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Applying a symmetric bulk bipartition to the one-dimensional Affleck-Kennedy-Lieb-Tasaki va-
lence bond solid (VBS) states for the integer spin-S Haldane gapped phase, we can create an array
of fractionalized spin-S/2 edge states with the super unit cell l in the reduced bulk system, and
the topological properties encoded in the VBS wave functions can be revealed. The entanglement
Hamiltonian (EH) with l = even corresponds to the quantum antiferromagnetic Heisenberg spin-
S/2 model. For the even integer spins, the EH still describes the Haldane gapped phase. For the
odd integer spins, however, the EH just corresponds to the quantum antiferromagnetic Heisenberg
half-odd integer spin model with spinon excitations, characterizing the critical point separating the
topological Haldane phase from the trivial gapped phase. Our results thus demonstrate that the
topological bulk property not only determines its fractionalized edge states, but also the quantum
criticality associated with the topological phase, where the elementary excitations are precisely those
fractionalized edge degrees of freedom confined in the bulk of the topological phase.

PACS numbers: 05.30.Rt, 05.30.-d, 03.65.Vf

I. INTRODUCTION

Topological phases of matter including those require
symmetry protection have been the subject of intense
interest in quantum information science, condensed mat-
ter physics and quantum field theory. Much effort has
been devoted to classification of these topological phases,
and tremendous success is achieved in our understand-
ing of quantum Hall states[1], topological insulators[2–
4], and symmetry protected topological (SPT) phases[5–
7]. The SPT phases possess bulk energy gaps and do
not break any symmetry, but have robust gapless edge
excitations. These SPT states can not be continuously
connected to a trivial gapped state without closing the
energy gap. So there exists a topological phase transi-
tion between a SPT phase and its adjacent trivial phase,
and the corresponding critical theory does not belong to
the conventional Landau-Ginzburg-Wilson paradigm[8–
11]. Such a critical point is a prototype of “deconfined
quantum critical point (QCP)” with fractionalized ele-
mentary excitations[12]. A crucial question is how to ex-
tract the critical properties from the ground state wave
function of the SPT phases.

In one dimension, Haldane[13] predicted that quantum
antiferromagnetic Heisenberg spin chains are classified
into two universality classes: half-odd integer spins with
gapless excitations and integer spins with gapped excita-
tions. Recent studies[14, 15] indicated that the Haldane
gapped phase for odd integer spin chains is a typical SPT
phase, while the even integer spin chains correspond to
the topologically trivial phase, because their edge states
are not protected by the projective representation of the

bulk SO(3) symmetry. According to the classification
theory[7], there exists only one nontrivial SPT phase for
the SO(3) symmetric quantum Heisenberg spin model,
whose fixed point wave function is given by the Affleck-
Kennedy-Lieb-Tasaki (AKLT) valence bond solid state
(VBS)[16]. Since the symmetry protection of the SPT
phase in the bulk can be analyzed in terms of symmetry
protection of the fractionalized edge spins, it motivates us
to question if there exists a general connection between
the SPT phase and the quantum critical phases of the
quantum antiferromagnetic Heisenberg half-odd-integer
spin chains.

In this paper, we first review the entanglement prop-
erty of a single block in the one-dimensional integer spin-
S AKLT VBS states, and prove that the entanglement
Hamiltonian can be expressed in terms of the Heisenberg
exchange of two edge spin-S/2’s. By using a symmet-
ric bulk bipartition[9, 17, 18], we can create an array of
fractionalized spin-S/2 edge states with super unit cell l
in the reduced bulk system. Then the reduced density
matrix and entanglement Hamiltonian (EH) can be de-
rived in terms of the fractionalized edge spins, leading
to the quantum antiferromagnetic Heisenberg spin-S/2
model when the super unit cell l includes even number
of lattice sites. For S = 4n + 2 with integer n, the EH
still describes the nontrivial Haldane gapped phase with
odd integer spins, and for S = 4n the EH corresponds
to the even integer Haldane gapped phase. For the odd
integer spin-S, however, the quantum antiferromagnetic
Heisenberg half-odd integer spin model emerges, charac-
terizing the quantum critical point separating the non-
trivial Haldane phase from the trivial phase. So our re-
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sults demonstrate that the topological bulk property not
only determines its fractionalized edge states, but also
the critical point at the continuous phase transition to
its nearby trivial phase.

II. SINGLE BLOCK ENTANGLEMENT

The spin-S AKLT VBS state as the fixed point state
of the Haldane gapped phase is defined by

|VBS〉 =
N∏

i=0

(
a†i b

†
i+1 − b†ia

†
i+1

)S

|vac〉, (1)

where a†i and b
†
i are the Schwinger boson creation opera-

tors with a local constraint a†iai+b
†
ibi = 2S, and the spin

operators are expressed as S+
i = a†i bi, S

−
i = b†iai, and

Sz
i =

(
a†iai − b†ibi

)
/2. In this construction, each phys-

ical spin is composed of two spin-S/2’s projected into a
total spin-S state, while each neighboring sites are linked
by spin-S/2 singlet, see Fig. 1(a).
To consider the entanglement properties, we choose a

block of l sites denoted by the part A. With the help of
the spin coherent state representation, the reduced den-
sity matrix ρA can be obtained by tracing out the degrees
of freedom without the part A, and its nonzero eigenval-
ues λj with degeneracy 2j + 1 have been derived[19, 20]

λj =
1

(S + 1)
2

S∑

k=0

(2k + 1) [f(k)]l−1

×Ik
[
1

2
j (j + 1)− 1

4
S (S + 2)

]
, (2)

f(k) =
(−1)k S! (S + 1)!

(S − k)! (S + k + 1)!
, (3)

where j = 0, 1, ...S and the recursion function Ik[x] is
defined by

Ik+1[x] =
2k + 1

(S + k + 2)
2

(
k +

4x

k + 1

)
Ik[x]

− k

k + 1

(
S − k + 1

S + k + 2

)2

Ik−1[x], (4)

with I0[x] = 1 and I1[x] =
4x

(S+2)2
. Since the function

|f (k)| decreases with k very quickly, only the first two
terms (k = 0, 1) dominate in the summation for a long
block length l. Thus the eigenvalues are approximated
as

λj ≈
1

(S + 1)2
+ 3

( −S
S + 2

)l−1
[2j (j + 1)− S (S + 2)]

(S + 2)4
,

and up to the first order of δ =
(

−S
S+2

)l

the entanglement

spectrum is thus derived as

ξj ≈ J (l)

[
1

2
j (j + 1)− S

2

(
S

2
+ 1

)]
, (5)

FIG. 1: (a) The picture of AKLT VBS state. Each blue dot
represents a spin-S/2, yellow circle stands for the physical
spin-S, and solid lines denote the singlet bonds. A block with
l sites is chosen as the subsystem A. (b) The entanglement
spectra of the single block are given for l =even and l =odd,
respectively.

with J (l) = 12
S(S+2)

(
−S
S+2

)l

. Then the corresponding

EH can be recognized as: HE = J (l) s1 · s2 where s1 and
s2 are the fractionalized edge spins. Therefore, for a long
block length l, the entanglement properties of the single
block are just described by the quantum Heisenberg spin
model, and the corresponding entanglement spectra are
displayed in Fig. 1(b).

III. SYMMETRIC BULK BIPARTITION

The symmetric bulk bipartition is the most effective
tool to generate an extensive array of fractionalized edge
spin-S/2’s in the bulk subsystem, i.e., the spin chain is di-
vided into two subsystems both including the same num-
ber of disjoint blocks[9, 17]. The fractionalized edge spins
can thus percolate in the reduced bulk system and emerge
as coherent elementary excitations of the effective field
theory of the subsystem. It is convenient to write the
AKLT VBS wave function in the form of matrix product
state (MPS) representation shown in Fig. 2(a)

|V BS〉 =
∑

{si}
Tr

[
A[s1]A[s2]..A[sN ]

]
|s1, s2, ..sN〉, (6)

whereA[si] are the (S + 1)×(S + 1) local matrices, whose
elements can be obtained from the Schwinger boson rep-
resentation, and the periodic boundary condition are as-
sumed. When we group each continuous l lattice sites
into a block, all the even blocks are denoted by the
part A and the rest by the part B. Then by tracing out
the part B, the reduced density matrix ρA and the EH
(HE = − ln ρA) can be derived. The general procedure
is described as the following four steps.

Step 1. Conduct the coarse graining and distill relevant
states within each block[21]. We pick out a block with l
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sites, and perform the singular value decomposition

(
A[s1]A[s2]..A[sl]

)

α,β
=

κ−1∑

p=0

X({si}),pΛpYp,(α,β), (7)

where the number of nonzero singular values κ records
the number of relevant states in the block. For the spin-
S AKLT VBS state, κ = (S + 1)

2
, and the relevant states

|p〉 are effectively composed by two edge spin-S/2’s:

|p〉 =
∑

m,n

χp
m,n|m,n〉,

which are the combination of the degenerate edge states
|m,n〉 with m,n ∈ [−S/2, S/2]. Then we can rewrite the
original VBS wave function into the blocked MPS form,
see Fig. 2(b)

|Ψ〉 =
∑

{pi}
Tr

(
B[p1]B[p2]..B[pN/l]

)
|p1, p2, ..pN/l〉, (8)

where the block matrices are given by B
[p]
α,β =

Λp,pYp,(α,β).
Step 2. Trace out the degrees of freedom in the part B.

Such a procedure can be presented elegantly by a graph-
ical notation described in Fig. 2(c). The contribution of
the subsystem B is represented by the transfer matrix
T =

∑
pB

[p] ⊗ B̄[p]. The expression ρA can be written
into a matrix product operator form, which is displayed
in Fig. 2(c)

ρA = Tr




∏

j

Rj



 , (9)

Rj =
∑

pj ,qj

|pj〉〈qj |
(
B[pj ] ⊗B

[qj ]
)
T. (10)

Step 3. To derive the EH, we have to express the pro-
jection operator |pj〉〈qj | in terms of product of spin oper-
ators. Note that each |pj〉 is composed of two spin-S/2’s
and we can write an expansion:|m〉〈n| =

∑
i Γ(m,n),iO

i,

where Oi (i = 0,1, ...S2 + 2S) are the spin-S/2 opera-
tors with O0 = I. With these considerations, the full
expression Rj is written as

Rj =
∑

{pj ,qj}

∑

{m,n,α}

[(
B[pj ] ⊗B

[qj ]
)
T

]
χ
pj
m1,m2

χqj
n1,n2

×Γ(m1,n1),α2j−1
Γ(m2,n2),α2j

Oα2j−1Oα2j . (11)

It is emphasized that no approximation has been made
so far.
Step 4. Since the form Rj is complicated, a controlled

approximation can be introduced. For a long block length

l, the only dominant coupling in ρA is δ =
(

−S
S+2

)l

, which

implies that the exchange coupling between two edge
spins decays exponentially. Then Rj can be separated

FIG. 2: (a) The MPS representation of the AKLT VBS state.
(b) The blocked AKLT VBS state. (c) The reduced den-
sity matrix under symmetric bulk bipartition with a repeating
structure.

into two individual edge spins, and the final result for
HE is given by

HE ≈ 12

S (S + 2)

( −S
S + 2

)l ∑

i

si · si+1, (12)

where si is the fractionalized edge spin-S/2’s in the re-
duced system. The detailed derivations for the S = 1 and
S = 2 cases are included in the Appendix A and B.
Therefore, the resulting entanglement properties can

be divided into three categories: (i) For l = odd, HE

represents a ferromagnetic ordered phase with spin wave
excitations; (ii) For l = even and S = even, HE de-
scribes the Haldane gapped phase with integer spins.
In particular, for S = 4n + 2 with integer n, it repre-
sents the SPT phase of the odd integer spin Haldane
phase even though the original VBS state corresponds
to the topologically trivial state. (iii) For l = even and
S = odd, HE is just the quantum Heisenberg antiferro-
magnetic half-odd integer spin model with quantum crit-
ical ground state[22]. The corresponding effective field
theory for S > 1 describes a multicritical point charac-
terized by the 1+1 (space-time) dimensional SU(2) level-
S Wess-Zumino-Witten (WZW) theory, but the stable
fixed point of these critical phases is determined by the
SU(2) level-1 WZW theory[22, 23]. These are the impor-
tant properties encoded in the AKLT VBS states with
integer spins.

IV. NUMERICAL SUPPORTS

A. Spin-1 AKLT state

In order to put the above analytical results on a solid
ground, we perform the exact numerical diagonalization
for the reduced density matrix ρA for the spin-1 AKLT
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state without any approximations. The full entanglement
spectrum (ES) for the block length l = 4 is displayed in
Fig. 3(a). We use the effective length LA to denote the
reduced system length, independent of the block length
in the original scale. The degeneracies of each levels cor-
respond to 1, 3, 5,etc for every system length. The density
of entanglement entropy SA/LA saturates to 0.6929 very
quickly, close to the value ln 2 = 0.6931. The entangle-
ment spectral gap ξ1 − ξ0 is found to scale linearly with
the inverse subsystem length ξ1 − ξ0 = k1L

−1
A shown in

Fig. 3(b), suggesting the bulk ES is gapless in the ther-
modynamic limit. Moreover, the second excited entan-
glement level is also fitted as ξ2 − ξ0 = k2L

−1
A displayed

in Fig. 3(b), and the ratio of these two excited levels is
determined as k2/k1 = 1.975 ∼ 2, implying the difference
of scaling dimensions for these two excited levels is 2.
To determine the universality class of this spec-

trum, we focus on the wave function of the low-
est level |ψ0〉. By further cutting the reduced sys-
tem into two halves with lengths la and (LA − la),
respectively, we calculate the entanglement entropy:
s (la, LA) =Trla+1,la+2..LA (|ψ0〉〈ψ0|). Fitting to the
Calabrese-Cardy formula[24],

s (la, LA) =
c

3
ln

[
LA

π
sin

(
πla
LA

)]
+ s0, (13)

we obtain the central charge c = 1.02± 0.02 in Fig. 3(c).
This result confirms that the obtained ES belongs to the
universality class of the 1+1 (space-time) dimensional
SU (2)1 WZW conformal field theory, which is the same
as the quantum antiferromagnetic Heisenberg spin-1/2
chain. The corresponding EH describes the critical point
separating the spin-1 Haldane phase from the trivial
gapped phase[9]. Such a critical point differs the critical
point between the Haldane phase and dimerized phase in
the SO(3) bilinear-biquadratic spin-1 chain from that the
dimerized phase has spontaneously translation symmetry
breaking[25]. It is a multicritical point described by the
1+1 dimensional SU(2)2 WZW theory with c = 3/2.
However, when the block includes the odd number of

lattice sites, e.g. l = 3, the bulk ES is calculated and
displayed in Fig. 4(a). The entanglement entropy den-
sity is found to saturate to 0.691, which is within 0.3%
to the value of ln 2. The lowest entanglement level ξ0
is linear with system size. However, the lowest entan-
glement level has the degeneracy LA + 1 in each sys-
tem size. We computed the magnetization distribution
mz

tot =
∑

im
z
i for these states and found they are well

located in [−LA/2, LA/2], indicating that a large spin-
LA/2 is formed. This can only be achieved in the fer-
romagnetic interacting between edge spins, and the bulk
ES thus describes a ferromagnetical long-range ordered
state. For more evidence, we evaluate the entanglement
gap scales as ξ1 − ξ0 ∼ L−2

A , which is a direct sign of
spin-wave excitations. To further confirm the this spec-
trum, we fit the second excitation level ξ2 − ξ0 ∼ L−2

A ,
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FIG. 3: (a) Bulk ES with S = 1 and the block length
l = 4. (b) Two lowest entanglement levels are linear with
L−1

A . (c) The entanglement entropy s(la, lA) as a function of

g(la, LA) =
1
3
ln
[
LA
π

sin
(

πla
LA

)]
.

as dictated in Fig. 4(b). If we take the Heisenberg in-
teraction as the EH, the coupling constant is fitted to
be J ∼ −0.037, while in our analytical analysis it is
J = (−1/3)3 = −0.038. Thus, our analytical derivation
is confirmed.

B. Spin-2 AKLT state

Another important calculation is performed for the
spin-2 AKLT VBS state. The ES with l = 6 under open
boundary condition is presented in Fig. 5(a). The low-
est level is singlet and the first excited level is triplet.
However, the level spacing between these two states is
fitted as an exponential decay with the subsystem size:
(ξ1 − ξ0) /J (l) ∼ e−LA/∆ with ∆ = 4.769, displayed in
Fig. 5(b). Here the antiferromagnetic Heisenberg cou-
pling strength J (l) is fitted to be 0.0230, very close to
our analytical value 0.0234. In the thermodynamic limit,
the lowest entanglement level becomes four-fold degener-
ate. These results are consistent with the defining prop-
erty of the topological spin-1 Haldane phase. Moreover,
(ξ2 − ξ0) /J (l) shown in Fig. 5(c) approaches to the finite
value 0.274, smaller than the Haldane gap value 0.41 from
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FIG. 4: (a) The bulk ES with S = 1 and the block length
l = 3, the lowest level is (LA + 1)-fold degenerate. (b) The
entanglement spectral gap is linear with square of the inverse
subsystem size, indicating a spin-wave excitation for the fer-
romagnetic Heisenberg spin chain. The second excited level
is also plotted, but the data from small sizes slightly deviate
from the line.

the density matrix renormalization group calculation[26].
The difference can be improved when the longer length
of the effective spin chain is calculated.

V. DISCUSSION AND CONCLUSION

The symmetric bulk bipartition allows us to establish
a general description of QCP separating the SPT phase
from its trivial gapped phase directly from the fixed point
wave function of the topological phase. Any asymmetric
bulk partition for the AKLT wave function always leads
to a bulk ES with multiple gaps (see Appendix C). For
the one-dimensional SPT phase with the protecting sym-
metry of G = SO(3) Lie group, its fundamental group
is Π1(G) = Z2. So there are only two different phases:
the odd integer spin Haldane gapped phase and its trivial
gapped phase adiabatically connected to the even integer
spin Haldane gapped phase. A QCP exists to separate
these two phases, and the effective model Hamiltonian
for this QCP is just given by the quantum antiferromag-
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FIG. 5: (a) The bulk ES with S = 2 and the block length
l = 6 for an open chain. The lowest level is singlet, and
the first excited level is triplet. (b) The first excited level
decays exponentially with the subsystem size. (c) The bulk
excitation energy (ξ2 − ξ0) /J (l) saturates to a finite value in
thermodynamic limit.

netic Heisenberg half-odd integer spin chain. The cor-
responding critical theory is characterized by the 1+1
(space-time) dimensional SU(2)1 WZW conformal field
theory with the Lie group G̃ = SU(2), where G̃ is just
the universal covering group of G and has a trivial funda-
mental group, Π1(G̃) = 1. Our results may thus gener-
alize the widely discussed bulk-edge correspondence: the
bulk topological property of the topological phase not
only determines its symmetry-protected edge degrees of
freedom, but also the critical properties of the second or-
der phase transition to the trivial phase. Furthermore,
the fundamental degrees of freedom of the critical theory
are precisely these edge degrees of freedom confined in
the bulk of the topological phase. As a result this QCP
is a typical deconfined critical point. These results can
be generalized for other SPT phases with the protecting
symmetry of continuous Lie group.

To summarize, we have applied a symmetric bulk bi-
partition to the one-dimensional AKLT VBS states for
the integer spin-S Haldane gapped phase, and an array
of fractionalized spin-S/2 edge spins can be created in
the reduced bulk system. Via the calculations of the
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bulk entanglement spectra for the reduced system, the
topological properties encoded in the original VBS wave
functions are revealed.
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APPENDIX A: ENTANGLEMENT

HAMILTONIAN OF THE SPIN-1 AKLT STATE

The simplest example of the SPT phase is the Haldane
gapped phase of the SO(3) symmetric antiferromagnetic
spin-1 chain, whose fixed point ground state wave func-
tion is given by the AKLT matrix product state

|ψ〉 =
∑

{si}
Tr

(
A[s1]A[s2]...A[sN ]

)
|s1, s2, ...sN 〉 ,(14)

A[1] =

√
1

3
τ+, A[0] = −

√
1

3
τz , A[−1] = −

√
1

3
τ−,

where the local spin si = −1, 0, 1 and τ± =
(τx ± iτy) /

√
2 as the Pauli matrices. In the thermo-

dynamic limit, the spin-spin correlation function decays
exponentially with a correlation length ξ = 1/ ln 3. When
we make a cut in real space, the periodic spin chain trans-
forms into an open chain with fractionalized spin-1/2
edge spins. For a sufficiently long length, these two edge
spins are almost free, leading to four degenerate ground
states. The degenerate ground state has a residual en-
tropy per edge given by sr = ln 2.

If a block of l spins (l ≥ 2) is chosen as a subsystemA in
the state, its reduced density matrix and eigenvalues can
be calculated easily, and the levels in the entanglement
spectrum (ES) are given by

ξ0 = ln4− ln

[
1 + 3

(
−1

3

)l
]
,

ξ1 = ln4− ln

[
1−

(
−1

3

)l
]
. (15)

So when the block contains even number of lattice sites,
the lowest level is singlet and the excited one is triplet,
while the entanglement levels switch each other for the
odd number of lattice sites included in the block. For a
sufficient long block, these four entanglement levels be-
come nearly degenerate, and the entanglement spectrum
can be captured by the following entanglement Hamilto-
nian (EH),

Hb = 4

(
−1

3

)l

sR · sL, (16)

where sR and sL denote the edge spin-1/2’s of the block
and the coupling strength exponentially depends on the
length of the block.
Actually, such a bipartition scheme can be general-

ized to the bulk partition with a large number of dis-
joint blocks with alternating lengths lA and lB, yielding
an extensive number of fractionalized edge spins in the
reduced bulk subsystem. However, the symmetric bulk
bipartition (lA = lB = l) is only the most important
because any asymmetric bipartition leads to a gapped
ES. To rewrite the wave function into block form, we in-
troduce an auxiliary tensor and perform singular value
decomposition

(
A[s1]A[s2]..A[sl]

)

α,β
=

κ−1∑

p=0

X({si}),pΛpYp,(α,β), (17)

where the number of non-zero values κ = 4 records the
number of singular states in each block, formed by two
edge spin-1/2’s. When we express the block basis as

|p〉 =
1∑

{m1,m2}=0

χp
m1,m2

|m1,m2〉, (18)

with χ0 = iτy/
√
2,χ1 =

(
τ0 + τz

)
/2, χ2 = τx/

√
2, and

χ3 =
(
τ0 − τz

)
/2, the wave function is able to be ex-

pressed in terms of block matrices

|ψ〉 =
∑

{pi}
Tr

(
B[p1]B[p2]..B[pN/l]

)
|p1, p2, ..pN/l〉,

with

B[0] = −
√
1 + 3δ

2
τ0, B[1] =

√
1− δ

2
τ+

B[2] = −
√
1− δ

2
τz , B[3] = −

√
1− δ

2
τ− (19)

and δ =
(
− 1

3

)l
.

To generate a bulk ES, we have to make extensive bi-
partition by denoting all the even blocks as the subsystem
A and the odd blocks as subsystem B. Clearly A and B
is symmetric with each other under inversion operation.
When we trace out the subsystem B, the reduced den-
sity matrix can be written into the matrix product form
shown in Fig.2c,

ρA =
∑

{pi,qi}

Tr

(
∏

i

ρ[pi,qi]
)
|p1〉〈q1| ⊗ |p2〉〈q2|..|pN/l〉〈qN/l|

(20)

where the repeating tensor is

Rj =
∑

{pj ,qj}

[(
B[pj ] ⊗B

[qj ]
)
T
]
|pj〉〈qj |, (21)

where T is the blocked transfer matrix.
To extract the entanglement Hamiltonian HE , we have

to rewrite the projection operator |p〉〈q| in the basis of
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σαL ⊗ σαR , where σ0 = 1 and σα (α = 1, 2, 3) as Pauli
matrices. Then the repeating structure of ρA changes
into

Rj =
∑

{p,q}

1∑

{m,n,α}=0

[(
B[pj ] ⊗B

[qj ]
)
T
]
χpj
m1,m2

χqj
n1,n2

×Γ(m1,n1),α2j−1
Γ(m2,n2),α2j

σα2j−1 ⊗ σα2j (22)

where the matrix Γ has been used

Γ =
1

4

[
2τ0

√
2 (τ+ + iτ−)

2τx (1− i) τz − (1 + i) τ0

]
.

Although Rj tensor is quite complicated, a unitary trans-
formation

U =
1√
2

[
τ0 τx

−τx τ0

]
(23)

can be used to simplify it. Furthermore, for l ≫ 2, the
parameter δ is very small and Rj can be expressed in
power series of δ. To the first order of δ, two edge spins

of each block decouple, leading to Rj = R̃2j−1R̃2j with
the simplest form

R̃j =
1

2




1 −δσx
j −iδσy

j δσz
j

σx
j 0 0 0

−iσy
j 0 0 0

−σz
j 0 0 0


 . (24)

In the end, HE can be derived as

HE = − logTr



∏

j

R̃j


 ≈

(
−1

3

)l ∑

j

σj · σj+1, (25)

corresponding to the quantum spin-1/2 Heisenberg chain.
Depending on the parity of the block length l, the nearest
neighbor spin exchange is either antiferromagnetic or fer-
romagnetic coupling. If the blocks include even number
of lattice sites, the corresponding ES reveals an emer-
gent quantum critical state with fractionalized spinons
as the low-energy excitations. When the blocks include
odd number of lattice sites, however, the resulting bulk
ES features ferromagnetic long-range order and spin wave
excitations. To the higher order of δ, the edge spin de-
coupling in Rj does not hold and the EH includes longer
range spin exchange couplings. However, the coupling
strengths of these terms are exponentially small, irrele-
vant to the low-energy excitations.

APPENDIX B: ENTANGLEMENT

HAMILTONIAN OF THE SPIN-2 AKLT STATE

Our extensive bipartition scheme can be applied to any
MPS state, the resulting entanglement Hamiltonian de-
scribes the percolation between edge spins. Let us con-
sider the spin-2 AKLT state and its MPS wave function

is defined by

|ψ〉 =
2∑

{si}=−2

Tr
[
A[s1]A[s2]..A[sN ]

]
|s1, s2, ..sN 〉, (26)

where the local matrices are given by

A[−2] =

√
3

5



0 0 0
0 0 0
1 0 0


 , A[−1] =

√
3

10




0 0 0
−1 0 0
0 1 0


 ,

A[1] =

√
3

10




0 1 0
−1 0 0
0 0 0


 , A[2] =

√
3

5



0 0 1
0 0 0
0 0 0


 ,

A[0] =
1√
10



1 0 0
0 −2 0
0 0 1


 . (27)

In this state, each physical site localizes two spin-1’s, they
tensor together into the spin-2 subspace, and each pair of
neighboring sites is linked with spin-1 singlet. In the ther-
modynamic limit, the spin-spin correlation function de-
cays exponentially with a correlation length ξ = 1/ ln 2.
When a cut is made in real space, the periodic spin chain
transforms into an open chain with two spin-1 edge spins.
For a sufficiently long length, these two edge spins are al-
most free, leading to nine degenerate ground states. The
degenerate ground state has a residual entropy per edge
given by sr = ln 3. This wave function describes the fixed
point state of the spin-2 Haldane gapped phase. Since the
spin-1 edge spins have a faithful representation of SO(3)
group, this gapped phase is believed to be adiabatically
connected to the trivial state.
To gain some insight about the bulk entanglement

Hamiltonian, we first consider a single block case. An-
alytical result of block ES can be obtained by means of
spin coherent state path integral, the eigenvalues of single
length-l block reduced density matrix are

λ0 =
1

9

[
1 + 3

(
−1

2

)l

+ 5

(
1

10

)l
]
,

λ1 =
1

9

[
1 +

3

2

(
−1

2

)l

− 5

2

(
1

10

)l
]
,

λ2 =
1

9

[
1− 3

2

(
−1

2

)l

+
1

2

(
1

10

)l
]
, (28)

corresponding to singlet, triplet and quintet, respectively.
The entanglement Hamiltonian can be readily obtained
as

Hb =
3

2

[(
−1

2

)l

− 3

8

(
−1

2

)2l
]
(s1 · s2)

−3

2

[(
1

10

)l

− 3

8

(
−1

2

)2l
]
(Q1 ·Q2) , (29)
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where si are spin-1 dipole and Qi are quadruple of the
edge spins with the definitions

Q1 = (sx)
2 − (sy)

2
, Q2 =

1√
3

[
3 (sz)

2 − 2
]
,

Q3 = {sy, sz} , Q4 = {sz, sx} , Q5 = {sx, sy} .

For l ≫ 1, we have

Hb ≈
3

2

(
−1

2

)l

(sL · sR) . (30)

We now derive the entanglement Hamiltonian under
symmetric bulk bipartition. When conducting the same
coarse graining to this state, for a general l-site (l ≥ 2)
block, we will end with 9 relevant states

|p〉 =
1∑

{m1,m2}=−1

χp
m1,m2

|m1,m2〉. (31)

Introduce

K =
1√
2




0 0 1
0 −1 0
1 0 0



 , (32)

the exact form of χp can be brought into the compact
form

χ0 =
√
2K/

√
3, χ1 = s−K, χ2 = szK,χ3 = s+K

χ4 =
(
Q1 − iQ5)K/

√
2, χ5 =

(
Q4 − iQ3)K, χ6 = Q3K

χ7 =
(
−Q4 − iQ3

)
K,χ8 =

(
Q1 + iQ5

)
K/

√
2, (33)

with s± = (sx ± isy) /
√
2. Then the VBS wave function

is able to be expressed in terms of block matrices as

|ψ〉 =
∑

{pi}
Tr

(
B[p1]B[p2]..B[pN/l]

)
|p1, p2, ..pN/l〉, (34)

with the block matrices

B[0] =
√
λ0, B

[1] =
√

3λ1/2s
−, B[2] =

√
3λ1/2s

z,

B[3] = −
√

3λ1/2s
+, B[4] =

√
3λ2/4

(
Q1 − iQ5) ,

B[5] = −i
√

3λ2/4
(
Q3 + iQ4) , B[6] =

√
3λ2/2Q

2,

B[7] = −i
√

3λ2/4
(
Q3 − iQ4) , B[8] =

√
3λ2/4

(
Q1 + iQ5) .

The reduced density matrix is also in the MPO form,
that is

ρA = Tr



∏

j

Rj


 ,

Rj =
∑

{pj ,qj}

[(
B[pj ] ⊗B

[qj ]
)
T
]
|pj〉〈qj |, (35)

Here we also have to expand the projection operator in
terms of spin operators,

|m〉〈n| =
8∑

α=0

Γ(m,n),αO
α, (36)

where
−→
O =

{
1,−→s ,−→Q

}
are the nine operators. The exact

form of Γ is found to be

Γ =




1
3 0 0 − 1

2 0 1
2
√
3

0 0 0

0 1
2
√
2

− i
2
√
2

0 0 0 i
2
√
2

− 1
2
√
2

0

0 0 0 0 1
2 0 0 0 − i

2
0 1

2
√
2

i
2
√
2

0 0 0 − i
2
√
2

− 1
2
√
2

0
1
3 0 0 0 0 − 1√

3
0 0 0

0 1
2
√
2

− i
2
√
2

0 0 0 − i
2
√
2

1
2
√
2

0

0 0 0 0 1
2 0 0 0 i

2
0 1

2
√
2

i
2
√
2

0 0 0 i
2
√
2

1
2
√
2

0
1
3 0 0 1

2 0 1
2
√
3

0 0 0




Also in this case we have to make use the gauge free-
dom, we find it’s convenient to introduce the following
transformation matrix

U =




1√
3

0 0 0 1√
3

0 0 0 1√
3

−
√

5
8 0 0 0 0 0 0 0

√
5
8

0 1
2 0 1

2 0 1
2 0 1

2 0
0 − 1

2 0 1
2 0 − 1

2 0 1
2 0√

5
6 0 0 0 −

√
5
3 0 0 0

√
5
6

0 − 1
2 0 − 1

2 0 1
2 0 1

2 0
0 0 1√

2
0 0 0 1√

2
0 0

0 1
2 0 − 1

2 0 − 1
2 0 1

2 0
0 0 − 1√

2
0 0 0 1√

2
0 0




Then after the same procedure the repeating structure
Rj is got. Like in the spin-1 AKLT case, first we only

keep the δ =
(
− 1

2

)l
order term, the two sites in one block

decouple into R̃2j−1R̃2j in this order, thus the transla-

tional invariance is restored. The form of R̃j is

R̃j ≈
1
√
6




√
2/3 −2δO3

j /
√
5 −δO1

j iδO2
j 0 0 0 0 0

√
5O3

j/2 0 0 0 0 0 0 0 0

O1
j 0 0 0 0 0 0 0 0

iO2
j 0 0 0 0 0 0 0 0√

5/6O5
j 0 0 0 0 0 0 0 0

O7
j 0 0 0 0 0 0 0 0

O4
j 0 0 0 0 0 0 0 0

iO6
j 0 0 0 0 0 0 0 0

iO8
j 0 0 0 0 0 0 0 0




.

(37)

It can then be concluded, to the first order of δ

ρA = Tr

(
∏

j

R̃j

)
=

1

3N

(
1− 3

2
δ
∑

j

sj · sj+1

)

HE ≈ 3

2

(
−1

2

)l∑

j

sj · sj+1. (38)

When l is taken to be even, the Heisenberg interaction
is generated, thus an Haldane phase spectrum appears.
When higher order terms gets involved, the decoupling
of Rj does not hold, and there will be both long range
interaction terms and quadruple interaction terms appear
in HE , they both become irrelevant, thus the universality
class of HE is determined by the Heisenberg interaction.
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APPENDIX C: ASYMMETRIC BULK

BIPARTITION

Under asymmetric bulk bipartition, the interaction
strengths between spin-S/2 within one block and adja-
cent blocks can differ dramatically. As a result, the trans-
lational invariance is broken, and the EH reduces to the
J1 − J2 quantum Heisenberg model of spin-S/2 chain

HE =
∑

i

[J1 (lA) s2j−1 · s2j + J2 (lB) s2j · s2j+1] . (39)

where J1 (lA) = 12
S(S+2)

(
−S
S+2

)lA
and J2 (lB) =

12
S(S+2)

(
−S
S+2

)lB
. When both lA and lB are even, the HE

can be brought into the standard spin dimerized model

HE = J
∑

i

[
1 + δ (−1)i

]
si · si+1, (40)

with the dimerization parameter

δ =
1−

(
− S

S+2

)|lA−lB |

1 +
(
− S

S+2

)|lA−lB | . (41)

In S = 1 case, the Lieb-Schulz-Mattice theorem gov-
erns that a dimerized phase spectrum will always emerge.
Thus, when the bipartition is switched from symmetric
to asymmetric, a phase transition in the resulting bulk
ES will occur. However, we can not tune the asymmet-
ric parameter |lA − lB| continuously, because the small-
est value is 2. Hence we can not approach the critical
point, which enforces that the critical point is a decon-
fined one. To get an intuitive picture of the dimerized
bulk ES, we choose the special cases with (lA, lB) =
(2, 2) , (4, 2) , (6, 2) , (8, 2), and pick out the resulting bulk
ES for LA = 12 displayed in Fig. 6. We can see that as
the asymmetry becomes large, the bulk ES becomes a
multilevel structure with equal spacing, where the cou-
pling constant J1 is negligible compared to J2. Then the
reduced subsystem A consists of total isolated LA/2 unit
cells. Therefore, the degeneracy of the n-th level is ex-
pected to be 3Cn

LA/2 and n = {1, 2, ..LA/2 + 1}, which
has been confirmed by the numerical result. Even in the
S = 2 AKLT case, the minimal dimerization parame-
ter is δ = 3/5 for |lA − lB| = 2. This also exceeds the
critical value for the Haldane-dimerized transition point
δc ≃ 0.255.
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