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We study the nonequilibrium dynamics of photoexcited electrons in the narrow-gap Mott insulator
VO2. The initial stages of relaxation are treated using a quantum Boltzmann equation methodology,
which reveals a rapid (∼ femtosecond time scale) relaxation to a pseudothermal state characterized
by a few parameters that vary slowly in time. The long-time limit is then studied by a Hartree-
Fock methodology, which reveals the possibility of nonequilibrium excitation to a new metastable
M1 metal phase that is qualitatively consistent with a recent experiment. The general physical
picture of photoexcitation driving a correlated electron system to a new state that is not accessible
in equilibrium may be applicable in similar materials.

PACS numbers: 71.30.+h, 73.50.-h, 78.47.D-

I. INTRODUCTION

Materials with strongly correlated electrons are of
continuing interest and importance to condensed matter
physics because of the remarkable variety of electronic
phases they exhibit [1–4]. It is now possible to exper-
imentally drive these materials into strongly nonequi-
librium states by, for example, the application of high
intensity laser pulses [5, 6]. These experiments raise
questions of the dynamics of the photoexcited electrons
and, in particular, they open the possibility of driving the
system into a new phase [7] that may not be attainable
in equilibrium. In this paper, we address these issues
theoretically by developing a formalism to determine the
evolution of the electron distribution function after the
initial laser pulse and use a nonequilibrium Hartree-Fock
formalism to investigate the possibility of new phases.
The specific context of our work is a recent experiment on
vanadium dioxide (VO2) [8], which found that at certain
levels of laser excitation, the low-temperature insulating
phase could be driven into a long-lived metallic phase
with no equilibrium analogue. We expect our theoretical
methods and the general features of our results to be
applicable to other systems as well.

Vanadium dioxide (VO2) is a strongly correlated ma-
terial. At temperatures > 340 K, it exists in a metallic
rutile (R) phase. At∼ 340 K, VO2 undergoes a first-order
transition [9] to a monoclinic insulating phase with an
optical band gap of ∼ 0.6 eV [10]. Two monoclinic phases
have been reported [11, 12]. The one of interest here
is the M1 phase characterized by dimerized chains of V
ions [13]. Density functional theory plus dynamical mean
field theory (DFT+DMFT) [14] calculations indicate
that the insulating behavior of the M1 phase arises
from the combination of structural (dimerization) and
electronic correlation effects, in the sense that calcula-
tions performed either without interaction or without the
structural distortion predict metallic behavior [15, 16].

Recently Morrison et al. [8] performed pump-probe
experiments, which uncovered new phenomena. In the
experiments, a laser pulse was used to pump a density

of electrons above the insulating gap. After the exci-
tation, the time dependences of the electron diffraction
spectrum and the mid-infrared (mid-IR) transmissivity
were measured. For intermediate laser fluence, the mid-
IR transmissivity decayed to zero on a sub-picosecond
time scale, and then remained zero for the duration of
the measurement (> 100 ps), indicating the formation of
a long-lived metallic state. However, the electron diffrac-
tion pattern showed that the system remained in the
M1 (dimerized) structure, the lattice structure normally
associated with the insulating phase. Similar separations
of the structural and electronic phase transitions in VO2

are reported in other experiments [17, 18] as well. It is a
key goal of our work to understand the M1 metal phase
found in [8].

In this paper, we argue that photoexcitation can lead
to the formation of a long-lived electronic state that is
qualitatively different from the equilibrium phases found
in the material. We first present an analysis of the time
evolution of the electron distribution function soon after
the incidence of an intense laser pulse, using realistic
orbital and interaction structures of VO2 in the M1

phase. We assume that the decay of electron energy into
phonons may be neglected and that the lattice does not
have time to relax. We find that electrons rapidly (∼ fs)
relax to a pseudothermal distribution characterized by
a single temperature but different chemical potentials of
electrons and holes, which are determined by the input
energy initially absorbed from the laser pulse and the
number of electron-hole pairs initially photoexcited. The
pseudothermal distribution then evolves over a time scale
of ∼ 102 fs to a thermal distribution characterized by a
unique temperature and chemical potential, which are
determined by the input energy only.

We then study the fate of the photoexcited system over
longer times (∼ ps) as the electron distribution cools.
We show that for reasonable parameters, the thermal
Hartree-Fock energy landscape exhibits two minima, one
equilibrium state and one metastable state with different
V-3d orbitals preferentially occupied. This occupancy-
dependent shift of the electron bands is a key ingredient
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in the electronic structure of strongly correlated materi-
als. The metastable state is metallic for reasonable values
of the interaction parameters. It is reachable within an
input energy comparable to the pump laser fluence and
not too much greater than the estimated absorption in
the experimental situation in Ref. [8].

The rest of the paper is organized as follows. In Sec.
II, we present the band model that we will use. In
Sec. III A, we develop a quantum Boltzmann picture of
the evolution of the nonequilibrium electron distribution.
In Sec. III B, we provide a Hartree-Fock analysis of the
circumstances under which a change in orbital occupancy
can drive a change in electronic state. In Secs. IV–V, we
show the results obtained by applying our theory to VO2

in Morrison’s experiment [8]. Section VI is a summary
and conclusion.

II. THE DENSITY FUNCTIONAL+U+V
METHOD FOR VO2

Following Campo et al [19], we construct an electronic
band structure for VO2 using the density functional
theory (DFT)+U+V method, in which the basic density
functional theory is supplemented by a Hartree-Fock
treatment of the on-site (“+U”) and inter-site (“+V ”)
d–d interactions. Belozerov et al have constructed a
DFT+DMFT+V theory with very similar physics [16].
The effects of the “+V ” term are a reasonable representa-
tion of the inter-site self-energy terms found in the cluster
DMFT calculations of Biermann et al [15]. Note that
in the correct orbital basis, these inter-site self-energy
terms have only a weak frequency dependence [20]. Let
us write the Kohn-Sham Hamiltonian of the electrons in
their ground state as [19, 21]

Ĥ0 = ĤDFT + V̂HF − Ĥdc, (1)

where ĤDFT comes from a density functional band cal-
culation, V̂HF is the Hartree-Fock approximation to the
electron-electron interactions V̂ involving the vanadium
3d orbitals, and Ĥdc is the double-counting correction.

In the M1 phase of VO2, the unit cell contains four
vanadium ions, which form two dimerized pairs. We only
consider interactions within one unit cell. These may be
generally written as

V̂ =
1

2

∑
~Rσσ′

∑
{m}

Um1...m4
ĉ†~Rm1σ

ĉ†~Rm2σ′ ĉ~Rm4σ′ ĉ~Rm3σ
, (2)

where ~R labels the unit cells, m1 . . .m4 run over the
correlated orbitals in a unit cell, and σ, σ′ label the spins.
We consider two contributions to V̂: the on-site intra-
3d interactions, which we take to be the rotationally
invariant form [21] including both t2g and eg orbitals
parametrized by the Hubbard U and Hund’s coupling
J , and inter-site interactions between the two vanadium

ions in each dimer. The Hartree-Fock approximation V̂HF

of the electron-electron interactions V̂ takes the form

V̂HF =
∑
~R

∑
m1m2σ

Vm1m2
ĉ†~Rm1σ

ĉ~Rm2σ
, (3)

where in a non-spin-polarized system (like VO2)

Vm1m2
=

∑
m3m4σ′

(Um1m3m2m4
− Um1m3m4m2

δσσ′)nm4m3

=
∑
m3m4

(2Um1m3m2m4
− Um1m3m4m2

)nm4m3
(4)

and the occupation matrix

nm4m3
= 〈ĉ†~Rm3σ′ ĉ~Rm4σ′〉 (5)

are independent of both spin and unit cell coordinate ~R.
In Eq. (4), Vm1m2

has both the on-site and inter-site
intra-dimer terms. The on-site terms are the usual ones
treated in standard DFT+U calculations [21]. The inter-
site terms are parametrized by a single parameter V (the

V in DFT+U+V ) and their contributions in V̂HF take
the form

ĤV = −V
∑
~Rσ

∑
〈m1,m2〉

nm1m2 ĉ
†
~Rm1σ

ĉ~Rm2σ
, (6)

which contains only the Fock terms of the density-density
interaction V n̂~Rm1σ

n̂~Rm2σ
. The inter-site Hartree terms

are assumed to be already included in ĤDFT and are not
included again in ĤV [19]. The Fock terms are orbitally
diagonal, meaning that the m1 and m2 sum over only d
orbitals of the same type (e.g. dx2−y2–dx2−y2 , dxz–dxz,
etc.) in the two vanadium ions in a dimer. The inter-site
matrix element nm1m2

(hybridization) between different
types of d orbitals is typically small. In the ground state
(insulating M1 phase), only the hybridization of dx2−y2

orbitals makes an appreciable contribution to ĤV , but in
nonequilibrium metastable states, hybridizations of other
d orbitals may be also important, so we will keep the
terms of all five d orbitals in ĤV .

To proceed in practice, we first performed a non-spin-
polarized DFT+U calculation [21] using the Vienna Ab
initio Simulation Package (VASP) [23] with the atomic
positions fixed in the experimental M1 structure [13]. We
used a k-point mesh of 10 × 10 × 10, an energy cutoff
of 600 eV, and the projector-augmented wave Perdew-
Burke-Ernzerhof (PAW-PBE) pseudopotential [24] in the
VASP library. The on-site interactions are parametrized
by U = 4 eV and J = 0.65 eV [25]. The ĤDFT in
Eq. (1) is then defined as the projection of the DFT+U
Hamiltonian onto a basis obtained from a Wannier fit
to the 24 O-2p and 20 V-3d orbitals using Wannier90
[26] but with the on-site contributions to Vm1m2

and the
double-counting terms removed. These on-site contribu-
tions plus the inter-site Fock terms ĤV in Eq. (6) then
make up the remaining terms in Eq. (1).
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(a)

(b)

FIG. 1. (Color online) The projected density of states
(PDOS) of the M1 phase of VO2 onto the maximally localized
Wannier orbitals in DFT+U+V in (a) the whole p − d
subspace and (b) the near-Fermi-level regime, with U = 4 eV,
J = 0.65 eV, and V = 1 eV. The three d-orbitals in (b) are
defined as the t2g-subspace because of the detailed crystal
structure of VO2. (See e.g. Fig. 5 in [22])

The DFT+U+V band structure for VO2 is plotted in
Fig. 1 for V = 1 eV. The results are in good agreement
with pre-existing results obtained using the GW method
[27] and cluster dynamical mean-field theory (CDMFT)
[15, 20]. The validity of modeling VO2 in a renormalized
band picture is corroborated in [20]. We will discuss our
results in detail in Sec. IV A.

III. FORMALISM

A. Electron dynamics: initial relaxation

In this subsection, we present the formalism we use to
study the initial relaxation of the photoexcited electrons
before energy dissipates into other slower degrees of
freedom such as phonons. For simplicity we use the
quantum Boltzmann equation (QBE) [28], a dynamical
equation for the occupancies n~kνσ of the Bloch states

|~kνσ〉 in an electronic band structure, e.g.,

Ĥ0 =
∑
~kνσ

ε~kν ĉ
†
~kνσ

ĉ~kνσ, (7)

where Ĥ0 is the DFT+U+V Hamiltonian in Eq. (1),
~k sums over k-points in the first Brillouin zone, ν is
the band index and σ labels the spin. The Kohn-Sham
eigenvalues ε~kν do not carry a spin index σ in a non-spin-
polarized system like VO2.

The quantum Boltzmann equation treats electron-
electron interactions V̂ via Fermi’s golden rule, which
gives the transition rates due to V̂ between different
Slater-determinant eigenstates of Ĥ0. While this per-
turbative golden rule based method fails to capture
important aspects of correlated electrons, we believe
that the main conclusions of this section, namely the
orders of magnitude of the relaxation time scales and the
qualitative features of the resulting orbital distributions
should be reasonable.

In a non-spin-polarized system, the quantum Boltz-
mann equation (QBE) is given by

dn~k1ν1
dt

=
2π

h̄

1

N2

∑
~k2~k3~k4

∑
ν2ν3ν4

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2

× δ~k1+~k2,~k3+~k4δ(ε~k1ν1+ ε~k2ν2− ε~k3ν3− ε~k4ν4)

×
[
(1− n~k1ν1)(1− n~k2ν2)n~k3ν3n~k4ν4

−n~k1ν1n~k2ν2(1− n~k3ν3)(1− n~k4ν4)
]
, (8)

where N is the total number of k-points, and the matrix

element |Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2 is a short-hand symbol

for |〈~k1ν1σ,~k2ν2σ′|V̂|~k3ν3σ,~k4ν4σ′〉|2 summed over the
σ = σ′ and σ 6= σ′ cases. The occupancies n~kν =
n~kν↑ = n~kν↓ are single-spin quantities. The k-variables

sum over only the first Brillouin zone and the Kronecker
δ~k1+~k2,~k3+~k4 is to be interpreted as implying equivalence

up to a reciprocal lattice vector to correctly impose the
conservation of crystal momentum.

A direct simulation of Eq. (8) in a general band
structure is numerically difficult. The main problem
comes from the energy delta function, which requires
ε~k1ν1+ ε~k2ν2 = ε~k3ν3+ ε~k4ν4 . To ensure the conservation
of energy in each scattering process to the needed
accuracy, one has to choose a very dense k-point mesh,
which then leads to too many degrees of freedom to
handle in a practical simulation. In order to obtain a
computationally tractable model that still captures the
important physics, we construct a momentum-averaged
quantum Boltzmann equation, whose key variables are
the energy distributions of electrons in different bands
without any k-point information.

Let us begin the derivation by averaging the matrix

elements |Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2 over the 4 k-variables to
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introduce

|U |2ν1ν2ν3ν4 =
∑
{~k}

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2δ~k1+~k2,~k3+~k4

× δ(ε~k1ν1+ ε~k2ν2− ε~k3ν3− ε~k4ν4)/ 1

N

∑
{~k}

δ(ε~k1ν1+ ε~k2ν2− ε~k3ν3− ε~k4ν4), (9)

which are the k-averaged matrix elements that only
depend on the 4 band indices ν1 . . . ν4. The motivation
for the k-averaging comes from the local nature of the
interaction V̂ defined in Eq. (2). The k-dependence of

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2 comes purely from the Bloch wave
functions and tends to be complicated, and effectively
random in real materials, so averaging over the momen-
tum variables is reasonable. Next, we assume that the
occupation numbers of the Bloch states

n~kν ≈ nν(ε~kν) (10)

are only functions of band index ν and energy ε~kν . Then
defining the single-spin density of states of band ν

Dν(E) =
1

N

∑
~k

δ(ε~kν − E), (11a)

and the densities of occupied and empty states

Nν(E) = Dν(E)nν(E), (11b)

N̄ν(E) = Dν(E)[1− nν(E)], (11c)

we derive a k-averaged QBE

dNν1(E1)

dt
=

2π

h̄

∑
ν2ν3ν4

|U |2ν1ν2ν3ν4

∫
dE2dE3dE4

× δ(E1 + E2 − E3 − E4)

×
[
N̄ν1(E1)N̄ν2(E2)Nν3(E3)Nν4(E4)

−Nν1(E1)Nν2(E2)N̄ν3(E3)N̄ν4(E4)
]
. (12)

The band indices are kept in full. The ab initio rate
constants |U |2ν1ν2ν3ν4 are obtained from Eq. (9) using
Monte Carlo methods on a Wannier interpolated k-point
mesh of 20× 20× 20. We will give a detailed derivation
of Eq. (12) in Appendix A.

B. Soft bands in Hartree-Fock theory

In density function theory, the electronic potential is
a self-consistently determined functional of the electron
density, so that changes in the electron distribution
will lead to changes in the band structure. This effect
is greatly enhanced in extended DFT theories such as
DFT+U and DFT+U+V because, in particular, the
relative energetics of the different d orbitals depends
strongly on the orbital occupation matrix. This strong

dependence may lead to photoinduced phase transitions
if photoexcitation changes the occupancy sufficiently.

In the specific case of VO2, since the wavelength of
the pump laser is typically 800 nm (Ephoton = 1.55 eV),
the pump laser typically changes the electron distribution
among the V-3d orbitals (see Fig. 1), but does not change
the total d-count or the real-space charge density n(r)
significantly. We therefore argue that we may analyze
the effects of photoexcitation using Eq. (1) with ĤDFT

and Ĥdc left unchanged, but with V̂HF now determined by
the nonequilibrium distribution of electrons over orbitals,
i.e., the Kohn-Sham Hamiltonian becomes

Ĥ = Ĥ0 + ∆V̂HF, (13)

where ∆V̂HF is the change of V̂HF due to the change of
the orbital occupation matrix (see Eqs. (3)–(5)) under
photoexcitation.

Eq. (13) implies that the electronic band structure
becomes soft in the sense that the conduction band
floats down when its occupancy increases and the valence
band floats up when its occupancy decreases under
photoexcitation. This general picture shows that photo-
excitation has the potential of closing the Mott gap and
driving an insulator-metal transition, thus giving rise to
new electronic phases. The total energies of different
electronic states can be compared using

Etot = 〈Ĥ〉 − 1

2
〈V̂HF〉+ const, (14)

where the expectation value is now taken using the
nonequilibrium distribution. In Sec. V, we will use Eq.
(14) to construct an energy landscape for nonequilibrium
VO2 that will be used to interpret the experiments of
Morrison et al [8].

IV. RESULTS

A. Band structure and initial excitation

Using the DFT+U+V method outlined in Sec. II with
U = 4 eV, J = 0.65 eV and V = 1 eV, we obtain the
band structure of the M1 phase of VO2 in its ground
state shown in Fig. 1. For these parameter values, the
optical gap at the Fermi level is 0.62 eV (not plotted) in
good agreement with experiment [10], and the indirect
gap between the highest occupied and lowest unoccupied
Bloch states (which we will later call the HOMO-LUMO
gap) is 0.45 eV. The lower gap separating the V-3d and
O-2p dominant bands below the Fermi level is 0.55 eV.
We note, however, that the range of parameters U = 3.5
∼ 4.5 eV and correspondingly V = 1.4 ∼ 0.6 eV provide
equally reasonable descriptions of the material.

The band structure in Fig. 1 is characterized by sub-
stantial orbital ordering, with the bonding dx2−y2 orbital
highly occupied and all other d orbitals nearly empty.
The bonding-antibonding splitting of the dx2−y2 orbitals
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arises from the dimerization of the crystal structure and
is enhanced by the inter-site Fock interaction V . The
bonding-antibonding transition is optically active and
the energy ∼ 2 eV in Fig. 1 is in agreement with optical
conductivity data [29]. The HOMO-LUMO gap lies in
between the dx2−y2 bonding orbital and the dxz and
dyz orbitals (which do not exhibit a significant bonding-
antibonding splitting). The gap is opened due in large
part to the on-site Coulomb interaction U . If U = 0,
the dxz and dyz orbitals would overlap the dx2−y2 orbital
in energy and a metallic state would result. If V = 0,
U = 4 eV, the antibonding dx2−y2 peak would fall to the
bottom of the conduction band and the HOMO-LUMO
gap would decrease to only 0.13 eV (not shown).

Next we estimate the energy range and number of
electrons photoexcited in a recent pump-probe experi-
ment on VO2 [8]. The wavelength of the pump laser
is λ = 800 nm (Ephoton = 1.55 eV). Inspection of
Fig. 1 indicates that the primary excitation is from the
dx2−y2 bonding band to dxz-derived states. Solving the
optics problem for the experimental geometry specified
in [8] reveals that the experimental fluence of 3.7 ∼
9 mJ/cm2 that yielded an M1 metal initially generates
N0

eh = 0.048 ∼ 0.12 electron-hole pairs per unit cell,
corresponding to an energy increase per unit cell of
∆Etot = 0.074 ∼ 0.18 eV (see Appendix B for details).

B. Fixed-band QBE dynamics

In this subsection, we simulate the evolution of the
electron distribution immediately after the initial laser
pulse using the quantum Boltzmann equation methods of
Sec. III A over a fixed band structure in Fig. 1. We begin
by assuming for simplicity that the absorption is pro-
portional to the product of densities of states at energy
separation h̄ω = 1.55 eV. Then at t = 0, immediately
after the laser pulse, we have the distributions of holes
and electrons given by

N̄tot(E) = Ntot(E + h̄ω) ∝ Dtot(E)Dtot(E + h̄ω), (15)

where E satisfies E < EF and E + h̄ω − EF > 0.45 eV,
the HOMO-LUMO gap. Here the subscript “tot” means
to sum over all bands ν. The total number of electron-
hole pairs N0

eh is determined by the experimental laser
fluence, as discussed at the end of Sec. IV A. Then we
assume that the initially excited electrons and holes are
randomly distributed over band states, i.e., for all energy
E, the density of occupied states in band ν,

Nν(E) =
Dν(E)

Dtot(E)
Ntot(E), (16)

is directly proportional to the density of states Dν(E)
in band ν. We then evolve the distribution according
to Eq. (12). We find that the equilibration process

FIG. 2. (Color online) The hole distribution N̄tot(E) (E <
EF ) and electron distribution Ntot(E) (E >EF ) per spin at
(a) t= 0 fs, (b) t= 0.5 fs, (c) t= 2 fs, and (d) t= 5 fs. Laser
fluence = 3.7 mJ/cm2. The distribution is fitted to a Fermi
distribution with a common temperature T but two chemical
potentials µe and µh for the electrons and holes based on the
energy and the number of electron-hole pairs at every instant.

comes in basically two steps: the fast prethermalization
(Fig. 2) that establishes a pseudothermal distribution
characterized by a common temperature T but different
chemical potentials µe and µh for the electrons and
holes, and then the slow evolution of thermal parameters
T, µe, µh (Fig. 3) to the final thermal state.

Fig. 2 shows the initial stages of relaxation for laser
fluence = 3.7 mJ/cm2, comparing the calculated distri-
bution to the distribution expected if the electrons and
holes have thermalized. In the first ∼ 0.5 fs after the
laser pulse, the distribution of photoexcited electrons
develops a tail to both high and low energies. Then
in the next 1 ∼ 2 femtoseconds, the electron and hole
distributions thermalize. At the same time, the number
of electrons and holes begins to increase due to the inverse
Auger process, in which a high-energy electron scatters
to a low-energy state while creating an electron-hole
pair, thereby increasing the electron and hole densities
and shifting the main weight in the conduction band to
lower energies (a similar effect was noted in the Hubbard
model by Eckstein and Werner [30]). However, as the
electrons thermalize, the inverse Auger scattering rate
decreases rapidly since only electrons far out in the tail
of the pseudothermal distribution have enough energy
to down-scatter to create an electron-hole pair while
still remaining in the conduction band. By t = 5 fs,
the electron and hole distributions are fully thermalized
and the subsequent evolution can be described by the
evolution of thermal parameters. For higher laser fluence
= 9 mJ/cm2 (not shown) the time evolution of electron
and hole distributions is qualitatively the same as shown
in Fig. 2 and takes roughly the same time, but produces
more electron-hole pairs (Fig. 3).
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FIG. 3. (Color online) Time evolution of (a) number of
electron-hole pairs Neh per unit cell, (b) temperature T ,
(c) chemical potentials µe and µh under laser fluence =
3.7 mJ/cm2 and (d) 9 mJ/cm2.

The evolution of thermal parameters, i.e., the temper-
ature T , the chemical potential µe of the electrons and
µh of the holes, is much slower as noted above. Fig. 3
shows the results for both the low fluence = 3.7 mJ/cm2

and the high fluence = 9 mJ/cm2. The equilibration time
constant approximately scales as the inverse of the square
of the number of electron-hole pairs Neh at equilibrium,
which is a signature of the three-particle Auger and
inverse Auger scattering processes.

Much of what happens in the simulation are explained
by the rate constants |U |2ν1ν2ν3ν4 . The largest rate
constants are those of the hole-hole, electron-hole, and
electron-electron scattering processes that do not change
Neh. The pair creation and recombination processes that
change Neh are comparatively slow. This separation of
time scales has two origins: (a) the gap, which means
that the processes must involve electrons in the tail of
the distribution, and (b) the different orbital characters
of the top of the valence band (dx2−y2) and the bottom
of the conduction band (dxz and dyz) in Fig. 1, which
means that changes in Neh must come from orbital-
changing interactions, i.e., the pair hopping and exchange
terms ∼ J , which are much smaller than the orbitally
diagonally interactions ∼ U .

Even though the density relaxation of Neh is much
slower than prethermalization, due to the combination of
small matrix element and kinetic bottleneck, our QBE-
based simulation still finds that electrons in VO2 will
equilibrate in hundreds of femtoseconds. The higher the
laser fluence, the more electron-hole pairs are generated,
and the faster the electrons equilibrate, as is shown
in Fig. 3. Based on the qualitative picture described
in Sec. III B that photoexcitation generally narrows or
closes the gap, reducing the bottleneck effect of electron
relaxation, we expect that the beyond-fixed-band effects
will lead to even faster relaxation, and to a larger final
number of excited particle-hole pairs.

V. NONEQUILIBRIUM PHASE TRANSITION
TO A METASTABLE METALLIC STATE

In Sec. IV B, we showed that electrons in VO2 relax
on a sub-picosecond time scale to a thermal state with a
well-defined instantaneous temperature. In this section,
we investigate whether the changes in orbital occupancies
due to photoexcitation can lead to significant changes in
the band structure, in particular the HOMO-LUMO gap.
Because the system relaxes rapidly to a thermal state, we
can avoid solving a dynamical Hartree-Fock equation and
consider a Hartree-Fock theory in thermal states only.

We note at the outset that obtaining an insulating
state in VO2 requires two effects. First, the dimerization
(enhanced by an inter-site correlation effect) splits the
dx2−y2 band into bonding and antibonding portions.
Second, the on-site interaction produces a level splitting
between dx2−y2 and the dxz/dyz orbitals. The dimer-
ization gives the possibility of having a filled band, and
the level splitting ensures that the dx2−y2 band lies far
enough below the other bands that it is indeed fully
occupied. The equilibrium phase transition from the
insulating to the metallic state involves a change in the
crystal structure, removing the dimerization. An alter-
native possibility is that at fixed structure a population
inversion of the dx2−y2 and the dxz/dyz bands, driven by
photoexcitation, would lead to a reversal of the energy
ordering, so that the non- (weakly) dimerized dxz/dyz
bands would lie lowest, creating an M1 metal phase.

To investigate the possibility of this M1 metal phase,
we first apply the Hartree-Fock theory in Sec. III B at
temperature T = 0 by calculating the shift of the bands
using Eq. (13). We start from an occupation matrix with
a high dxz occupancy, and find at U = 4 eV, V = 1 eV
and J = 0.65 eV that our system relaxes back to the
conventional M1 insulator phase shown in Fig. 1 in the
Hartree-Fock iterations. However, at slightly increased

FIG. 4. (Color online) The energy landscape at different
values of U with J = 0.65 eV and V = 1 eV. The insulating
phase is used as an energy reference point. The occupancy
n(dxz) is that per V ion per spin, and 8n(dxz) gives the
number of V-dxz electrons per unit cell. ∆Etot is the total
energy change per unit cell.
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values of U , i.e., U = 4.5 eV and 5 eV, the iterations
bring us to a new self-consistent state with a high dxz
(low dx2−y2) occupancy and no gap at the Fermi level –
an M1 metal phase is found.

We next construct in Fig. 4 a cut across the energy
landscape as a function of orbital occupancies with the
M1 insulator and metal phases as its local minima. To
do this, we first determine for U = 4.5 and 5 eV the
44 × 44 (full p–d basis) real-space density matrix of
an intermediate state as a linear interpolation between
the density matrices of the two local minima. Then
we introduce k-independent Lagrange multipliers to the
Kohn-Sham Hamiltonian Ĥ, which are adjusted so that
the band occupancies reproduce this interpolated density
matrix. The states obtained are the minimum energy
states subject to the constraint of a linearly interpolated
real-space density matrix. The energy is then evaluated
by Eq. (14) using Ĥ without the Lagrange multipliers.
The resulting curve, although not necessarily the mini-
mum energy path between the M1 insulator and metal
phases, should give a reasonable representation of the
energy barrier between them. For U = 4 eV, the metal

(a)

(b)

FIG. 5. (Color online) The projected density of states
(PDOS) of the M1 metal phase of VO2 onto the maximally
localized Wannier orbitals in DFT+U+V in (a) the whole
p − d subspace and (b) the near-Fermi-level regime, with
U = 4.5 eV, J = 0.65 eV, and V = 1 eV.

phase is a state in the ghost region of the iterative
Hartree-Fock dynamics with the slowest evolution, and
the energy curve is plotted following the evolution to the
insulating ground state. The extrapolated states at any
value of U cannot be obtained by linear extrapolation of
real-space density matrices, as these can have occupancy
eigenvalues not between 0 and 1. Instead, the states are
obtained by tuning the orbital energies of dxz and dyz
with respect to dx2−y2 using the Lagrange multipliers to
further raise or lower the dxz occupancy.

The projected density of states of the M1 metal phase
is plotted in Fig. 5. We see that the density of states
at the Fermi level is nonzero, so within a band picture
the state is metallic. Also, the dx2−y2 orbitals are now
substantially above the Fermi level, and the bonding-
antibonding splitting of the orbitals is less, reflecting
the decrease in the inter-site Fock terms ĤV due to the
depletion of the dx2−y2 band.

While Fig. 4 shows that the M1 metal phase has higher

(a)

(b)

FIG. 6. (Color online) The energy gap Egap v.s. temperature
T and energy ∆Etot injected per unit cell by the laser pulse
under various parameter values U and V . The Hund’s
coupling J = 0.65 eV is kept constant. Both the optical
gap (0.62 eV, not plotted) and the HOMO-LUMO gap
(0.45 eV) at T = 0 are approximately kept constant under
the simultaneous change of U and V .
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energy at T = 0, we find that at T > 0 the state may be
favored. Fig. 6 plots the calculated HOMO-LUMO gap
as a function of the energy deposited by the pump laser
into the sample for realistic parameter values discussed in
Sec. IV A. Because the electrons equilibrate rapidly, this
is equivalent to plotting against temperature, although
the temperature-energy relationship is not quite linear
and depends on which phase the system is in.

Two qualitatively different behaviors are seen in Fig. 6.
For U = 4 eV, V = 1 eV, there is no phase transition.
The bonding dx2−y2 band in Fig. 1 shifts up and the
dxz and dyz bands shift down as temperature rises,
and eventually the band gap between them is closed.
But there is always a unique stable state at every
temperature T or energy ∆Etot. Similar effects are
seen for U = 3.5 eV, V = 1.4 eV except that the
curve drops more slowly and the gap closes at a slightly
higher temperature. The behavior is very different for
U = 4.5 eV, V = 0.6 eV. When the overlap of the
dx2−y2 band with dxz and dyz bands (indicated by a
negative gap in Fig. 6) exceeds a certain threshold (the
small circle on the green curve), the band structure
undergoes a first-order phase transition to a state with an
inverted population and thus a negative HOMO-LUMO
gap (metallic state) occurs. Near the discontinuity, the
Egap–T curve in Fig. 6a shows a (Tc − T )1/2 singularity,
but the Egap–∆Etot curve in Fig. 6b is not singular.

The M1 metal phase may be metastable (correspond
to a local energy minimum) even if it is not thermally
reachable. Fig. 7 summarizes the situation, showing by
red squares (blue diamonds) the region where a thermally
driven transition to the M1 metal phase occurs (or not),
and by Roman numerals (II and III) the regions where
the M1 metal phase is locally stable and (I) where only
the M1 insulator phase is locally stable.

Compared with the input energy ∆Etot = 0.074 ∼
0.18 eV per unit cell (4 VO2) estimated in Sec. IV A
for the experiment in Ref. [8], the transition point in
Fig. 6b corresponds to a fluence about 4 times larger than
that at which the putative M1 metal phase was observed.
At the experimental fluence level, the theory indicates
that the HOMO-LUMO gap is only slightly reduced from
0.45 eV in the insulating ground state to 0.35 ∼ 0.40 eV
(Fig. 6b, U = 4 eV, V = 1 eV). This discrepancy with
experiment may be due to limitations of the Hartree-Fock
theory, which does not calculate the energy of correlated
electrons or locate phase boundaries accurately.

VI. CONCLUSION

This paper presents a theoretical study of photoexcited
VO2 motivated by the recent experimental report [8] of
a long-lived metallic phase created by photoexcitation
in a material with a crystal structure associated with
insulating equilibrium behavior. We used a band-theory-
based Hartree-Fock mean-field methodology combined
with quantum Boltzmann equation treatment of excited-

FIG. 7. (Color online) The U -V phase diagram. At every
blue diamond point, the Egap-T curve is smooth, indicating
a reversible insulator-metal transition. At every red square
point, a discontinuity in Egap occurs as temperature T rises
above a threshold and the system irreversibly jumps into a
metal phase. The metal phase survives at T = 0 in Regions
II and III but relaxes to the conventional insulating phase if
parameters go back to Region I.

state kinetics. The key findings of our study were (a)
very rapid (∼ fs) relaxation of the photoexcited carriers
to a pseudothermal state characterized by a common
temperature but different chemical potentials for the
electron and hole distributions, (b) a rapid (∼ 102 fs)
relaxation to a thermal state with a well-defined common
temperature and chemical potential and (c) the existence
of a metallic phase which is metastable at temperature
T = 0 and can become favored at higher temperatures
(or laser fluence levels). A recent experimental report
[17] of rapid (≤ 102 fs) collapse of the electronic gap is
consistent with our calculations.

The key approximations of our work are the Hartree-
Fock plus Fermi’s golden rule treatment of the electron-
electron interactions, and neglect of electron-phonon
coupling beyond thermal energy exchange. We believe
that these approximations are not crucial. The important
conclusion of the quantum Boltzmann and Fermi’s golden
rule studies of the dynamics is that thermalization of the
excited particles proceeds much faster than experimental
time scales, so that experimentally relevant issues, in
particular the existence of a metastable metallic state,
can be addressed using steady-state arguments. Further,
the local stability of the metallic M1 phase means that
as phonons take energy out of the electronic system, the
system may simply remain in this phase over a long time
determined by nucleation kinetics. The conclusion seems
very likely to survive the inclusion of higher order effects
in the dynamics. Hartree-Fock theory is normally reliable
for the identification of phases, although the estimates
of the locations of phase boundaries may be inaccurate.
The results presented here should be viewed as indicating
the theoretical possibility of a metastable metallic phase
for reasonable parameters. Further investigations of this
metallic phase, including more reliable determination of
the phase boundaries, investigation of the processes by
which the metastable state might decay, and the study
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of the evolution of the lattice structure, would be of
considerable interest.
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Appendix A: The k-averaged QBE

In this appendix, we give a detailed derivation of
the k-averaged quantum Boltzmann equation (QBE) in
Eq. (12) of the main text from the standard QBE in
Eq. (8). As one can see, when the assumption in Eq. (10)
is satisfied, the number of degrees of freedom of the
system is greatly reduced and Eq. (8) becomes

dn(ε~k1ν1)

dt
=

2π

h̄

1

N2

∑
~k2~k3~k4

∑
ν2ν3ν4

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2

× δ~k1+~k2,~k3+~k4δ(ε~k1ν1+ ε~k2ν2− ε~k3ν3− ε~k4ν4)

×
{

[1− n(ε~k1ν1)][1− n(ε~k2ν2)]n(ε~k3ν3)n(ε~k4ν4)

−n(ε~k1ν1)n(ε~k2ν2)[1− n(ε~k3ν3)][1− n(ε~k4ν4)]
}
, (A1)

where n(ε~kν) ≡ nν(ε~kν) is a short-hand symbol in this
appendix. We may insert resolutions of unity∫

dE δ(E − ε~kν) = 1 (A2)

for ~k2,~k3,~k4 on the right-hand side of Eq. (A1) to get

dn(ε~k1ν1)

dt
=

2π

h̄

1

N2

∑
~k2~k3~k4

∑
ν2ν3ν4

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2

× δ~k1+~k2,~k3+~k4

∫
dE2dE3dE4δ(ε~k1ν1+ E2 − E3 − E4)

× δ(E2 − ε~k2ν2)δ(E3 − ε~k3ν3)δ(E4 − ε~k4ν4)

×
{

[1− n(ε~k1ν1)][1− nν2(E2)]nν3(E3)nν4(E4)

−n(ε~k1ν1)nν2(E2)[1− nν3(E3)][1− nν4(E4)]
}
. (A3)

Multiplying by 1
N δ(E1− ε~k1ν1) on both sides of Eq. (A3)

and summing over ~k1, the left-hand side becomes

LHS =
1

N

∑
~k1

δ(E1 − ε~k1ν1)
dnν1(E1)

dt

=
d

dt
Dν1(E1)nν1(E1) =

dNν1(E1)

dt
, (A4)

using notations defined in Eqs. (11a)–(11c) of the main
text. The right-hand side of Eq. (A3) becomes

RHS =
2π

h̄

1

N3

∑
ν2ν3ν4

∫
dE2dE3dE4 δ(E1+E2−E3−E4)

×
∑
{~k}

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2δ~k1+~k2,~k3+~k4

× δ(E1 − ε~k1ν1) · · · δ(E4 − ε~k4ν4)

× {[1− nν1(E1)][1− nν2(E2)]nν3(E3)nν4(E4)

−nν1(E1)nν2(E2)[1−nν3(E3)][1−nν4(E4)]}. (A5)

Up to this point, the treatment is exact. Here comes the
approximation: the matrix element modulus squared,

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2, together with the Kronecker
δ~k1+~k2,~k3+~k4 that can be thought of as already contained

in |Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2, is replaced by the k-averaged

quantity |U |2ν1ν2ν3ν4 in Eq. (9) times 1/N . Then

dNν1(E1)

dt
=

2π

h̄

∑
ν2ν3ν4

∫
dE2dE3dE4 δ(E1+E2−E3−E4)

× 1

N4

∑
{~k}

|U |2ν1ν2ν3ν4δ(E1 − ε~k1ν1) · · · δ(E4 − ε~k4ν4)

× {[1− nν1(E1)][1− nν2(E2)]nν3(E3)nν4(E4)

−nν1(E1)nν2(E2)[1− nν3(E3)][1− nν4(E4)]} . (A6)

Since |U |2ν1ν2ν3ν4 is independent of {~k} = ~k1 . . .~k4, it can

be taken out of the summation over {~k}, which then gives
us the product Dν1(E1)Dν2(E2)Dν3(E3)Dν4(E4) of four
densities of states. Then using notations in Eqs. (11b)–
(11c) of the main text, we have

dNν1(E1)

dt
=

2π

h̄

∑
ν2ν3ν4

|U |2ν1ν2ν3ν4

∫
dE2dE3dE4

× δ(E1 + E2 − E3 − E4)

×
[
N̄ν1(E1)N̄ν2(E2)Nν3(E3)Nν4(E4)

−Nν1(E1)Nν2(E2)N̄ν3(E3)N̄ν4(E4)
]
, (A7)

which reproduces Eq. (12). The main assumptions are
the slow manifold assumption in Eq. (10), which reduces
the number of dynamical degrees of freedom, and the
local interaction and random band approximation, which
justify the k-averaging of the rate constants.

In the actual implementation of Eq. (9) to obtain

the k-averaged rate constants |U |2ν1ν2ν3ν4 , it is more
convenient to first randomly generate matrix elements

|Ũν1ν2ν3ν4(~k1~k2~k3~k4)|2 that satisfy both momentum and
energy conservation, take the sample average and then
multiply the result by a correction factor M2/M1, where
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FIG. 8. (Color online) Integration measures M1 and M2 for
different band indices ν1, ν2, ν3, ν4 in VO2. The energy delta
functions in Eqs. (A8)–(A9) are smeared to a finite width
of ±5 meV, which is compatible with the k-point mesh of
20 × 20 × 20 we used.

the integration measure

M1 =
1

N4

∑
{~k}

δ(ε~k1ν1+ ε~k2ν2− ε~k3ν3− ε~k4ν4), (A8)

does not consider momentum conservation, while

M2 =
1

N3

∑
{~k}

δ~k1+~k2,~k3+~k4δ(ε~k1ν1+ ε~k2ν2− ε~k3ν3− ε~k4ν4)

(A9)

does. But it turns out that M1 ≈ M2 according to
our actual Monte Carlo data for VO2 (see Fig. 8).
Therefore, the correction factor M2/M1 is insignificant
(even though we still kept it in calculating the rate

constants |U |2ν1ν2ν3ν4). This result also partly justifies
the random band approximation proposed in the main

text: the fact that ~k1 + ~k2 = ~k3 + ~k4 does not make M2

too different from the case that ~k1 +~k2 equals any other
value. The k-points are irrelevant and all that matter are
the energies. Therefore, whether momentum is conserved
or not in doing the k-averaging makes no big difference.

Appendix B: Absorption percentage of laser energy

In this appendix, we present our calculation of the laser
energy absorbed by the VO2 sample in [8]. Ref. [31] gives
the complex dielectric constant ε̃ = 8.2 + 2.5i of the laser
wavelength λ = 800 nm, which yields a complex index of
refraction ñ =

√
ε̃ = 2.90+0.43i. The index of refraction

of the Si3N4 substrate ns = 1.9962 of λ = 800 nm can
also be found online. The thicknesses of the VO2 sample
and the Si3N4 substrate d1 = 70 nm and d2 = 50 nm are
given in the supplementary material of [8]. These data
allow us to reconstruct the experimental setup in Fig. 9.

Since the duration of the laser pulses used in [8] is
35 fs, which is equivalent to over 13 oscillation periods
of the 800 nm laser, the absorption of energy from the
laser pulse can be obtained to adequate approximation
by solving steady-state wave equations. Nonlinear optical
effects are neglected a posteriori because the density of
excited particle-hole pairs is small. We may then use the
formulas given in [32], assuming normal incidence (< 10◦

according to supplementary of [8]).
The numerical result is that R = 43 % of the incident

fluence gets reflected, T = 38 % gets transmitted, and
the remaining ∆ = 1 − R − T = 19 % gets absorbed.
Since the decay length of intensity in the VO2 sample is
λ/4π Im ñ = 148 nm� d1 = 70 nm, the absorbed laser
energy is roughly uniformly distributed throughout the
VO2 sample along the thickness direction.

Then using the density data ρ = 4.571 g/cm3 online
for the M1 phase of VO2, we can find the unit cell volume
and energy increase per unit cell under an incident laser
fluence of 3.7 ∼ 9 mJ/cm2. The result equals ∆Etot =
0.074 ∼ 0.18 eV, the number used in the main text.

FIG. 9. (Color online) The setup of Morrison’s pump-probe
experiment of a VO2 thin film on top of a Si3N4 substrate.
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