |ω〉 . (3.19)

The operatorK∗ is defined as complex conjugation in this
basis, i.e., acting with K∗ on |ψ〉 sends Cα1···αmβ1···βm →
C∗α1···αmβ1···βm . Therefore K∗ commutes with Majorana

modes aJr/l for even J , and anti-commutes with aJr/l for

odd J . With this definition of K∗, the explicit form of
the operators Tl and Tr was derived in Ref. 33. They
found that

Tl =

{∏m
J=1 a

2J−1
l , m = even∏m

J=1 a
2J
l , m = odd

(3.20)

with a similar form for Tr. For ν = 2, 6, Tl and Tr are
products of an odd number of Majorana fermions, while
for ν = 4, 8, Tl and Tr are products of an even number of
Majorana fermions. Since inversion acts as RTlTrR−1 =
TrTl, we can only get [R, T ] = 0 in the ground state
subspace if TlTr = TrTl. This only happens in the cases
ν = 4 and ν = 8.

Therefore we find that requiring R to commute with
P and T in the ground state subspace of an open chain
only allows for 4 or 8 ≡ 0 Majorana zero modes at each
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end of an open chain. In particular, a non-trivial phase
with ν = 4 unpaired Majorana end modes is allowed
according to this argument. We have seen that this phase
cannot be constructed with free fermions, but in the next
section we show that the non-trivial ν = 4 phase with
inversion symmetry can be realized in a concrete model
of interacting fermions.

IV. THE FIDKOWSKI-KITAEV CHAIN MODEL

In this section we construct a one-dimensional wire
model in class BDI with extra inversion symmetry which
realizes the ν = 4 interaction-enabled phase. Let us
briefly illustrate the complication with generating the
non-trivial ν = 4 state from a free-fermion (quadratic)
Hamiltonian. To preserve T the only allowed quadratic
terms must have the form ianbm. To preserve inversion
symmetry, and satisfy [R, T ] = 0, each end of the chain
must have the same number, and type, of low-energy
Majorana modes. Thus, beginning with the ends of
a topological chain and working backward to form the
gapped bulk, one always reaches a point where Majo-
rana fermions of the same type must be coupled to open
a gap, but this is forbidden by T . An example of this is
shown in Fig. 1b. We can essentially think of this as try-
ing to find a way to adiabatically connect a ν = 4 chain
to a ν = −4 chain as shown in Fig. 1b. This cannot be
done in the free-fermion limit, and thus interactions are
required.

This failure, however, immediately gives the key to the
correct construction. We see that what is needed is a per-
turbation that can open a gap by coupling eight Majo-
rana fermions of the same type in an inversion and time-
reversal symmetric way. Fortunately, the Fidkowski-
Kitaev (FK) interaction is exactly what is needed. In
this section we first discuss the FK interaction and its
relation to the Heisenberg interaction for spin- 1

2 systems.
We then go on to discuss our FK chain model, which re-
alizes the interaction-enabled ν = 4 phase of class BDI
with inversion symmetry R discussed in the previous sec-
tions of this paper. We then give a detailed discussion
of the physics at the boundary of the FK chain, and we
show that the degrees of freedom at the boundary form
a projective representation of the group Z2 generated by
the time-reversal symmetry operator T which satisfies
T 2 = 1 when acting on the degrees of freedom in the
bulk of the system.

A. Fidkowski-Kitaev interaction and relation to
Heisenberg interaction for spins

Let cJ , J = 1, . . . , 8, be any eight Majorana fermions
which all transform in the same way under time-reversal.
Then the Fidkowksi-Kitaev (FK) interaction for these

eight Majorana fermions has the form

HFK = u
[
c1234 + c5678

]
+ v

[∑
σ∈A4

cσ(1)σ(2)[σ(1)+4][σ(2)+4]

(
1 + c1234

2

)]
,

(4.1)

where cIJKL ≡ cIcJcKcL, σ runs over the even permuta-
tions of (1234), and u, v > 0 (Fidkowski and Kitaev take
u = v, but this is not necessary for our purposes). This
Hamiltonian is time-reversal invariant and has a unique
ground state. The ground state may be constructed in
the following way. First pair the Majorana fermions cJ

into four new complex fermions χK , K = 1, . . . , 4, where
χK = 1

2 (c2K−1 + ic2K). For the fermions χK , we de-

fine the number operators nK = χ†KχK and the modified
number operators NK = 2nK − 1. In terms of these, the
FK interaction takes the form

HFK = −u(N1N2 +N3N4)− v(N1 +N2)(N3 +N4)

+ 8v(χ1χ2χ3χ4 + h.c.) . (4.2)

Let |0̃〉 be the state annihilated by all of the χK . Then
the Hilbert space of these eight Majorana fermions is

generated by acting on |0̃〉 with the χ†K , and the ground
state of Eq. (4.1) (for u, v > 0) is easily shown to be

|ω〉 =
1√
2

(
|0̃〉 − χ†1χ

†
2χ
†
3χ
†
4|0̃〉

)
. (4.3)

We now show that when the Hilbert space of the fermions
is restricted to the sector of even local fermion parity, the
Fidkowski-Kitaev interaction can be reduced to to the
Heisenberg exchange interaction for a spin- 1

2 system.
For the system consisting of eight Majorana fermions

cJ considered here, the subspace with even local fermion
parity is defined by the relations N1N2 = N3N4 = 1.
There are four states in this subspace, which we label as

|+,+〉 = χ†1χ
†
2χ
†
3χ
†
4|0̃〉 (4.4a)

|+,−〉 = χ†1χ
†
2|0̃〉 (4.4b)

|−,+〉 = χ†3χ
†
4|0̃〉 (4.4c)

|−,−〉 = |0̃〉 , (4.4d)

where “+” and “−” are meant to represent up and down
states of a spin 1/2 object. In this subspace one can
check that

(N1+N2)(N3+N4) =

4 0 0 0
0 −4 0 0
0 0 −4 0
0 0 0 4

 = 4σz⊗σz (4.5)

and

χ1χ2χ3χ4 +h.c. =

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 =
1

2
(σx⊗σx−σy⊗σy) ,

(4.6)
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so that the FK interaction takes the form (we drop the
term N1N2+N3N4 since it is a constant in this subspace)

HFK = 4v [σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] . (4.7)

Next, we can conjugate HFK in this subspace by the
unitary operator U = σx ⊗ I to get

H ′FK = UHFKU
† = 4v [σx ⊗ σx + σy ⊗ σy + σz ⊗ σz] ,

(4.8)
so we see that in the subspace of even local fermion parity
the FK interaction is equivalent to an antiferromagnetic
(v > 0) Heisenberg interaction.

B. The Fidkowksi-Kitaev chain

We now use the FK interaction to create a translation-
ally invariant wire model which we call the Fidkowski-
Kitaev (FK)-chain. Instead of coupling Majorana
fermions with quadratic tunneling terms, we couple the
fermions with the quartic FK interaction in a “dimer-
ized” pattern which we now discuss.

The FK-chain model consists of eight complex fermions
ψJn per unit cell, where J = 1, . . . , 8 is a flavor in-
dex. Each complex fermion can be split into two Ma-
jorana modes ψJn = 1

2 (aJn + ibJn) as before. In the FK-

chain we couple the eight b-type Majorana modes bJn
within each unit cell using the FK-interaction Eq. (4.1),
and we also couple the four a-type Majorana modes aJn,
J = 5, . . . , 8 in unit cell n with the four Majorana modes
aJn+1, J = 1, . . . , 4 in unit cell n + 1 using Eq. (4.1),
as shown in Fig. 1c. The resulting Hamiltonian has
the following very important properties: (1) it is time-
reversal and inversion symmetric, (2) it has a unique
gapped ground state on a periodic chain, and (3) each
end of an open chain harbors two effective spin 1

2 degrees
of freedom (4 Majorana modes), and the time-reversal
operator acts projectively as T 2 = −1 on each of these
spin 1

2 degrees of freedom. This is the non-trivial 1D
crystalline topological phase with ν = 4.

The local fermion parity is conserved by the FK-chain
Hamiltonian, even with arbitrary intra- and inter-unit
cell FK interactions. This means that as long as u is
sufficiently larger than v, the ground state of the chain
with arbitrary FK interactions lies in the sector of even
local fermion parity, and all low energy phenomena take
place within that sector. Since the FK interaction re-
duces to a Heisenberg exchange interaction in the sec-
tor of even local fermion parity, it follows that with u
large, the low-energy physics of the FK chain is exactly
equivalent to the physics of the dimerized spin- 1

2 chain
(more precisely, we have two separate dimerized spin-
1
2 chains coming from the a-type and the b-type Majo-
rana fermions, but we focus our discussion on the case
where the intra-cell FK interaction dominates for the b-
type Majorana fermions and makes them inert). The FK
chain model, like the dimerized spin- 1

2 chain, is exactly

(a) (b)

(c)

FIG. 1. (a) The Kitaev p-wave wire with time-reversal sym-
metry T (T 2 = +1) . Each large circle represents one unit
cell, which contains one complex fermion. The complex
fermion is split up into a-type (red) and b-type (blue) Ma-
jorana fermions. In the topological phase, Majorana modes
are coupled by hopping terms (the grey lines) as described
by Eq. (2.1). (b) An attempt to construct an inversion
and time-reversal symmetric topological phase using a free-
fermion model. This system must have four unpaired Ma-
jorana fermions of the same type on each end of the wire
and this will always lead to gapless states in the bulk. The
gapless states cannot be gapped out using a quadratic inter-
action without breaking the time-reversal symmetry and thus
we need the Fidkowski-Kitaev interaction (green dotted line)
to open a bulk gap. (c) The Fidkowski-Kitaev (FK)-chain
model. Each unit cell (large white circle) contains eight com-
plex fermions, which can be split into eight a-type and eight
b-type Majorana fermions. We couple the eight b-type Majo-
rana fermions in each unit cell with the quartic FK interaction
Eq. (4.1)(represented by the green lines) and we also couple
four of the a-type Majorana fermions in the right side of a
unit cell with the four a-type Majorana fermions on the left
side of the adjacent unit cell using the FK interaction.

solvable only in the completely dimerized limit. How-
ever, the topological properties of the dimerized spin- 1

2

chain, for example the existence of dangling spin- 1
2 end

states, persist as long as the bulk energy gap stays open,
which is true even away from the exactly solvable (com-
pletely dimerized) point. Since the low-energy physics of
the FK-chain reduces to the dimerized spin- 1

2 chain when
u is large, the FK chain model possess the same stability
properties as the dimerized spin- 1

2 chain.

The pair of boundary spin- 1
2 ’s on each end of the FK

chain are composed of four a-type Majorana fermions
and are unstable in the presence of the most general
time-reversal invariant perturbations. On the left bound-
ary, the four Majorana fermions a1, a2, a3 and a4 will be
unpaired. Since these four Majorana modes transform
in the same way under the action of T , the only Her-
mitian and time-reversal invariant term we can add to
the boundary Hamiltonian is Hbdy = λa1a2a3a4. This
term is essentially a symmetrized Hubbard-like interac-



7

tion, which can be seen by defining new complex fermions
χ1 = 1

2 (a1 + ia2) and χ2 = 1
2 (a3 + ia4). In terms of the

χi we have

Hbdy = −λ(2χ†1χ1 − 1)(2χ†2χ2 − 1) = −λ(−1)Fχ1,χ2

(4.9)
where (−1)Fχ1,χ2 is the local fermion parity at the
boundary. This local Hamiltonian has two degenerate
ground states |0〉g, |1〉g, and two degenerate excited states
|0〉e, |1〉e. If λ > 0 (λ < 0) the ground states both have
even (odd) fermion parity and vice-versa for the excited
states. As we show in the next subsection, time-reversal
acts non-trivially as Tbdy = iσyK on both the ground
and excited state subspaces independently. It follows
immediately from Kramers’ theorem that the remaining
two-fold degeneracy of the boundary states is protected
against arbitrary perturbations that do not break time-
reversal symmetry. Thus, even when the local fermion
parity is locked by Hbdy, the low-energy degrees of free-
dom on the edge still form a projective representation of
the on-site time-reversal symmetry group20,21, and the
remaining degree of freedom in the lowest energy sector
is a single spin- 1

2 .
When Hbdy is turned on, the local fermion parity is

fixed across the entire chain in the low-energy sector. It
is in this sector, i.e., when we can safely ignore fermion-
parity changing excitations, that the properties of the
FK chain are similar to the gapped (Haldane) phase of
a spin-1 chain protected by inversion and time-reversal
symmetry36,37. For both systems we have: (1) a gapped
bulk and gapless spin- 1

2 excitations at the boundary, and

(2) T acts as T 2 = 1 on the fundamental degrees of
freedom within each unit cell, but as T 2 = −1 on the
fractionalized degrees of freedom at the ends of an open
chain. The two systems are not identical, however, as
the FK chain necessarily has a larger Hilbert space due
to the fermionic nature of the local degrees of freedom.
We also note that a topological phase transition between
a ν = 4 phase and a trivial ν = 0 phase can be driven
by turning on intra-cell FK couplings for the a-fermions
and leaving the b- fermions unmodified, while keeping lo-
cal fermion parity fixed in the low-energy subspace. As
we discussed earlier in this subsection, in this limit the
FK chain can be mapped onto a dimerized spin- 1

2 . It
follows that the critical theory – when the intra-cell FK
interaction strength matches that of the inter-cell one– is
described by the SU(2)1 Wess-Zumino-Witten conformal
field theory38.

C. Proof that 1D boundary states have T 2 = −1

In this subsection we prove that the time-reversal op-
erator T , which satisfies T 2 = 1 in the bulk of the FK
chain, instead obeys the anomalous relation T 2 = −1 on
the boundary of the chain. This same result holds for
the edge of the ordinary ν = 4 Majorana chain, as was
proven in Refs. 21, 33, and 34. Our result in this sub-

section represents an alternate method for proving that
result.

The complex fermion operators χ1 = 1
2 (a1 + ia2),

χ2 = 1
2 (a3+ia4), which are used in the definition of Hbdy,

obey the unconventional transformation TχjT
−1 = χ†j .

Now, suppose |0̃〉 is the state annihilated by χ1 and χ2.
Then Hbdy, with λ > 0, has the two ground states: |0̃〉
and |1̃〉 ≡ χ†1χ

†
2|0̃〉. These states transform non-trivially

under the action of T . To see this, first note that since
T is anti-unitary, we have 〈TΨ|TΨ〉 = 〈Ψ|Ψ〉∗ = 〈Ψ|Ψ〉
(〈Ψ|Ψ〉 is real) for any state |Ψ〉. In particular this means
that T |Ψ〉 6= 0 if 〈Ψ|Ψ〉 6= 0. We see then that T |1̃〉
can only be non-zero if T |0̃〉 ∝ |1̃〉. This is because
T |1̃〉 = χ1χ2T |0̃〉, which is zero unless T |0̃〉 ∝ |1̃〉. We can
choose the convention T |0̃〉 = |1̃〉, which just amounts to

a choice of phase since χ†1 and χ†2 anti-commute. Using
this rule we also find that T |1̃〉 = −|0̃〉. So in the basis of
ground states on the edge, |0̃〉 and |1̃〉, the time-reversal
operator acts non-trivially as a matrix Tbdy = iσyK
(where K is complex conjugation in this basis), such that
(Tbdy)2 = −1 at the edge of our system. It follows imme-
diately from Kramer’s theorem that the remaining double
degeneracy of the boundary states is protected against
arbitrary perturbations that do not break time-reversal
symmetry. Thus, we see that the low energy degrees of
freedom on the edge form a projective representation of
the on-site Z2 symmetry group generated by T (T 2 = 1)
on the local degrees of freedom in the bulk of the system.

D. Further Discussion

An interesting property of the FK-chain model is the
fact that it only contains terms which are quartic in
fermion creation and annihilation operators, thus this
system has no free-fermion analogue. Indeed, the com-
plete two-particle Green function G(ω, k) (i.e., the ma-
trix of two-point functions with the regular time-ordered
Green functions on the diagonal blocks and the anoma-
lous time-ordered Green functions on the off-diagonal
blocks) for this model vanishes at ω = 0, which means
that there is no Bogoliubov-de-Gennes (BdG) mean-field
Hamiltonian that captures the physical properties of this
system (recall that if G(0, k) 6= 0 then we can con-
struct a BdG Hamiltonian HBdG(k) ∼ G−1(0, k) which
defines a free fermion system from which topological
phases can be determined). In terms of local complex
fermions, the Hamiltonian for the FK chain contains

terms of the form ψInψ
J
nψ

I
n+1ψ

J
n+1 + ψI,†n ψJ,†n ψI,†n+1ψ

J,†
n+1,

leading to a non-vanishing anomalous four-point func-
tion with momentum-dependence. All four-point corre-
lation functions can be calculated exactly in this com-
pletely dimerized model, and in particular, charge con-
servation symmetry is broken by 4e tetrads such as
〈ψ1
k1
ψ2
k2
ψ3
k3
ψ4
−k1−k2−k3〉 ∼ 1+eik1+ik2 . If one tunes away

from this exactly solvable point (e.g., by adding quadratic
tunneling or pairing terms) then one could extract a
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quadratic Hamiltonian from the inverse of the two-point
function. However, since the two-point function is still
adiabatically connected to the zero matrix, this effective
Hamiltonian will be topologically trivial. The essential
features of the topological phase are still contained in the
four-point functions, and we suspect that a bulk topolog-
ical invariant could be constructed from the momentum-
dependent four-point functions analogous to Refs. 39 and
40. Although in 1D this is not necessary since the projec-
tive symmetry formalism supersedes the Green function
type invariants.

The existence of non-vanishing anomalous four-point
functions for the FK-chain is a direct consequence of the
fact that Eq. (4.1) breaks charge-conservation symme-
try. For this model to arise microscopically we would
expect this symmetry to be broken spontaneously via
some “mean-field” like state of an eight-body interact-
ing Hamiltonian, or from a mechanism analogous to the
charge-4e superconductivity formed from a melted pair-
density wave state in Ref. 41. Thus, similar to Kitaev’s
interpretation of the Majorana chain as a mean-field
description of a spontaneously generated topological p-
wave superconductor, our model can be interpreted as a
topological charge 4e superconductor. Indeed, the sin-
gle spin 1/2 degree of freedom at each boundary can be
re-interpreted in terms of the complex fermions forming
the topological 4e superconductor as follows. When the
perturbation Hbdy of Eq. (4.9) is added to each end, the
two remaining low-energy boundary states at a single end
have the same local fermion parity. However, these two
degenerate states differ by the combined action of the
two fermion operators χ1 and χ2, and hence by exactly
two fermions, i.e. a Cooper pair. Thus, we find that the
Majorana end modes force states with an even and odd
number of Cooper pairs to be degenerate. We will briefly
return to this point in the conclusion.

V. HIGHER DIMENSIONAL EXAMPLES

A. Two-Dimensional Interaction-Enabled
Topological Crystalline Phase

We now discuss an example of a 2D interaction-enabled
TCI in the BDI class with additional translation and dis-
crete rotation symmetry. Two-dimensional TCS phases
in the BDI class with translation and discrete rotation
symmetries were discussed in Refs. 5–19. Generically
these TCS’s can carry a number of different non-trivial
topological invariants, each of which is stable in the pres-
ence of a certain subset of the symmetries of the model.
We are interested in the weak invariant ; an invariant
which is stabilized by translation symmetry42. Heuris-
tically, the weak invariant in 2D is a topological vector
generated by stacking 1D topological wires into 2D, and
is thus necessarily anisotropic. The stacks of topological
wires define a 2D lattice with reciprocal lattice vectors

b1 and b2 and the weak invariant takes the form

Gν =
ν1

2
b1 +

ν2

2
b2 , (5.1)

where ν1 and ν2 are integers for the BDI class, i.e.,
they match the BDI 1D topological invariant. As long
as translation symmetry is protected, then two phases
with different weak invariants cannot be adiabatically
connected without either closing the gap or breaking a
symmetry.

Just as for the 1D case, we want to require additional
spatial symmetries. To be explicit let us choose C4 rota-
tion symmetry, which implies b1 = 2π

a x̂ and b2 = 2π
a ŷ

(with lattice spacing a). Just like the case of ν under
inversion in 1D, Gν transforms non-trivially (i.e., as a
vector) under C4 symmetry. Enforcing the symmetry
constrains the weak index to satisfy Gxν = Gyν and Gyν =
−Gxν . Since ν1, ν2 ∈ Z, the only solution is ν1 = ν2 = 012.
However, just as above, if we allow for interactions then
ν1, ν2 ∈ Z8, which means that ν1 = ν2 = 4 is also a valid
possibility, but one that requires strong interactions. In
Fig. 2 we show a model realizing this non-trivial 2D state.
The model is constructed out of orthogonally crossed
1D FK chains, and each unit cell contains 16 complex
fermions ψJn , J = 1, . . . , 16, where n now labels a site on
the square lattice. This model exhibits a non-trivial weak
invariant Gν = 1

2 (4b1 + 4b2), and could represent a 2D
topological charge-4e superconductor, using the same in-
terpretation discussed for the 1D model. We note that an
almost identical discussion could be had for C2 rotation
or a reflection symmetry with, for example, Gν = 1

2 (4b1)

or 1
2 (4b2).

A non-trivial Gν of this form implies that in a sys-
tem with open boundary conditions, any unit cell on a
boundary normal to b1 or b2 will contain four unpaired
Majorana modes of the same type. Then, adding Hbdy

reduces the low energy degrees of freedom in each bound-
ary unit cell to a single spin-1/2. When time-reversal
and translation symmetry are preserved, these boundary
spin-1/2’s will generically form a gapless system with the
same low energy description as the critical FK chain dis-
cussed above. However, the boundary theory of our 2D
system cannot be realized in a 1D electronic system with
the same symmetries, and hence the boundary is anoma-
lous. To see this, note that the boundary of our 2D
system consists solely of Majorana fermions of a single
type (say a-type). But any 1D electronic system with T -
symmetry consists of an equal number of a- and b- type
Majorana modes. Suppose we take a 1D electronic sys-
tem with four a- and b-type Majorana modes per unit
cell, and try to gap the b-modes to make it identical to
the anomalous edge. This procedure will be successful
only if we break time-reversal or translation symmetry.
For example, we could add quadratic tunneling terms be-
tween b-type Majorana modes within the same unit cell,
but this would break time-reversal. A second possibility
would be to couple the four b-type Majorana modes in
unit cell 2n− 1 with the four b-type Majorana modes in
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FIG. 2. A 2D model of a time-reversal invariant, C4-
symmetric topological crystalline superconductor with four
unpaired Majorana fermions in each boundary unit cell. This
model is made of crossed vertical and horizontal FK chains,
and so each unit cell (large white circles) contains 16 complex
(32 Majorana) fermions. To reduce clutter in the Fig., each
red circle represents four a-type Majorana fermions and each
blue circle represents four b-type Majorana fermions. The
green lines indicate a FK interaction in the horizontal wires
and the purple lines indicate a FK interaction in the vertical
wires.

unit cell 2n with the FK interaction, but this would pro-
duce a dimerized pattern which breaks translation sym-
metry. Thus, the edge of our 2D system is anomalous,
and this is a direct consequence of the fermionic nature
of our system.

In addition to non-trivial boundary states, the crys-
talline symmetry-protected topology gives rise to topo-
logical qubits (i.e., non-Abelian excitations) localized on
(semiclassical) lattice defects. Based on the work of
Refs. 10,43–45 we can determine by inspection that a
dislocation with Burgers vector B will have 1

πB ·Gν Ma-
jorana bound states at the core. Additionally, a vertex-
type disclination with Frank angle Ω = ±π/2 will also
trap a tetrad of unpaired a-type Majorana bound states,
while a plaquette-type disclination with Ω = ±π/2 will
not trap any unpaired Majorana modes. Each non-trivial
defect Σ, of either kind, thus binds a decoupled tetrad
of a-type Majorana fermions. Adding the local quartic
perturbation (c.f. Hbdy) reduces the Majorana tetrad to
a single spin-1/2 degree of freedom, which is identical
to an end of the topological FK-chain. Therefore each
of these defects carries a quantum dimension dΣ = 2,
which signifies their non-Abelian nature and ability to
store quantum information non-locally in space.

Let us further consider the fusion properties of defects
in our 2D interaction-enabled model of a weak topological
superconductor. Consider two non-trivial defects (say
a pair of dislocations) in the 2D TCS. On each defect
the stable degree of freedom is an effective single spin-
1/2. Analogous to the tensor product of a pair of spins
[ 1
2 ] ⊗ [ 1

2 ] = [0] ⊕ [1], a pair of separated defects Σ1,Σ2

is associated to a fourfold degeneracy seen by the defect
fusion

Σ1 × Σ2 = 1 + ψ1ψ2 + ψ1ψ3 + ψ1ψ4 . (5.2)

The vacuum channel 1 is the ground state if the disloca-
tion pair is coupled by the FK interaction. It corresponds
to the singlet channel for the pair of spins. The other
three are time-reversal breaking ground states when the
dislocations are coupled by Eq. (4.1) but with a re-
versed sign in front of the sum over even permutations
(the sum over σ ∈ A4). This corresponds to the ferro-
magnetic Heisenberg interaction and the three states are
the tensor products | ↑↑〉X , | ↑↑〉Y , | ↑↑〉Z with respect
to spin-up in the x, y, z directions. It is convenient to
choose these non-orthogonal, but still linearly indepen-
dent, basis vectors. For example the ψ1ψ2 channel has
a non-trivial vacuum expectation value for the Cooper
pair 〈ψ1ψ2〉 = −〈ψ3ψ4〉 = i. In a defect-less 4e supercon-
ductor, Cooper pairs are gapped excitations and are not
responsible for transport at low temperatures. The pres-
ence of these non-Abelian defects could provide pinned
sites between which Cooper pairs can teleport. A non-
vanishing charge 2e tunneling between two normal BCS
superconductor leads in contact with a 4e superconduc-
tor would therefore be a signature for the non-trivial
topology. We note that since these defects are extrin-
sic/semiclassical, their projective braiding properties can
be determined, but we leave this for future work.

B. Three-Dimensional Interaction-Enabled
Topological Crystalline Phase

Our final example is an application of our mechanism
to 3D time-reversal symmetric topological superconduc-
tors in the DIII class, with an additional reflection sym-
metry. Unlike class BDI in 1D, in this class the time-
reversal symmetry operator acts as T 2 = (−1)F , where
(−1)F is the fermion parity. Non-interacting systems in
class DIII are classified by an integer ν ∈ Z, however,
interactions have been shown to reduce the classification
to Z16

46–48. In addition, it was shown in Ref. 13 that
for systems without interactions, the addition of a cer-
tain reflection symmetry could reduce the classification
from Z to 0 (i.e., only a trivial phase exists). This re-
flection operation has the effect of sending ν → −ν, so
according to our general mechanism, 3D TSC’s in class
DIII with the additional reflection symmetry should ad-
mit an interaction-enabled phase with ν = 8. Let us now
provide a more explicit discussion.

Consider a slab geometry of a 3D TSC in this class, in
which the bulk of the material extends to infinity in the
x and z directions, but with surfaces at the locations y =
±y0. The physical meaning of the topological invariant
ν is that in such a geometry, the top surface will host
|ν| gapless two-component Majorana (real) fermion fields
χj(k), where k = (kx, kz) is momentum on the surface,
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with the Hamiltonian

Htop =

∫
d2k

(2π)2

|ν|∑
j=1

χTj (k)(kxσ
z + sgn(ν)kzσ

x)χj(k) ,

(5.3)
while the bottom surface hosts another |ν| gapless Majo-
rana fields χ̃j(k) with Hamiltonian

Hbottom =

∫
d2k

(2π)2

|ν|∑
j=1

χ̃Tj (k)(kxσ
z− sgn(ν)kzσ

x)χ̃j(k) .

(5.4)
Because of the combined time-reversal and charge-
conjugation symmetries, the fermions on the top
and bottom surfaces have a well-defined psuedo-
chirality/winding and they are the opposite of each other
(e.g., the sign of the kz term in the kinetic energy is
opposite). Time-reversal symmetry acts on these fields
as Tχj(k)T−1 = iσyχj(−k), and likewise for the fields
χ̃j(k), and forbids quadratic terms which could gap out
the fermions on one of the surfaces. However, it is possi-
ble to gap the fermions by “gluing” the top of the slab to
the bottom by introducing symmetry mass terms of the
form iχ̃j(k)σxχj(k)− iχj(k)σxχ̃j(k).

Now let us see the consequences of an additional re-
flection symmetry Ry which negates the y coordinate. In
the simplest case Ry could act on the fields χj and χ̃j as
Ryχj(k)R−1

y = χ̃j(k) and vice-versa. It is immediately
clear that Ry sends ν → −ν, so that the free fermion
classification of systems in class DIII with additional Ry
symmetry must be zero. As we know from previous ex-
amples, this is not the end of the story. Since interactions
reduce the classification of systems in DIII to Z16, there
should be an interaction-enabled TSC phase with ν = 8
which possesses the reflection symmetry Ry. We now
briefly discuss the construction of this state.

In the slab geometry we are considering, the
interaction-enabled ν = 8 state of class DIII should have
eight gapless Majorana fermion fields on the top and bot-
tom surface, but with the fields on the top and bottom
surface having the same pseudo-chirality. One way to
construct such a system is to take a slab with ν = −8 and
glue its top surface to the bottom of a slab with ν = 8.
At the interface we have 16 gapless Majorana fields with
the same pseudo-chirality, and a method is needed to gap
out this surface without breaking time-reversal symme-
try. Remarkably, such a method was described in Ref. 47,
and it requires strong interactions in a fundamental way.
Therefore a non-trivial ν = 8 phase in class DIII with

reflection symmetry Ry does exist, but its construction
requires strong interactions.

VI. CONCLUSION

Let us briefly discuss some possible experimental con-
sequences. We have shown that our models can be inter-
preted as “mean-field” topological 4e superconductors.
Here we briefly discuss a possible experimental signature
of a topological 4e superconductor which would be in-
teresting to explore in future work. Unlike an ordinary
BCS superconductor, Cooper pairs are finite energy ex-
citations in a gapped 4e superconductor since they are
not the fundamental bosons in the condensate. It follows
that in a generic charge 4e superconductor, states with
even or odd numbers of Coopers pairs are not degener-
ate since there is a gap to create a Cooper pair in the
system. However, in the FK chain model that we con-
structed, ground states with even and odd numbers of
Cooper pairs are degenerate, and that degeneracy is a
direct consequence of the presence of the four unpaired
Majorana fermions at each end of an open FK chain.
Just as a single Majorana end state allows for single-
electron teleportation in a mesoscopic sample by forcing
the ground states with even and odd fermion parity to be
degenerate49, the boundaries of the FK chain allow for
Cooper pair teleportation since the ends force the ground
states with an even and odd number of Cooper pairs to
be degenerate.

In conclusion, we have shown that interactions can al-
low for a general mechanism to produce interacting topo-
logical phases that have no free-fermion description. The
boundaries of these systems, and bulk topological de-
fects, can trap non-Abelian excitations which could be
used for the robust, non-local storage of quantum infor-
mation. Our construction is easily extended to any sys-
tem where Z→ Z2n, even, as we discussed in Sec. V, 3D
time-reversal invariant interacting topological supercon-
ductors (Z→ Z16)46–48 when extra reflection symmetries
are imposed.
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