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We study the thermal conductivity of the disordered two-dimensional electron gas. To this end we
analyze the heat density-heat density correlation function concentrating on the scattering processes
induced by the Coulomb interaction in the sub-temperature energy range. These scattering processes
are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is
devoted to the definition of the heat density in the presence of the long-range Coulomb interaction.
To clarify the structure of the correlation function, we present details of a perturbative calculation.
While the conservation of energy strongly constrains the general form of the heat density-heat density
correlation function, the balance of various terms turns out to be rather different from that for the
correlation functions of other conserved quantities such as the density-density or spin density-spin
density correlation function.
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I. INTRODUCTION

The thermal conductivity κ characterizes the ability
of a system to conduct heat in response to an applied
temperature gradient, jk = −κ∇T . Here, the heat cur-
rent jk = jε − µjn is obtained as the difference between
the energy current jε and the product of the chemical
potential µ and the particle current jn. A principle dif-
ficulty for the description of thermal transport is that a
temperature gradient does not correspond to an external
”mechanical” force like the one originating from an elec-
tric potential. To bypass this problem, time-dependent
”gravitational potentials” can be introduced1–5 as source
fields in the microscopic action. The heat density-heat
density correlation function can be found by a variation
of the action with respect to these source fields. Knowl-
edge of the correlation function allows to determine the
thermal conductivity.6

An unpleasant difference of the gravitational poten-
tials with respect to, for example, electromagnetic po-
tentials, is that the gravitational potentials couple to
all terms constituting the Hamiltonian density. This in-
cludes, in particular, the interaction part. Furthermore,
in the presence of impurities, the gravitational potentials
also couple to the disorder part of the Hamiltonian. In
Ref. 6, the latter problem has been overcome by a special
diagrammatic procedure. Recently, we showed how the
use of the gravitational potentials can be merged with
the NLσM formalism, and performed a renormalization
group (RG) analysis for the thermal conductivity of a
disordered Fermi liquid system with short-range interac-
tion potentials.4,5 The RG procedure covers the interval
of energies with the elastic scattering rate 1/τ as the
upper cutoff and the temperature T as the lower one
(T � 1/τ).7

Combined measurements of thermal and electric con-
ductivities are often employed in order to assess the ap-
plicability of the quasiparticle description.8–15 In a Fermi
liquid with weak impurity scattering electric and ther-
mal conductivities are connected by the Wiedemann-
Franz law16 (WFL), κ = L0σT , where L0 = π2/3e2 is
the Lorenz number, σ is the electric conductivity, and
e is the electron charge. A microscopic derivation of
the WFL in a Fermi liquid was given by Langer,17 see
also Ref. 3. Recently, the RG analysis of Refs. 4,5 re-
vealed that for the two-dimensional disordered system
with short range interactions the WFL holds even in the
presence of quantum corrections caused by the interplay
of diffusion modes and the electron-electron interaction.
Generally speaking, the WFL should not be considered
as a strict law outside the realm of single-particle physics.
This is already evident from the very fact that the poten-
tial used for calculating the electric conductivity couples
to the particle density only, while the gravitational po-
tential probes the entire Hamiltonian density. Still, the
RG analysis shows that at least for the leading logarith-
mic corrections in a two-dimensional system with short
range interactions, the WFL is obeyed.

In this paper, we present a perturbative analysis of
logarithmic corrections to the heat-density heat-density
correlation function in a two-dimensional electron gas,
i.e., in a system with long-range Coulomb interaction.
Since the effects of the Coulomb interaction in the RG-
interval of energies have already been studied6 and are
very similar to the case of the short-range interaction,4,5

we will focus our attention on the sub-temperature en-
ergy range, which is the interval of small energies with
T acting as an upper limit. This interval of energies is
beyond the scope of the RG analysis. The main differ-
ence between the RG-interval and sub-temperature en-
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ergy range is that, while the transitions described by the
standard RG procedure are virtual, the sub-temperature
range deals with the on-shell scattering. For the analysis
of the logarithmic corrections to electric conductivity, the
processes with sub-temperature energies can usually be
neglected. Thermal conductivity constitutes an impor-
tant exception. Here, the scattering processes induced
by the long-range Coulomb interaction also yield loga-
rithmic corrections as was first pointed out in Ref. 18.
These corrections may, in principle, compete with the
RG-corrections. The corrections caused by the on-shell
scattering, in contrast to those of the RG origin, violate
the WFL. In this manuscript, we identify the relevant
diagrams and find the correction to the WFL. We show
how the terms violating the WFL become compatible
with the general form of the heat density-heat density
correlation function. We thereby demonstrate the con-
sistency of our results with the general scheme for the
calculation of a correlation function of the density of a
conserved quantity, which in our case is the energy.

Our study differs from previous related work3,6,18–23 in
several respects. The heat-density heat-density correla-
tion function was studied before in Ref. 6. However, loga-
rithmic corrections originating from the sub-temperature
regime were not taken into account in this work. Other
studies of thermal conductivity available in the literature
can be divided into Kubo-type linear response calcula-
tions based on the heat current-heat current correlation
function19,21 and kinetic equation approaches.3,18,20,22,23

Our final result for the thermal conductivity of the sys-
tem with Coulomb interaction, see Eq. (86), coincides
with the one stated in Refs. 3,20–22. While the men-
tioned works arrived at the same final result, they did
not agree on the definition of the energy density and of
the associated current, a question of principle importance
for the calculation of the thermal conductivity. We will
devote special attention to this point. As we will show,
one cannot get correct expressions satisfying energy con-
servation in the calculation using the heat density-heat
density correlation function if the vertex associated with
the interaction part of the hamiltonian density is ignored.
By contrast, the calculation in terms of the heat current-
heat current correlation function, which is not directly
constrained by energy conservation, appears to be less
sensitive, and it was possible to obtain the correct loga-
rithmic corrections even when using incomplete expres-
sions for the heat current.

The paper is organized as follows. In Sec. II we state
general properties of the heat-density heat-density corre-
lation function as well as its relation to the quantity of
our interest, the thermal conductivity. We also introduce
gravitational potentials as source fields in the action. In
Sec. III we define the heat density for the electron system
with Coulomb interaction and present the NLσM in the
presence of the gravitational potentials. This model will
serve as a starting point for the calculation of the heat-
density heat-density correlation function. The Coulomb
problem has a peculiar feature: While we are interested

in heat transport in a two-dimensional electron system,
the natural definition of a local conservation law con-
necting heat density and heat current requires a three-
dimensional setting. The reason is that a part of the en-
ergy of the system is stored in the electromagnetic field,
and this field is not restricted to the two-dimensional
plane. In order to define transport of heat in two dimen-
sions, we devise a specific projection procedure. Special
care has to be taken already on the level of the defi-
nition of the three-dimensional conservation law. The
principle of gauge invariance plays a pivotal role in un-
ambiguously identifying the heat density and heat cur-
rent. In the present context, this aspect was stressed in
Appendix B of Ref. 22. We illuminate this point fur-
ther in Appendix A, where we stress the connection with
the field theoretic construction of the Belinfante energy-
momentum tensor.24,25 In Sec. IV we collect basic formu-
las required for the calculation of the dynamical part of
the heat-density heat-density correlation function. Fur-
ther on, in Sec. V we discuss the structure of the static
and dynamic parts of the heat-density heat-density cor-
relation function. Special attention is devoted to the
consistency with the constraint imposed by the energy
conservation law. Finally, in Sec. VI we introduce the di-
agrammatic representation and present the general anal-
ysis of logarithmic corrections for the heat density-heat
density correlation function. In particular, we clarify how
corrections from the sub-temperature interval of ener-
gies (caused by on-shell scattering processes) enter the
heat density correlation function and modify the ther-
mal conductivity. The full list of logarithmic contribu-
tions of various kind is given in Appendix C. Throughout
Secs. IV-VI as well as in Appendix C, we systematically
compare the heat density-heat density correlation func-
tion with the well-studied example of the density-density
correlation function in order to stress differences and sim-
ilarities.

II. GENERALITIES: THERMAL
CONDUCTIVITY AND THE HEAT-DENSITY

CORRELATION FUNCTION

In this work, we use the Keldysh technique26–29, which
allows us to calculate the correlation function directly in
real time. The action is defined on the Keldysh time-
contour C consisting of forward (+) and backward (−)
branches. We start our considerations with the action

Sk[ψ†, ψ] =

∫
C
dt

∫
r

(
ψ†i∂tψ − k[ψ†, ψ]

)
, (1)

which contains the heat density k explicitly. The heat
density is defined as k = h − µn,30 where h and n are
the hamiltonian density and particle density and µ is the
chemical potential. Further, ψ = (ψ↑, ψ↓), ψ

† = (ψ∗↑ , ψ
∗
↓)

are Grassmann fields with two spin components.
We wish to calculate the retarded heat density correla-

tion function χkk(x1, x2) = −iθ(t1− t2)〈[k̂(x1), k̂(x2)]〉T ,
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where x = (r, t), k̂ = ĥ − µn̂ is the heat density opera-
tor and the angular brackets denote thermal averaging.
The definition of the heat density operator reflects the
fact that we study the propagation of heat under the
condition when mechanical work (e.g. the radiation of
acoustic waves) can be neglected. For the calculation
we define the classical (cl) and quantum components (q)
of the heat density symmetrized over the two branches
of the Keldysh contour, kcl/q = 1

2 (k+ ± k−),29 and
write the retarded correlation function as χkk(x1, x2) =
−2i 〈kcl(x1)kq(x2)〉, where the averaging is with respect
to the action Sk.

In order to generate the heat density correlation func-
tions, we add the source term

Sη = 2

∫
x

[η2(x)kcl(x) + η1(x)kq(x)]. (2)

to the action. Then, one can find χkk as

χkk(x1, x2) =
i

2

δ2Z
δη2(x1)δη1(x2)

∣∣∣∣
η2=η1=0

, (3)

where Z =
∫
D[~ψ†, ~ψ] exp(iSk+iSη) is the partition func-

tion and ~ψ and ~ψ† generalize the definition of ψ and ψ† to
the Keldysh space. The so-called gravitational potentials
η1 and η2 in Sη allow us to formulate a linear response
theory for the heat transport.

To find the thermal conductivity, it remains to estab-
lish a connection between the response to the gravita-
tional potential and the response to a temperature vari-
ation δT . As argued by Luttinger1 (see also Refs. 2),
the responses to δT and Tη may be identified. Namely,
when considering the response to the gravitational po-
tential, which substitutes the temperature gradient, one
should replace η(q, ω) → δT (q, ω)/T . For the purpose
of finding the thermal conductivity from the dynami-
cal heat density-heat density correlation function, it is
important that the limit q → 0 should be taken before
ω → 0. The heat current jk(q, ω) may be found as a
response to the gravitation potential η(q, ω) and, fur-
thermore, the static thermal conductivity κ will be de-
fined as the real part of the coefficient relating the heat
current and −∇T using the discussed relation between
η and δT . Eventually, the thermal conductivity κ has
to be extracted from the disorder-averaged heat density-
heat density correlation function. As usual, transla-
tional invariance results from the averaging over disorder:
〈χkk(x1, x2)〉dis = χkk(x1−x2). Now, one may introduce
the Fourier transform of the correlation function, and ob-
tain κ as follows6

κ = − 1

T
lim
ω→0

(
lim
q→0

[
ω

q2
Imχkk(q, ω)

])
. (4)

The calculation of the thermal conductivity in this paper
will be based on this formula.

The correlation function χkk obeys the following two

important relations

χkk(q = 0, ω → 0) = 0, (5)

χkk(q→ 0, ω = 0) = −cµT. (6)

Eq. (5) reflects the conservation laws of energy and par-
ticle number, while Eq. (6) relates the static part of the
correlation function to the specific heat cµ per unit vol-
ume at constant chemical potential.

III. HEAT DENSITY AND COULOMB
INTERACTION IN THE EXTENDED NLσM

The definition of the heat density and the associated
heat current for the electron gas has been at the center
of a controversial discussion in recent works on thermal
transport. Since this question is of fundamental impor-
tance for the calculation of the thermal conductivity, we
will devote special attention to it. In view of the rela-
tion k = h− µn, and since the expressions for the parti-
cle density and the particle current are well-known, the
mentioned discussion focuses around the definition of the
energy (or hamiltonian) density and the energy current.
At first sight, the answer seems straightforward, as one
can construct the energy-momentum tensor (EMT) for
the system of interacting electrons in a canonical way.
Knowledge of the EMT allows to read off the continuity
equation relating the energy density and energy current.
Two problems arise in this context:

1) The continuity equation obtained from the EMT
relates a three-dimensional energy density to a three-
dimensional energy current, while the problem of thermal
transport for the two-dimensional electron gas requires
knowledge of two-dimensional densities and currents.

2) The canonical EMT is not gauge invariant.
The first point will be addressed in this section, where

we suggest a simple procedure to project the three-
dimensional quantities onto the plane. The second
point, the problem of gauge-invariance, will be addressed
in Appendix A, where we remind the reader of the
field-theoretical construction of the so-called Belinfante
EMT,24,25 which results in a gauge-invariant expressions
for the energy density and current. We would like to re-
mark in this context that these expressions have already
been obtained in Ref. 22, appendix B without making a
connection with the Belinfante tensor.

A. Projection of the electric field onto the charge
carrying plane

Before discussing the derivation of the extended NLσM
with gravitational potentials, we would like to describe
the main elements of the projection procedure separately.
To this end, we will employ the following notation for spa-
tial vectors: r = (x, y)T is a 2d vector, r = (x, y, z)T is
a 3d vector, and r◦ = (x, y, 0)T denotes r embedded into
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the 3d space. We will assume that the 2d electron gas
(2DEG) is located in the xy-plane, while the z-direction
is perpendicular to this plane. We will also use the no-
tation x = (r, t) for a combination of the 2d vector and
time; for example, the two-dimensional number density
is n(x) = ψ†xψx.

The three dimensional hamiltonian density consists of
a non-interacting and an interacting part h = h0 + hint.
The transition to the two-dimensional density is straight-
forward for h0. We focus our attention on the interac-
tion part. In the Coulomb gauge, it is given as (see for-
mula (A17) of Appendix A)

hint(r, t) =
1

8π

[
E‖(r, t)

]2
, (7)

where E‖(r, t) = −∇ϕ(r, t) and

ϕ(r, t) =

∫
dr′

en(r′, t)

|r− r′◦|
. (8)

Here, n(r, t) = n(r, t)δ(z), and n denotes the 2d density
of electrons confined to the 2d plane. Clearly, the field
E‖ is non-zero outside of the 2DEG. In order to obtain a
two-dimensional energy density, we integrate in the per-
pendicular coordinate z as

hint(x) =

∫
dz hint(r, t) (9)

It is instructive to transform the interaction term[
E‖(r, t)

]2
= −ϕ(r, t)∇2ϕ(r, t) +

1

2
∇2ϕ2(r, t). (10)

Using the Poisson equation −∇2ϕ(r, t) = 4πen(r, t)δ(z),
this decomposition allows us to write

hint(x) =
1

2

∫
r′
n(r, t)V0(r◦ − r′◦)n(r′, t) (11)

+
1

16πe2
∇2

∫
dz

[∫
r′
V0(r− r′◦)n(r′, t)

]2
.

As a consequence of this integration in z, Eq. (9), ∇2

appears in the second term instead of the original ∇2. It
is clear now that interaction part of the Hamiltonian is
recovered from hint by an integration over the 2d plane.

Hint =

∫
dr hint(x)

=
1

2

∫
r,r′

n(r, t) V0(r◦ − r′◦) n(r′, t), (12)

where V0(r) = e2/|r| is the familiar Coulomb interaction
term.

Returning to Eq. (11), we note that the first term can
(loosely) be interpreted as a projection of the electric field
onto the charge it originates from. The second term is
a correction, for which the point of observation does not
coincide with the position of the charge. Later, it will

be shown that the second term on the right hand side of
Eq. (11) does not contribute to the correlation function
in the long wavelength limit due to the presence of ∇2.
The crucial point here is that the interaction potential
V0 becomes screened due to the conducting plane. For
the screened potential, unlike for the bare V0, one can
neglect the second term in Eq. (11) in the limit of small
gradients.

B. Fermionic action with gravitational potentials

In this section, we prepare the derivation of the NLσM
by introducing the gravitational potential into the ac-
tion and further by decoupling the interaction term. Let
us recall that according to the discussion in the previ-
ous section the full expression for the two-dimensional
hamiltonian density is h = h0 + hint, where hint is given
in Eqs. (7) and (9) and h0 describes propagation of par-
ticles in the presence of disorder

h0(x) =
1

2m
∇ψ†x∇ψx + udis(r)n(x). (13)

In order to write the action in the presence of the
gravitational potentials in a compact form, it is conve-
nient to define a matrix η̂′ acting in the space of fields
~ψ = (ψ+, ψ−)T as

η̂′ =

(
η1 + η2 0

0 η1 − η2

)
. (14)

Then, the action S defined on the Keldysh contour can
be written as

S[~ψ†, ~ψ, η̂′] =

∫
x

~ψ† (i∂t − [udis − µ](1 + η̂′)) σ̂3 ~ψ

−
∫
x

1

2m
∇~ψ†(1 + η̂′)σ̂3∇~ψ

− 1

8π

∫
t

∫
dr ~E′

T
(1 + η̂′)σ̂3 ~E′ (15)

Here, and in the following, we write
∫
t

=
∫∞
−∞ dt and∫

x
=
∫
r,t

. Summation over the spin degrees of freedom is

implicit. The third Pauli matrix σ̂3 acts in the space of
forward and backward fields. From now on, all matrices
acting in the Keldysh space will be indicated by a hat.

Besides, we wrote ~E′ = (E′
‖
+,E

′‖
−)T , where

eE′
‖
±(r, t) = −∇

∫
dr′V0(r− r′◦)n±(r′, t). (16)

Since our strategy is to project the entire problem onto
the conducting plane, it will be assumed that η′ = η′(x)
does not depend on z. Note that as a result, η2(x) cou-
ples to the two-dimensional heat density. The hamilto-
nian part of this 2d heat density corresponds to the one
introduced in Eqs. (9) and (13).
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Next, the Keldysh rotation can be performed.29,31 To
this end, we introduce new fermionic fields

~Ψ† = ~ψ†L̂−1, ~Ψ = L̂σ̂3 ~ψ, L̂ =
1√
2

(
1 −1
1 1

)
. (17)

With the help of the two matrices γ̂1 = σ̂0, γ̂2 = σ̂1 in
Keldysh space, one may form the matrix of gravitational
potentials η̂ =

∑
k=1,2 ηkγ̂k. The action after this rota-

tion reads

S[~Ψ†, ~Ψ, η̂] =

∫
x

~Ψ† (i∂t − [udis − µ](1 + η̂)) ~Ψ

−
∫
x

1

2m∗
∇~Ψ†(1 + η̂)∇~Ψ

− 1

16π

∫
t

∫
dr ~ET (1 + η̂)γ̂2~E, (18)

where

e~Ek(r, t) = −∇
∫
dr′ V0(r− r′◦)Ψ(r′, t)γ̂kΨ(r′, t). (19)

The last term in Eq. (18) contains four fermionic fields.
We introduce two real Hubbard-Stratonovich fields θ1,2,

forming the matrix θ̂ =
∑
k=1,2 θkγ̂k to decouple this

term. Note that in the case of the Fermi liquid, in
order to decouple all interaction terms, four Hubbard-

Stratonovich matrix fields θ̂l have to be introduced,
where the index l = 0 − 3 denotes the density and spin
density interaction channels. For the Coulomb problem,
without account of Fermi liquid-type interactions, only
the singlet channel, l = 0, is involved. For this reason, no
index l will be used here. After these transformations, the

partition function Z =
∫
D[θ̂]D[~Ψ†, ~Ψ] exp(iS[~Ψ†, ~Ψ, θ̂])

can be written with the use of action

S[~Ψ†, ~Ψ, θ̂] =

∫
x

~Ψ†
(
i∂t − [udis − µ](1 + η̂) + θ̂

)
~Ψ

−
∫
x

1

2m∗
∇~Ψ†(1 + η̂)∇~Ψ +

∫
x,x′

~θT V̂−1η γ̂2~θ, (20)

where

V̂−1η (x, x′) =

∫
dr′′dr′′′V −10 (r◦ − r′′)

×V̂η(r′′, r′′′, t, t′)V −10 (r′′′ − r′◦). (21)

Here, V̂η fulfils the generalized Poisson equation

−∇((1 + η̂(x))∇)V̂η(r, r′, t, t′) = 4πe2δ(r− r′)δ(t− t′).
(22)

A useful relation can be obtained for the electron in-
teraction V̂η in the action S in Eq. (20)

V̂η = V0V̂
−1
η V0 =

1

2
{1 + η̂, V0}+

1

8πe2
V0(∇2η̂)V0. (23)

For the sake of simplicity, we used a matrix notation
for the spatial coordinates here. As one can see, the

above expression reproduces the interaction term given
in (11). Note that the expression above is not an approx-
imation; there are no higher order terms in η. Naturally,
V̂η=0(x, x′) = V0(r◦ − r′◦)δ(t − t′), making contact with
the theory of the two-dimensional electron liquid in the
absence of the gravitational potential. Since η2(x) cou-
ples to the heat density, the action given in (20) taken
together with the relation (23) reflects the form of the
hamiltonian density stated by Eqs. (13) and (11).

C. The extended non-linear sigma model

In this paper, we concentrate on peculiarities of ther-
mal transport related to the Coulomb interaction. A
compact description of our approach to the analysis of
heat transport in a disordered Fermi liquid with short-
range interactions can be found in Ref. 4, while a detailed
discussion of the NLσM extended by the gravitational
potentials was presented in Ref. 5.

As it has been explained in the Introduction, we are
interested in small energies and long distances. For dis-
tances exceeding the mean free path, the physics is de-
scribed by slow diffusion modes (i.e., modes describing
density relaxation in the presence of disorder) rather than
single-particle excitations. Therefore, the fermionic fields
ψ and ψ† have to be integrated out. Furthermore, averag-
ing over disorder realizations can be performed assuming
that disorder is weak in the sense that εF τ � 1, where εF
is the Fermi energy and τ the transport scattering time.
Then, the entire physics of the diffusion modes (the so-
called diffusons) can be encoded in the fluctuations of a

matrix Q̂
t,t′

(r) with respect to its saddle point position

Q̂0(r, t, t′) = Λ̂t−t′ , where

Λ̂ε =

(
1 2Fε
0 −1

)
= ûεσ̂3ûε, ûε =

(
1 Fε
0 −1

)
(24)

and Fε = tanh (ε/2T ) is the fermionic equilibrium distri-
bution function. Here and elsewhere below, 2×2 matrices
denoted by the hat symbol act in Keldysh space, with the
rotation L̂ being already performed.

Generally speaking, in systems obeying the time re-
versal symmetry, the low-energy modes in the Cooper
channel, the Cooperons, can also give rise to singu-
lar corrections to physical quantities at low tempera-
tures. Weak-localization corrections originating from the
Cooperon degrees of freedom are not treated explicitly
in this manuscript as their effect can be accounted for
by a redefinition of the diffusion coefficient. Indeed, it
is known quite generally that corrections to the thermal
conductivity induced by disorder alone, such as weak-
localization corrections, do not lead to a violation of the
WFL.32 Concerning the electron-electron interaction in
the Cooper channel, we assume that it is repulsive. In
this case, corrections originating from the interaction in
this channel can be considered as small because the corre-
sponding interaction amplitude scales to a small value at
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low temperatures.33,34 We therefore concentrate on the
diffuson degrees of freedom in this manuscript.

The manifold of low-lying gapless excitations is de-
scribed by rotations

Q̂ = û ◦ Q̂ ◦ û, Q̂ = Û ◦ σ̂3 ◦ Û , (25)

where Û = Ût,t′(r), and (Û ◦ Û)t,t′ = δ(t − t′). The
◦-symbol denotes a convolution in time.

It will be convenient to release the disorder term udis
in the action S from the explicit dependence on the grav-
itational potentials. To this purpose, the transformation
(”λ-transformation”)

~ψ → λ̂
1
2 ~ψ, ~ψ† → ~ψ†λ̂

1
2 , λ̂ = (1 + η̂)−1 (26)

of the fermionic fields was implemented in Refs. 4,5. For
details of the λ-transformation, we refer to these papers.
As a result of the λ-transformation, η̂ appears through

the matrix λ̂ = 1 − γ̂1η1 − γ̂2η2 + 2γ̂2η1η2 + . . . . For
the calculation of the correlation function according to

Eq. (3), one needs to consider the expansion of λ̂ up to
second order in η̂. For the dynamical part of the corre-
lation function, however, only the terms linear in η̂ are
required.

Starting from the fermionic action displayed in
Eq. (20), one may apply the λ-transformation and subse-
quently follow the traditional route to derive the NLσM
suitable for description of disordered electrons interact-
ing via the Coulomb interaction. When written in terms
of deviations of the matrix field Q from its saddle point,

δQ = Q̂− Λ̂, the model looks as follows

S =
πν0i

4
Tr
[
D(∇Q̂)2 + 2i{ε̂, λ̂}δQ̂

]
− π2ν2

4

∫
xx′

tr[λ̂γ̂iδQ̂tt(r)](γ̂2V̂sη(x, x′))ij

× tr[λ̂γ̂jδQ̂t′t′(r
′)]

+ Tc0

∫
x

~ηT (x)γ̂2~η(x). (27)

Here, the tr-symbol includes a trace in Keldysh space,
an integration over frequencies (when the matrix Q is
written in frequency space), and a summation over spin
degrees of freedom; the symbol Tr includes, in addition,
an integration over coordinates. The first two terms in
Eq. (27) describe diffusion in the absence of the electron-
electron interaction; D is the diffusion coefficient; ν0 is
the single particle density of states per spin direction.
The electron-electron interaction acts only in the singlet
channel (no Pauli matrices acting in the spin space are
present) as it should be for the Coulomb interaction. The
term in the last line describes the contributions to the
static part of the heat-density heat-density correlation
function originating from fermionic degrees of freedom
(i.e., without participation of the diffusion modes); c0 =
2π2ν0T/3 is the specific heat of electrons. We suppressed

an additional term that is linear in η2 and required only
for the calculation of the heat density itself.

The Coulomb interaction entering the action S is stat-

ically screened, V̂sη = (V̂−1η + 2ν0λ̂)−1. This formula is

symbolical: Both V̂sη and V̂η depend on three-dimensional
spatial coordinates, but screening takes place in the two-

dimensional plane. Importantly, λ̂ appears in the term
responsible for screening. At zeroth order in η, the inter-
action Vsη coincides with the statically screened Coulomb

interaction Vsη=0 ≡ V s0 = (V −10 + 2ν0)−1, where again
screening occurs in the plane only. The relation (23) al-

lows us to obtain a regular expansion for V̂sη in powers of
η

V̂sη =
1

2
{1 + η̂, V s0 }+

1

8πe2
V s0 (∇2η̂)V s0 +O(η2). (28)

Since V s0 is not singular anymore, one can neglect in V̂sη
the second term on the right hand side in the limit of
small gradients. Thus, owing to screening, the point of
observation coincides with the position of the charges
when finding the heat density correlation function of
a system of conducting electrons confined within a 2d
plane. (In the case of the bare, i.e., unscreened, Coulomb

interaction one cannot neglect the second term in V̂η
even in the limit of small gradients.) As a consequence,
all subsequent considerations involve the effective two-
dimensional Coulomb interaction with V s0 = 2πe2/(|q|+
κs), where κs = 4πe2ν0 is the inverse screening radius.

IV. DYNAMICAL PARTS OF THE
CORRELATION FUNCTIONS - GENERAL

FORMULAS

A. Dynamical part of the heat density correlation
function

Here, we focus on the dynamical part of the correlation

function χdynkk , for which the corresponding diagrams are
reducible with respect to cutting a single diffuson. The
starting point for all subsequent calculations will be the
Keldysh NLσM action in the presence of the gravitational
potentials, Eq. (27). Only the Q-dependent part of the
action (27) is relevant for the calculation (the last term
in S can be abandoned). In addition, we may restrict
ourselves to terms of linear order in η̂ in the action. This
allows us, in particular, to use the linear approximation
for the interaction V̂sη displayed in Eq. (28). To linear
order in η̂, the Q-dependent part of the action reads

Slin =
πν0i

4
Tr
[
D(∇Q̂)2 + 2i{ε̂, 1− η̂}δQ̂

]
(29)

− π2ν20
4

∫
rr′,t

tr[(1− η̂)γ̂iδQ̂tt(r)]γ̂ij2 V
s
0 (r− r′)

× tr[γ̂jδQ̂tt(r
′)].
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S⌘" S⌘V

FIG. 1: The frequency and interaction vertices originating
from the source terms Sηε and SηV as introduced in Eqs. (31)
and (32), respectively. The density vertex arising in connec-
tion with the calculation of the density-density correlation
function will be drawn in the same way as the frequency ver-
tex.

We decompose

Slin = Sη=0 + Sεη + SηV . (30)

with two types of source terms in the action. The first
one is already present in the noninteracting theory

Sηε =
πν0
2

Tr[{ε̂, η̂}δQ̂]. (31)

The other source term is specific for the interacting prob-
lem

SηV =
(πν0)2

4

∫
rr′,t

tr[η̂(r, t)γ̂iδQ̂tt(r)] (32)

× γ̂ij2 V s0 (r− r′)tr[γ̂jδQ̂tt(r
′)].

As will become clear below, the existence of this vertex is
of crucial importance for the internal consistency of the
theory, in particular with respect to the conservation of
energy.

The two source terms of Eq. (31) and Eq. (32) give rise
to two vertices in the diagrammatic representation, which
we will refer to as the frequency vertex and the interac-
tion vertex, respectively. They are displayed in Fig. 1.
One can further distinguish between vertices originating
from a differentiation with respect to η2 and η1. For the
sake of definiteness, we will draw the vertices related to
η2 on the left hand side and those related to η1 on the
right hand side of a diagram.

Correspondingly, for finding the dynamical part, we
need to calculate

χdynεε (x1, x2) = − i
2

(πν0)2
∫
εi

e−it1(ε1−ε2)+it2(ε3−ε4) (33)

× 〈ε12tr[γ̂2δQ̂ε1ε2(r1)]ε34tr[γ̂1δQ̂ε4ε3(r2)]〉r,

where εij = (εi + εj)/2, together with the term

χdynεV (x1, x2) (34)

=− i

8
(πν0)3

∫
r3,εi

e−it1(ε1−ε2)〈ε12tr[γ̂2δQ̂ε1ε2(r1)]

× tr[γ̂1γ̂iδQ̂t2t2(r2)]γ̂ij2 V
s
0 (r2 − r3)tr[γ̂jδQ̂t2t2(r3)]〉r

and the analogous term χdynV ε (x1, x2). We introduced the

notation
∫
ε

=
∫
dε
2π . The index r in these formulas in-

dicates that only those contributions should be selected

that are reducible with respect to a single diffuson. Av-
eraging 〈. . . 〉 is with respect to the action Sη=0. A term
with two interaction vertices exists, χV V , but is not writ-
ten because it does not contribute to the dynamical part
of the correlation function in the one-loop approximation,
but only to the static part.4,5 We concentrate on the dy-
namical parts of the correlation functions, because the
sub-temperature corrections do not influence the static
parts.

B. The dynamical part of the density-density
correlation function

It is instructive to compare the calculation of the heat
density-heat density correlation function to that of the
density-density correlation function in the same formal-
ism. This correlation function can generated from the
source term Sϕ = πν0Tr[ϕ̂Q̂] by differentiation

χnn(x1, x2) =
i

2

δ2Z
δϕ2(x1)δϕ1(x2)

∣∣∣∣
η2=η1=0

, (35)

in analogy to Eq. (3). From this formula, one obtains the
expression

χdynnn (x1, x2) = − i
2 (πν0)2

∫
εi

e−it1(ε1−ε2)+it2(ε3−ε4)

×〈tr[γ̂2δQ̂ε1ε2(r1)]tr[γ̂1δQ̂ε4ε3(r2)]〉r. (36)

In contrast to the heat transport, only a single vertex
exists, the density vertex. For this vertex, we will use
the same graphical representation as for the frequency
vertex, i.e., the one displayed in the left part of Fig. 1.

For the dynamical part of the density-density corre-
lation function rescattering on the short-range part of
the electron-electron interaction is allowed, while for the
heat density correlation function this is impossible. In
spite of these differences, within the RG-interval of ener-
gies the WFL holds; see Refs. 4–6. This indicates that
there are non-trivial but robust connections between the
interaction vertices and the interaction amplitudes that
are fulfilled for the Fermi liquid and remain valid even
during the course of the RG transformations.

C. Perturbation theory and dynamical screening

In the calculation of the correlation functions, an ex-
pansion of Q̂ in deviations from the metallic saddle point
σ̂3 is needed. For the sake of definiteness, we choose
the exponential parametrization Û = exp(−P̂ /2) with

{σ̂3, P̂} = 0, so that Q̂ = σ̂3 exp(P̂ ). Fortunately, an ex-

pansion to low orders in the generator P̂ is sufficient for
our calculation. As an example, the diagrammatic rep-
resentation of the frequency vertex in the sigma model
is illustrated in Fig. 2 (a); the interaction vertex is rep-

resented analogously. When the expansion of Q̂ in P̂ is
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(a)

(b)

FIG. 2: (a) Diagrammatic representation of the frequency ver-
tex in the sigma model. The first three terms of the expansion
in P -modes are displayed. (b) Diffuson.

implemented in Sη=0, this gives among other terms rise
to the quadratic action S0 of the noninteracting theory

S0 = − iπν0
4

Tr
[
D(∇P̂ )2 − 2iε̂σ̂3P̂

2
]
. (37)

The action S0 describes the propagation of diffusion
modes, so-called ”diffusons” [see Fig. 2 (b)]

D(q, ω) =
1

Dq2 − iω . (38)

Note that D is the retarded diffuson, the advanced diffu-
son will be denoted as D and is related to the retarded
diffusion as Dq,ω = Dq,−ω. In the perturbative calcu-
lations involving diffusion modes, S0 given by Eq. (37)
serves as a starting action. The necessary contractions
for the Gaussian averaging can be performed with the
help of the contraction rules that we formulate in Ap-
pendix B.

A distinctive feature of the sigma model for interacting
systems is that upon expansion of Sη=0 in deviations from
the saddle point the interaction potential contributes to
the quadratic form in the P -modes. This allows one to
incorporate Fermi liquid effects into the propagation of
diffusion modes in an automatic way. These effects can
be interpreted as rescattering of diffusons by the electron-
electron interaction, or alternatively as a modification of
the interaction amplitudes by diffusons. An example of
such a processes is presented in Fig. 3, which represents
the dynamic part of the polarization operator. [A discus-
sion of the diffuson propagator modified by the electron
interactions in the Keldysh formalism can be found in
Sec. III B of Ref. 35.] In the present context it is more
convenient to delegate the output of the resummation
to the interaction itself. As a result, the dynamically
screened Coulomb interaction should be used instead of
the statically screened V s0 .

In the Keldysh formalism, the dynamically screened
interaction acquires a non-trivial matrix structure in
Keldysh space:

V̂ ijk,ν =

(
V Kk,ν V Rk,ν
V Ak,ν 0

)
, V Rk,ν =

1

V −10 (k) + PRk,ν
. (39)

In this formula, V0(k) = 2πe2/|k| is the effective
two-dimensional Coulomb interaction and PR(k, ν) =
2ν0Dk2/(Dk2 − iν) is the retarded polarization opera-

tor. The advanced and Keldysh components of V̂ are de-
fined as V Ak,ν = V Rk,−ν and V Kk,ν = Bν(V Rk,ν − V Ak,ν), where

Bν = coth(ν/2T ) is the bosonic distribution function.

V. STRUCTURE OF THE CORRELATION
FUNCTIONS

Before turning to the calculation based on the spe-
cific formalism used in this paper, it is instructive to dis-
cuss the general structure of the heat density-heat den-
sity correlation function χkk(q, ω). In particular, we are
interested in the constraint given by Eq. (5), which is a
consequence of the fact that χkk(q, ω) describes the prop-
agation of the heat density under the condition when the
entropy is a conserved quantity.

We are interested in the singular behavior of χkk(q, ω)
which depends on the order of taking the limits q → 0 and
ω → 0. We will assume in this section that all intermedi-
ate integrations have already been performed, and, corre-
spondingly, all corrections arising from the RG-interval
and sub-temperature energy range have been absorbed
into the constants which determine the correlation func-
tion. In other words, we will discuss the ”ultimate” stage
when everything that does not depend singularly on q
and ω can be substituted by a constant. The remain-
ing singular behavior originates from the diffusion prop-
agation of electron-hole pairs, which for free electrons is
described by the propagator D(q, ω), Eq. (38). In the
presence of the electron interaction, this propagator has
to be modified as will be described below.

In order to allow for a direct comparison with the
density-density correlation function, χkk will be struc-
tured in the same way as χnn. [A discussion of the
density-density correlation function can be found in
Refs. 35–39. The heat density-heat density correlation
function has been analyzed in Ref. 6. However, the scat-
tering processes, which are the center of our interest here,
have not been considered so far for χkk.] In both cases,
the correlation function can be split into static and dy-
namical parts. As we have already mentioned in Sec. II,
see Eqs. (5) and (6), the static parts are related to the
corresponding thermodynamic quantities: the compress-
ibility in the case of χnn, and specific heat in the case of
χkk. The dynamical parts should cancel the static ones in
the limit q = 0, ω → 0, which is the way the conservation
laws for particle number and energy manifest themselves.
Our goal is to demonstrate how this works for χkk. We
start, however, with χnn for which this procedure is well
established.
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FIG. 3: The structure of the dynamical part of the density-
density correlation function in accordance with Eq. (42).

1. The density-density correlation function

The density-density correlation function can be split
into a static and a dynamical part

χnn(q, ω) = χstnn + χdynnn (q, ω), (40)

where the static part is defined as χstnn = χnn(q→ 0, ω =
0). Quite generally, the static and dynamical part can be
further decomposed as follows

χstnn = −2ν0γ
ρ
• (41)

χdynnn (q, ω) = −2ν0(γ̄ρ/)2
iω

D−1ξ (q, ω) + iΓ̄ρω
. (42)

Let us discuss the parameters appearing in the above
expressions. As is well known, the static part of the cor-
relation function is related to the compressibility χstnn =
−∂n/∂µ. Therefore,

γρ• =
1

2ν0

∂n

∂µ
. (43)

The structure of the dynamical part of the correlation
function is displayed in Fig. 3. The vertex corrections
for the two scalar vertices are denoted by γ̄ρ/ ; Γ̄ρ is the
short range part of the singlet interaction amplitude.
This means, in particular, that the long-range part of
the Coulomb interaction is not included in χnn. The dif-
fusion propagator modified by the electron interaction,
the diffuson Dξ, is defined as

Dξ(q, ω) =
ξ2

Dq2 − izω . (44)

It incorporates the frequency renormalization z, intro-
duced in Ref. 36, and the wave-function renormalization
ξ2. Using the relation χnn(q = 0, ω → 0) = 0, a di-
rect consequence of particle number conservation, one
deduces the following condition

z1 =
ξ2(γ̄ρ/)2

γρ•
, (45)

where we use the notation z1 for the combination z1 =
z− ξ2Γ̄ρ. Adding the static and the dynamical part, one
finds in view of the Eqs. (45) and Eq. (43) that

χnn(q, ω) = −∂n
∂µ

Dq2

Dq2 − iz1ω
. (46)

The wave-function renormalization appears explicitly
only in the diagrammatic approach. In the σ-model ap-
proach to the problem,35,36 one deals directly with the
effective amplitude Γρ = ξ2Γ̄ρ and the effective vertex
correction γρ/ = ξγ̄ρ/ . Electric conductivity can be found
from the relation

σ = −e2 lim
ω→0

lim
q→0

[
ω

q2
ImχRnn(q, ω)

]
(47)

from which one deduces σ = 2ν0e
2D.

Let us now turn to a specific model in which only the
long-range part of the Coulomb interaction is accounted
for. [Screening will be included, while the short-range
Fermi liquid amplitudes both in the singlet and in the
triplet channel are ignored. By contrast, the short-range
amplitudes generated by the interplay of the Coulomb
interaction and disorder have to be included.] It means
that in the absence of the Fermi-liquid corrections, at
the initial scale of the RG-integration, i.e., at 1/τ , one
has γρ• = γρ/ = γ̄ρ/ = z1 = ξ2 = z = 1, as well as
Γ̄ρ = Γρ = 0. From the previous analysis,36–39 it is well
understood that the compressibility χstnn = −∂n/∂µ does
not acquire quantum corrections. In the explicit calcula-
tions presented below, we will take the relation γρ• = 1
for the static part for granted, and only analyze the dy-
namical part of the correlation function. The goal will
be to identify the corrections δξ2, δD, δz, δΓ̄ρ, δγ̄

ρ
/ in the

expression

χdynnn (q, ω) ≈ −2ν0
iω(1 + δξ2 + 2δγ̄ρ/)

(D + δD)q2 − iω(1 + δz − δΓ̄ρ)
≈− 2ν0iωD
− 2ν0iω

[
δξ2(Dq2 − iω)− δDq2 + iω(δz − δΓ̄ρ)

]
D2

− 2ν0iω(2δγ̄ρ/)D. (48)

In particular, we need to check the relation δz1 = 0,
which implies

δz = δ(ξ2Γ̄ρ) = δΓ̄ρ. (49)

The first equality follows directly from the definition of
z1, while the second equality is a consequence of the fact
that initially Γ̄ρ = 0 and ξ2 = 1. A second constraint
reads

2δγρ/ = δξ2 + 2δγ̄ρ/ = 0. (50)

This constraint follows from Eq. (45) (a consequence of
particle number conservation) under the condition that
δz1 = δγρ• = 0.

Clearly, a full diagrammatic analysis of χnn for the
disordered electron liquid requires further steps. Details
can be found, for example, in Ref. 37.

2. The heat density-heat density correlation function

In this section, we will discuss the structure of the heat
density-heat density correlation function. The discussion
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will be organized in the same way as for the density-
density correlation function.

The correlation function can be split into static and
dynamical parts. The static part is defined as χstkk =
χkk(q→ 0, ω = 0), and we write

χkk(q, ω) = χstkk + χdynkk (q, ω). (51)

The static and dynamical parts take the following struc-
ture

χstkk = −c0Tγk• , (52)

χdynkk (q, ω) = −c0T (γ̄k/ )2[iωD̃ξ(q, ω)], (53)

where the propagator

D̃ξ(q, ω) =
ξ̃2

D̃q2 − iz̃ω
(54)

depends on the constants z̃ and ξ̃2 and D̃ which have to
be found during the process of calculation. The relation
between these quantities and z, ξ2 and D introduced for
the density-density correlation function will be clarified
later. Further, γ̄k/ is a correction to the frequency ver-
tex. The static part of the correlation function, as follows
from Eq. (6), is determined by the specific heat c of the
electronic system, which is known to acquire quantum
corrections within the renormalization group interval of
energies. In Eq. (52), these corrections are absorbed into
the quantity

γk• =
c

c0
. (55)

The structure of the dynamical part of the heat
density-heat density correlation function is displayed in

Fig. 4. Its main difference from χdynnn is that for χdynkk
ladder diagrams with the interaction amplitudes Γ̄ρ as
shown in Fig. 3 are not relevant. Therefore, the singu-
larity of this correlation function is determined by the
denominator of the diffuson propagator D̃ξ without in-
sertions describing rescattering; compare Fig. 4 to Fig. 3.
The reason underlying this observation can be under-
stood easily. An insertion of the static amplitude Γ̄ρ de-
couples the frequency integrations on the left and right
hand side of the diagram. As a consequence, a frequency
integral of the type

∫
ε
ε(Fε+ω/2−Fε−ω/2) = 0 arises from

the vertex related to the classical component of the grav-
itational potential, and diagrams with Γ̄ρ-insertion do

not contribute to χdynkk . It is important to note, however,
that this simple observation does not imply the absence
of vertical diagrams in general, as will be discussed in
detail in the next section.

Energy conservation imposes a constraint on the cor-
relation function χkk, which is encoded in the relation
χkk(q = 0, ω → 0) = 0, compare Eq. 5. This, in turn,
imposes the following constraint on the parameters en-
tering the static and dynamical correlation functions

γk• z̃ = ξ̃2(γ̄k/ )2. (56)

�̄k
/ D⇠ �̄k

/

FIG. 4: The structure of the dynamical part of the heat
density-heat density correlation function in accordance with
Eq. (53).

As has been discussed in Refs. 40, the quantity z which
describes renormalization of the frequency term in action
S, and in this way enters the propagator of diffusons, is
directly related to the specific heat, c = zc0, so that
γk• = z. Using this information as an input, Eq. (56) can

be also written as zz̃ = (γk/ )2, where we defined γk/ = ξ̃γ̄k/ .
Within the renormalization group interval of energies,
this relation degenerates to z = z̃ = γk/ . Adding the
static and the dynamical parts, one then finds

χkk(q, ω) = −γk• c0T
D̃q2

D̃q2 − iz̃ω
. (57)

At the scale 1/τ , the initial values for the various pa-

rameters of the theory are γk• = γ̄k/ = z̃ = ξ̃2 = 1, and
the propagator of the diffuson is equal to D(q, ω), com-
pare Eqs. (44) and (54) with Eq. (38). Coming back to
the dynamical part, Eq. (53), we therefore expect that
a perturbative calculation of the dynamical part of the
correlation function will result in an expression of the
following form

χdynkk (q, ω) ≈ −c0T
iω(1 + δξ̃2 + 2δγ̄k/ )

(D + δD̃)q2 − i(1 + δz̃)ω

≈ −c0TiωDq,ω

−c0Tiω(δξ̃2 + 2δγ̄k/ )Dq,ω

−c0Tiω[−δD̃q2 + iωδz̃]D2
q,ω. (58)

To check consistency of the sum of dynamical and static
parts of χkk(q, ω) with the conservation laws, one should

make certain, in view of Eq. (56), that the relation δξ̃2 +
2δγ̄z/ − δz̃ = δz indeed holds.

In the next section, the analysis of the logarithmic cor-
rections to χkk as well as χnn is presented. In particular,
in the following sections, Sec. VI A and Sec. VI B, the
structure of the different terms is discussed together with
their diagrammatic representation, while in Sec. VI C
logarithmic corrections arising from the RG and sub-
temperature intervals are described in detail. In Ap-
pendix C a comprehensive list of different contribution
is given.
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FIG. 5: Diagram for the non-interacting part of the dynamical
correlation functions χdynεε,0 and χdynnn,0.

VI. DYNAMICAL CORRELATION FUNCTIONS
- DIAGRAMMATIC ANALYSIS AND

LOGARITHMIC CORRECTIONS

In this Section, we present an analysis of the dynamical
part of the heat density-heat density correlation function

χdynkk in the diffusive limit. The analysis will be based
on the NLσM action derived in Sec. III, Eq. (27). To
highlight similarities and differences, we contrast the cal-

culation of χdynkk with that of χdynnn within the same for-
malism. In order to prepare the discussion of the inter-
action corrections, we first summarize the results for the
non-interacting case.

A. The non-interacting part of the correlation
function

In the absence of interactions, only the frequency-

frequency correlation function χdynεε contributes to χdynkk ,

χdynεε,0(x1, x2) = − i
2

(πν0)2
∫
εi

e−it1(ε1−ε2)+it2(ε3−ε4)

× 〈ε12tr[γ̂2σ3P̂ε1ε2(r1)]ε34tr[γ̂1σ3P̂ε4ε3(r2)]〉0. (59)

The corresponding diagram is displayed in Fig. 5. With
the help of the contraction rules (B2) or (B3) on finds

χdynεε,0(q, ω) = −2iπν0Dq,ω

∫
ε

ε2∆ε,ω. (60)

Here, we introduced the window function

∆ε,ω = Fε+ω/2 −Fε−ω/2. (61)

The appearance of the window function is characteris-
tic for the dynamical part of the correlation function.
For T → 0, it allows frequencies ε to lie in the interval
(−ω/2,+ω/2); at finite temperature this range broadens.
Still, upon integration in ε, the function ∆ε,ω gives rise

to the factor of ω. Returning to the calculation of χdynεε,0,
after expansion in ω and with the help of the relation∫
ε
ε2∂εFε = πT 2/3, one obtains

χdynεε,0(q, ω) = −c0TiωDq,ω, (62)

where we remind that c0 = 2π2ν0T/3 is the specific heat
in the absence of quantum corrections.

In complete analogy, one can calculate the dynami-
cal part of the density-density correlation function in the

non-interacting limit,

χdynnn,0(q, ω) = −2iπν0Dq,ω

∫
ε

∆ε,ω. (63)

Using the relation π
∫
ε

∆ε,ω = ω, one finds

χdynnn,0(q, ω) = −2ν0iωDq,ω. (64)

The diagrammatic representation for χdynnn,0 coincides

with the one for χdynεε,0, compare Fig. 5. This is the origin
of the WFL in the case of non-interacting electrons.

B. Interaction corrections: Diagrams

We now turn to the explicit calculation of quantum
corrections to the correlation functions originating from
the combined effect of the long-ranged Coulomb interac-
tion and disorder. The calculation is performed using an
expansion in deviations δQ from the saddle point, and
applying subsequently the contraction rules formulated
in Appendix B. Diagrams are presented only for illustra-
tion. A detailed account of the calculation is presented in
Appendix C. Here, we will highlight the most important
diagrams and summarize the results. For comparison, we
present the information for χkk in parallel with χnn.

We will group the relevant diagrams for the calculation
of the correlations functions into five classes. When we
draw the diagrams, we leave out additional partner dia-
grams that can be obtained by simple symmetrization of
those already displayed.

1. Horizontal diagrams: These diagrams contain a
horizontal interaction line and give rise to correc-
tions to the diffusion propagator. Vertex correc-
tions with horizontal interaction lines will be con-
sidered separately. The horizontal diagrams are
displayed in Fig. 6. The corresponding corrections

will be labeled as χdynkk,1 or χdynnn,1.

2. Vertical diagram: The diagram with vertical inter-
action line relevant for our calculation is displayed
in Fig. 7. It results in corrections to the diffu-
sion propagator. Vertex corrections with vertical
interaction lines will be considered separately. The

vertical diagram leads to the corrections χdynkk,2 and

χdynnn,2.

3. Drag diagrams: The drag diagrams contain two
screened interaction lines and give rise to correc-
tions to the diffusion propagator, see Fig. 8. The

resulting corrections will be labeled as χdynkk,3 and

χdynnn,3. Vertex corrections of drag-type will be con-
sidered separately.

4. Regular vertex corrections: In this class, we sum-
marize those vertex corrections that originate from
the frequency vertex Sηε. Horizontal and vertical
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(a) (b)

(c) (d)

FIG. 6: The four horizontal diagrams contributing to χdynkk,1

and χdynnn,1. Each diagram has a symmetry-related partner
that is not displayed here but accounted for in the analytical
expressions discussed in the text.

FIG. 7: The vertical diagram which contributes - together
with its symmetry related partner - to χdynkk,2 and χdynnn,2.

(regular) vertex corrections are displayed in Fig. 9,
(regular) vertex corrections of the drag type in
Fig. 10. The regular vertex corrections will be re-

ferred to as χdynkk,4 and χdynnn,4.

5. Anomalous vertex corrections: The anomalous ver-
tex corrections result from the interaction vertex
generated by SηV . Obviously, they only arise in
the calculation of the heat density-heat density cor-
relation function. Fig. 11 shows the diagrams for
anomalous vertex corrections with a single interac-

tion line. They will be labeled as χdynkk,5. Fig. 12
shows the diagrams for vertex corrections of the
drag type, i.e., with two interaction lines. These

corrections will be labeled as χdynkk,6.

C. Analysis of logarithmic corrections

In this Section we will compare logarithmic corrections
to the diffusion coefficient and the frequency renormal-
ization arising in the heat density-heat density correla-
tion function with those in the density-density correlation

FIG. 8: The four drag diagrams which contribute to χdynkk,3

and χdynnn,3 together with their symmetry-related partners.

(a) (b)

(c)

FIG. 9: The regular vertex corrections, χdynkk,4 and χdynnn,4.
Three more diagrams are obtained by symmetrization.

FIG. 10: Drag-type diagrams for the regular vertex correc-
tions. An explicit calculation shows that their contribution
to both χdynkk,4 and χdynnn,4 vanishes.

function. The logarithmic corrections can be classified
according to the most important frequency and momen-
tum regions in the integrals:

For (i)-a terms the frequency ν transferred by the elec-
tron interaction is larger than the electron frequency |ε|
as well as temperature. The frequency integrations are
controlled by the combination Fε+ν − Fε−ν . The trans-
ferred frequency and momentum cover the whole RG-
interval. Electron-hole pairs excited via the interaction
are virtual and contributions from the sub-temperature
region are insignificant.

For (i)-b terms the frequency transfer is limited by the
combination ∂ν(Fε+ν−Fε−ν). In this case, the frequency
transfer is insignificant but the momentum integration
covers the whole RG-interval. These terms describe the
modification of the interaction amplitudes by disorder.

Finally, there appear new contributions, (ii) terms,
which are determined by the combination Fε+ν + Fε−ν .
In this case, the transferred frequency is limited either
by temperature or by |ε|. Furthermore, the electron in-
teraction enters the final integrals via its imaginary part,
ImV Rk,ν . This, together with the fact that the transferred
frequency is limited either by ε or temperature, indicates
that inelastic processes intervene. The momentum inte-
gration is determined by small momenta.

Logarithmic integrals appearing in (i)-a and (i)-b terms
will be denoted as Ii-integrals; see Sec. VI C 2 and Ap-

(a) (b)

FIG. 11: Two anomalous vertex corrections contributing to
χdynkk,5. No analog exists for χdynnn . Two more diagrams are
obtained by symmetrization.
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FIG. 12: Drag-type contributions to the anomalous vertex
corrections χdynkk,6. No analog exists for χdynnn . Two more dia-
grams are obtained after symmetrization.

pendix C. They are well known from the previous RG
studies of the the disordered electron liquid. In contrast
to electric transport, the contributions (ii) are specific
for thermal transport; they are important in the case of
the Coulomb interaction when ImV Rk,ν is singular. For
a given frequency ν, most important momenta fulfill the
inequality |ν|/(Dκs) < k <

√
|ν|/D. In this interval, one

can approximate the dynamically screened interaction as

ImV Rk,ν ≈ −
1

2ν0

ν

Dk2
. (65)

Eventually, the bare 1/Dk2 singularity gives rise to log-
arithmic corrections. These logarithmic integrals will be
denoted as Ihi , see Sec. VI C 3 and Appendix C. The
index h emphasizes their importance for heat transport.

Note that the interval |ν|/(Dκs) < k <
√
|ν|/D is

also responsible for the double-logarithmic dependence
of the tunneling density of states as well as other spu-
rious corrections that appear in intermediate stages of
the RG procedure (compare the integral I1 introduced
below). In the case of the (ii)-type integrals, however,
only a single logarithm arises, because allowed frequen-
cies ν are small, of the order of the temperature, while
a double-logarithmic dependence is obtained for an (i)-
a type integral I1, where the frequency can take large
values.

In summary, we encounter two different types of con-
tributions. For the first type, which includes (i)-a and
(i)-b terms, at least one of the two energies |ν| and Dk2

lies in the RG interval (T, 1/τ) giving rise to logarithmic
integrals Ii. These corrections are well studied for the
case of the density-density response function, both on a
diagrammatic level and on the level of the field-theoretic
NLσM. Concerning the heat density-heat density correla-
tion function, a diagrammatic study has been presented
in Ref. 6, while the NLσM of Ref. 4,5 focused on the RG
in the disordered Fermi liquid, i.e., in a disordered sys-
tem with short-range Fermi liquid-type corrections. A
common result of these studies was that the logarithmic
corrections originating from the RG interval for the heat
density-heat density correlation function lead to the se-
quence of equalities z = γk• = z̃ = γk/ .

The second type of logarithmic corrections, the (ii)-
terms which originate from frequencies ν < T , are at the
center of our interest here. For these corrections, the
imaginary part of the dynamically screened interaction
is relevant.

Besides these two types, there are terms that could,
in principle, introduce a mass into the diffuson. They

will be denoted as J-terms, for details see appendix C.
Unlike Ii and Ihi , which enter the calculation of the dy-
namical part of the heat-density heat-density correlation
function together with the factors Dq2 or ω only, these
terms are finite (i.e., they do not vanish) in the limit
(q, ω)→ 0. The J-terms arise as fragments of individual
diagrams, but they have to cancel in the overall result
for the correlation functions of conserved quantities. If
they would persist, this would lead to a violation of the
conservation laws. The cancellation of these terms is in-
timately related to the balance between in and out-terms
in the collision integral integrated over frequencies (and
for the case of the heat density correlation function also
weighted with frequency).

1. The finite J-terms

We start with the J-terms. For the corrections arising
in the density-density correlation function one gets:

χdynnn,1J
= −2ν0iωJ1(q, ω)D2

q,ω,

χdynnn,2J
= −2ν0iωJ2(q, ω)D2

q,ω. (66)

These formulas are obtained from the expressions given
in appendix C after performing the integration in the
electronic frequencies ε. Upon expansion in Dq2 and
ω, Ji(q, ω) = J0

i + JDi Dq2 − Jωi iω, one notices that J1
and J2 both contain non-vanishing constant parts J0

i and
singular expansion coefficients JDi and Jωi . It turns out,
however, that there is a full cancellation between hori-
zontal and vertical diagrams: J2(q, ω) = −J1(q, ω). In
particular, the cancellation between J0

1 and J0
2 = −J0

1

ensures that the density-density correlation function re-
mains gapless. It is instructive to interpret the can-
cellation in the limit (q, ω) → 0 in the language of ki-
netics (for a more detailed discussion see appendix D).
It can be seen that it is a direct result of condition∫
ε,r
δIcoll(ε, x) = 0 for the linearized collision integral,

which ensures the conservation of the particle number in
a kinetic formulation of the problem.

Next, let us look at the corrections arising in the heat
density-heat density correlation function:

χdynkk,1J
= −c0TiωJ1(q, ω)D2

q,ω,

χdynkk,2J
= −c0Tiω(J2(q, ω) + J̃2)D2

q,ω,

χdynkk,3J
= −c0TiωJ3D2

q,ω. (67)

Here, the new terms J̃2 and J3, are finite and do not
contain q and ω dependent parts. The cancellation of
the J-terms, which results from the identities J̃2 = −J3
in addition to J2 = −J1, is now somewhat more com-
plicated and involves the drag diagrams. In the present
case, the cancellation is not guided by the number con-
servation or, equivalently, the absence of a mass of the
diffuson, but by energy conservation. In the language of
kinetics it can be seen that the cancellation is a direct
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consequence of the condition
∫
ε,r
εδIcoll(ε, x) = 0 for the

linearized collision integral, which ensures the conserva-
tion of energy.

Due to the importance of the identity J1 = −J2, and
a similar relation J̃2 = −J3 for the heat density-heat
density correlation function, we devote Appendix D to a
more detailed discussion of this point. This discussion
elucidates the relation between the horizontal, vertical
and drag-type diagrams in the low-energy interval.

2. Logarithmic corrections from the RG interval

Here, we list the logarithmic corrections to χdynnn,0 =
−2νiωD originating from the RG interval. They are en-
coded in the logarithmic integrals denoted as Ii. Detailed
derivations as well as the definitions of the appearing in-
tegrals Ii can be found in Appendix C

χdynnn,1 = −2ν0iω
[
−2(Dq2 − iω)I1 +Dq2ID − iωIz

]
D2,

χdynnn,2 = −2ν0iω (iωIz)D2,

χdynnn,3 = 0,

χdynnn,4 = −2ν0iωI1D. (68)

In this list, we suppressed the arguments of D for the

sake of brevity. Concerning the vertex correction χdynnn,4,
the list presents the correction for one individual vertex,
i.e., the sum of the vertex corrections from the left and
the right vertex is twice as large.

For the heat density-heat density correlation function,

we find the following corrections to χdynkk,0 = −c0TiωDq,ω:

χdynkk,1 = −c0Tiω
[
−2(Dq2 − iω)I1 +Dq2ID − iωIz

]
D2,

χdynkk,2 = −c0Tiω [iω(Iz − I2)]D2,

χdynkk,3 = 0,

χdynkk,4 = −c0TiωI1D,
χdynkk,5 = −c0Tiω(−I5)D,
χdynkk,6 = 0. (69)

We would like to stress that those integrals in Eqs. (68)
and (69), which are denoted by the same names, are not
only equal but determined by the same expressions. Sim-
ilar to the case of χdynnn , the list cites vertex correction for
one individual vertex only. It is worth noting that for
the Coulomb-only problem the drag-type diagrams do
not give rise to logarithmic corrections to the dynamical
correlation functions within the RG interval of energies,

χdynkk,3 = χdynnn,3 = 0. Logarithmic corrections to χdynkk,3 do
arise from the sub-temperature range of energies, as we
will see below.

Due to the presence of the window function ∆ε,ω ≈
ω∂εFε, one may set the electron frequency |ε| ≈ T in the

expressions determining the integrals Ii. Then one finds

I1 =
1

6
ρ log

1

Tτ
log

Dκ2s
T

, (70)

ID = ρ log
1

Tτ
, (71)

Iz = I2 = I5 =
1

2
ID, (72)

with ρ = (4π2ν0D)−1. Whereas the main contribution
for the momentum integral in I1 comes from the inter-
val |ν|/(Dκs) < k <

√
|ν|/D, for the rest of the terms

relevant momenta are such that Dk2 > |ν|. Relevant fre-
quencies are large |ν| > T for I1 and ID, but |ν| . T for
Iz, I2, and I5.

Density-density correlation function: Following the
logic of Sec. V, we arrange the obtained corrections to
χnn into the general form consistent with that of a cor-
relation function of a conserved quantity. Then, from
comparison with the results listed in Eq. (68), and the
expression Eq. (48) we can find the corrections to the
various constants characterizing this correlation function.
First of all, we observe that the wave function renormal-

izations given by the I1-term in χdynnn,1, and the vertex

corrections δγ̄ρ/ given by χdynnn,4, cancel out:

δξ2 = −2I1 (73)

δγ̄ρ/ = I1. (74)

This ensures the absence of doubly-logarithmic correc-
tions in χnn. Furthermore, the effect of the frequency
renormalization, δz = −Iz, given by the last term in

χdynnn,1 is cancelled by that of the renormalized screened

Coulomb interaction, δΓ̄ρ = −Iz, given by χnn,2. The
only effective correction which remains after the cancela-

tions is a correction to the diffusion coefficient in χdynnn,1:

δD = −DID. (75)

Thus, we reproduced the following (known) results:
1. The density-density correlation function in the pres-
ence of quantum corrections (albeit ignoring Fermi-liquid
type corrections) reads

χnn(q, ω) = −2ν0
Dnq

2

Dnq2 − iω , (76)

where the diffusion of charges is governed by the charge
diffusion constant Dn = D + δD.
2. Electric conductivity can be found from the relation

σ = −e2 lim
ω→0

lim
q→0

[
ω

q2
Imχnn(q, ω)

]
= 2ν0e

2Dn. (77)

As a consequence of Eq. (77), the correction to con-
ductivity is

δσ

σ
=
δD

D
= −ID = −ρ log

1

Tτ
. (78)
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In this way, one recovers the well-known Altshuler-
Aronov correction to conductivity from the formalism.
This correction originates from the RG interval of ener-
gies.

Heat density-heat density correlation function: A com-
parison of the results listed in Eq. (69) and the general
corrections stated in Eq. (58) leads us to the following
relations for the corrections originating from the RG in-
terval

δξ̃2 = δξ2 = −2I1,

δD̃ = δD = −DID,
δz̃ = δz = −Iz,
δγ̄k/ = I1 − I5. (79)

As it has been discussed in Sec. V, for the consistency
of χkk(q, ω) with the energy conservation law, the condi-

tion δξ̃2 + 2δγ̄k − δz̃ = δz is necessary. This condition is
fulfilled provided that Iz = I5. While Iz and I5 are a pri-
ori different integrals, they do coincide with logarithmic
accuracy and the relation stated in Eq. (56) holds. We
would like to stress that I5 originates from the anomalous

vertex correction, which only exists for χdynkk (and is ab-

sent for χdynnn ) and, therefore, the presence of the source
term SηV as already mentioned is a very important in-
gredient of the theory.

Thermal conductivity can be found from the formula

κ = − 1

T
lim
ω→0

lim
q→0

(
ω

q2
Im [χkk(q, ω)]

)
=
z

z̃
c0D̃. (80)

In the last equality we used the form of the correlation
function stated in Eq. (57) as well as the relation c = c0z
introduced before. This implies the relation

κ

σT
=

zc0D̃

z̃2ν0e2DnT
=

zD̃

z̃Dn
L0, (81)

where L0 = π2/3e2 is the so-called Lorentz number.
We thus arrive at the following conclusions concerning

the Wiedemann-Franz law:
1. If there were no additional corrections from the sub-
temperature interval, then the set of equations listed in
(79) would immediately lead us to the conclusion that
the WFL is fulfilled. Indeed, as one can see from the
second and third relation in (79), the equalities z = z̃

and δD̃ = δD hold. Then the WFL remains true even in
the presence of the quantum corrections originating from
the RG interval.
2. In order to obtain a violation of the WFL, the inequal-
ity z̃Dn 6= zD̃ is required to hold.

3. Logarithmic corrections from the sub-temperature
interval

For each diagram, only the corrections from the sub-
temperature energy interval are listed below:

χdynkk,1 = 0,

χdynkk,2 = −c0Tiω
[
−(Dq2 − iω)Ĩh2

]
D2,

χdynkk,3 = −c0Tiω
[
Ih3Dq2 − Ih2 iω

]
D2,

χdynkk,4 = −c0Tiω
1

2
Ih4D,

χdynkk,5 = 0

χdynkk,6 = −c0Tiω(−Ih6 )D. (82)

Note with respect to χdynkk,4 and χdynkk,6, that the list cites
vertex corrections for one individual vertex only. Con-
cerning the integrals Ihi , we notice that again we can set
|ε| ∼ T and then

Ĩh2 = ρ log
Dκ2s
T

(83)

and Ĩh2 = Ih2 = Ih4 = 2Ih3 = 2Ih6 ≡ Ih. In these integrals,
relevant momenta are in the interval |ν|/(Dκs) < k <√
|ν|/D and relevant frequencies are small |ν| . T ; see

Sec. VI C for a general description of the Ihi -terms, and
Appendix C for their detailed analysis.

In order to further illuminate the origin of the loga-
rithms in the sub-temperature range, let us discuss the

correction χdynkk,2 as an example

χdynkk,2 = 2πiν0Dq,ω

∫
k,ε,ν

∆ε,ωεν(Fε+ν + Fε−ν)

×ReD2
k,νImV Rk,ν . (84)

The role of the different terms is as follows. The window
function ∆ε,ω ≈ ω∂εFε restricts relevant frequencies ε
to be of the order of T and produces the factor ω char-
acteristic of the dynamical part of the correlation func-
tion. In the relevant momentum range discussed above,
we may approximate ImVk,ν ≈ −1/2ν0 × ν/Dk2 and
ReD2

k,ν ≈ 1/ν2. The momentum integration gives rise to

a factor ρ log(Dκ2s/ν), while the combination Fε+ν+Fε−ν
restricts important ν to be of the order of T and produces
a factor of ε upon integration in ν. The final integration
in ε is of the form

∫
ε
ε2Fε = πT 2/3 as typical for the

thermal transport coefficient. After collecting the dif-
ferent factors, one arrives at the expression displayed in
Eq. (82).

Since in this manuscript, we study only first order log-
arithmic corrections to the correlation function, the accu-
racy of the calculation is not sufficient to make a definite
statement about the structure of the correlation function
as a whole. In particular, unlike for the RG corrections,
the classification of the corrections in terms of δD̃, δz̃
and δγ̄k/ is not unambiguous. This remains so even if
we assume for the wave function renormalization that it
is unchanged, δξ̃ = δξ, and take into consideration that
the specific heat c/c0 = z is not affected by the sub-
temperature corrections. There still remains a degree of
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freedom for γk/ and z̃ within Eq. (56). The final result,
of course, will not depend on the choice of presentation
of the correlation function χkk.

Here, we fix the ambiguity following the origin of cor-
rections in Eq. (82). Then, the vertex corrections given

by χdynkk,4 and χdynkk,6 cancel in total, δγ̄k/ = 0. Next, the fre-
quency corrections to δz̃ originating from the frequency

terms in χdynkk,2 and χdynkk,3 also cancel, so that δz̃ = 0.
Thus, this procedure leads us to the following set of sub-
temperature corrections:

δγk/ = δγ̄k/ = 0,

δz̃ = 0,

δD̃h =
1

2
Ih. (85)

In the procedure chosen here for fixing parameters, the
structure of the correlation function (i.e., the vertex cor-
rections and frequency renormalization) are controlled
by the RG-interval, while the heat diffusion constant be-
sides the corrections from the RG interval acquires a spe-
cial contribution from the sub-temperature energy range,
δD̃h.

Only corrections from the sub-temperature regime are
discussed here, therefore we can set δz = 0 when check-
ing the consistency with the energy conservation law for
χkk(q, ω), which reduces to 2δγk/ − δz̃ = 0.

Finally, according to Eq. (80), the correction to ther-
mal conductivity reads

δκ = −T
6

log
1

Tτ
+
T

12
log

Dκ2s
T

. (86)

The second term has first been obtained in Ref. 18 by
a kinetic equation approach. It results from the sub-
temperature interval of energies and is a consequence of
the long-range nature of the Coulomb interaction. The
first term originates from the RG-interval of energies.
Both terms together have been obtained within kinetic
equation approaches in Refs. 3,20,22 and by a calcula-
tion of the heat current-heat current correlation function
in Ref. 21. Note that the two corrections have opposite
signs.

4. Violation of the Wiedemann-Franz law

From the results collected in this section we can draw
the following conclusions:

1. The full heat density-heat density correlation func-
tion can be written as

χkk(q, ω) = −cT Dkq
2

Dkq2 − iω , (87)

where Dk = (Dn+δD̃h)/z is the heat diffusion con-
stant, and c = zc0. The form presented in Eq. (87)
is canonical for a correlation function of a density
of a consered quantity in the presence of disorder.

2. Comparing corrections to the heat and electric con-
ductivities

δκ

κ
=
δσ

σ
+

1

2
Ih, (88)

one gets that the Lorenz ratio is enhanced

1

L0

κ

σT
= 1 +

1

2
Ih. (89)

with Ih = ρ log(Dκ2s/T ) > 0.

The positive sign of the correction indicates that for the
disordered electron gas with long range Coulomb inter-
action heat transport is more effective than the WFL
suggests.

VII. CONCLUSION

We conducted an analysis of the heat-density heat-
density correlation function in order to obtain quantum
corrections to the thermal conductivity of the disordered
electron gas. Our analysis focused on the role of the long-
range Coulomb interaction in the diffusive limit Tτ � 1
and combined effects originating from different energy
scales. RG-type corrections to the thermal conductivity,
δκRG, arise from the energy interval from the elastic scat-
tering rate down to temperature (1/τ � T ) and do not
violate the WFL. Additional logarithmic corrections to
the thermal conductivity, δκsub, originate from the sub-
temperature energy range. These corrections do not have
an analog for electric conductivity and therefore violate
the WFL. To summarize, the thermal conductivity can be
written as κ = κWF+δκsub, where the WFL obeying part
κWF = κ0 + δκRG incorporates the Drude result and the
RG-type corrections, while δκsub originates from ener-
gies below temperature and violates the WFL. We found
δκRG = −(T/6) log 1/Tτ and δκsub = (T/12) logDκ2s/T .
As a consequence, κ exceeds the prediction of the WFL.
In this sense, heat transport is more effective than charge
transport. This result should be contrasted with the case
of the disordered Fermi liquid, a model system with short
range interactions. In the disordered Fermi liquid the
WFL law is obeyed with logarithmic accuracy.4,5

In this manuscript, we mainly focused on the analysis
of the sub-temperature regime. The RG-type corrections
δκRG have been considered on a perturbative level only.
They were mainly included in order to check the overall
consistency of the calculation scheme and to make con-
tact with previous studies. A comprehensive RG analysis
would necessarily involve short-range (Fermi-liquid-type)
interaction amplitudes. Such a study has already been
presented for the disordered Ferm liquid in Refs. 4,5. The
inclusion of Coulomb interactions into the formalism, i.e.,
an extension to the disordered electron liquid, will be dis-
cussed in a forthcoming publication.41

As for the origin of the WFL violating corrections we
would like to stress that the scattering processes in ques-
tion involve on-shell energies only (within an interval of
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small energies with T acting as an upper limit), i.e.,
these processes develop within the sub-temperature en-
ergy range. We checked that the correction to the heat
diffusion coefficient caused by the long range Coulomb
interaction is not modified by Fermi liquid interaction
amplitudes.41 We thereby expect that the answer ob-
tained for the correction to thermal conductivity δκ pre-
sented in Eq. (86) is final.

As is well known,33,36 the RG-corrections lead to a
non-monotonic behavior of the electric resistance of a
two-dimensional system with temperature.42 The correc-
tion originating from the sub-temperature energy range
results in a negative logarithmic correction to the ther-
mal resistance (note that we refer to the resistance rather
than the conductance here). As a consequence, the max-
imum of the thermal resistance is reached at a higher
temperature as compared to the electric resistance. The
effect will be discussed in detail in Ref. 41.

We studied thermal conductivity in a situation where
mechanical work (e.g., radiation of acoustic waves) can
be neglected. If one additionally takes the conservation
of particle number into consideration, this implies that
heat transport is to a large extent governed by energy
conservation. Special care has been taken regarding the
definition of the energy density in the presence of the
long-range Coulomb interaction. As the energy density
depends on the electric field, the natural definition of a lo-
cal energy conservation law requires a three-dimensional
setting. For finding the three-dimensional energy density
we used the field-theoretic construction of the energy-
momentum tensor in combination with the principle of
gauge invariance, which was used to lift the remaining
ambiguity. These considerations naturally led to the Be-
linfante energy-momentum tensor.24,25 Finally, in order
to define an effective two-dimensional energy density, we
employed a projection onto the plane.

It is instructive to contrast the thermal conductiv-
ity in the diffusive limit studied in this paper with
known results in the clean electron gas with Coulomb
interactions43 or in the ballistic limit.22 In the latter
cases, inelastic scattering processes are responsible for
a decrease of the thermal conductivity. In contrast, the
corrections in the diffusive limit lead to an increase of
the thermal conductivity. The positive sign of the cor-
rection indicates that the incoming scattering processes
are dominant. Loosely speaking, in the diffusive case
with long-range Coulomb interaction, electrons can use
the energy . T from a remote region to facilitate heat
transfer.
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Appendix A: On the gauge invariant definition of
the heat density

The purpose of this appendix is to derive gauge-
invariant expressions for the heat density and the heat
current in the presence of the long-range Coulomb inter-
action. To this end, we follow the general procedure for
the construction of the Belinfante tensor,24,25 which is
used for the energy-momentum tensor in electrodynam-
ics. We start with the Lagrangian density (Schrödinger
field coupled to electromagnetic field) L = LS + LEM ,
where

LS =
i

2
[ψ∗∂tψ − ∂tψ∗ψ] (A1)

− 1

2m
(i∇− qA)ψ∗(−i∇− qA)ψ − qφψ∗ψ

is the Lagrangian of the non-relativistic Schrödinger field
ψ with charge q and mass m coupled to the electromag-
netic field Aµ = (φ,A), and

LEM = − 1

16π
FµνFµν (A2)

is the Lagrangian of the free electromagnetic field.44 The
potentials φ and A are related to the electric and mag-
netic fields

E = −∇φ− ∂tA, B = ∇×A. (A3)

Also, Fµν = ∂µAν − ∂νAµ is the field strength tensor.
The relativistic notation is used for convenience only.
The equations of motion obtained by a variation of the
action S =

∫
dxL with respect to ψ∗, ψ, A0 = φ and A

give the Schrödinger equation

i∂tψ =
1

2
(−i∇− qA)2ψ + qφψ, (A4)

and its conjugate, and the Maxwell equations ∇E = 4πρ
and ∇ × B − ∂tE = 4πj, respectively. Here, we defined
the charge density ρ = qψ∗ψ and the current density

j =
q

2m
[ψ∗(−i∇− qA)ψ + ((i∇− qA)ψ∗)ψ] . (A5)

The remaining two Maxwell equations, ∇B = 0 and ∇×
E + ∂tB = 0, are fulfilled automatically through (A3).

The canonical energy momentum tensor Θµν is ob-
tained using the invariance of the action with respect
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to the translation x′µ = xµ + εµ,

Θµν =
∂L

∂(∂µψ)
∂νψ +

∂L
∂(∂µψ∗)

∂νψ∗

+
∂L

∂(∂µAσ)
∂νAσ − gµνL, (A6)

where gµν = diag(1,−1,−1,−1). We know that
∂µΘµν = 0. It means that for each ν we get a local con-
servation law (continuity equation). The conservation
law related to the energy density is given by ∂µΘµ0 = 0.
We, therefore, should calculate the energy density Θ00

and the i-th component of the energy current Θi0. One
finds

Θ00 = uψ + φρ− 1

8π
E2 +

1

4π

[
−E∂tA +

1

2
B2

]
, (A7)

where we defined

uψ =
1

2m
(i∇− qA)ψ∗(−i∇− qA)ψ. (A8)

With the help of the Maxwell equations one can rewrite
this result alternatively as

Θ00 = uψ +
1

8π

(
E2 + B2

)
+

1

4π
∇(φE). (A9)

Next, we turn to the components of Θi0, for which we
find

Θi0 = jε,iψ −
1

4π
Ei∂tφ+

1

4π
(B× ∂tA)i,

where

jεψ = − i

2m

[
∂tψ
∗(−i∇− qA)ψ − (i∇− qA)ψ∗∂tψ

]
.

(A10)

Again, with the help of the Maxwell equations, one can
find the alternative representation

Θi0 = (jεψ − φj)i +
1

4π
(E×B)i (A11)

+
1

4π
[∇× (φB)− ∂t(Eφ)]

i
.

As is well known, there is a problem with the canoni-
cal energy-momentum tensor; it is neither symmetric nor
gauge invariant. This is already obvious from the terms
E∂tA and (B×∂tA) in the expressions for Θ00 and Θ0i,
respectively. Since the densities and currents are not
defined uniquely, one can add a four-divergence to the
energy-momentum tensor as

Tµν = Θµν + ∂σχσµν , (A12)

where χ fulfills the two requirements that χσµν = −χµσν
and χ0kν falls off fast enough at infinite spatial distances

so that a certain surface terms vanish. One can there-
fore use the Belinfante tensor T instead of the canonical
energy-momentum tensor Θ and write

Tµν = Θµν +
1

4π
∂σ(FµσAν). (A13)

Since F is antisymmetric, the relation ∂µT
µν = 0 follows

immediately. Noting that ∂σ(F 0σA0) = −∇(φE) and
∂σ(F iσA0) = ∂t(φE)i − (∇× (φB))i one finds

T 00 = uψ +
1

8π

(
E2 + B2

)
, (A14)

T i0 = (jεψ − φj)i +
1

4π
(E×B)i. (A15)

Note that uψ is a gauge-invariant quantity, as a local
phase change of ψ, ψ∗ can be absorbed by A. We
conclude that the energy density T 00 is gauge invari-
ant. As to the current, it can be easily checked that
the combination jε,i0 −φji is also gauge invariant, i.e., the
transformation ψ → exp(iχ)ψ can be compensated by
A→ A + q−1∇χ and φ→ φ− q−1∂tχ, and so is T i0.

Note that in the absence of external fields, and neglect-
ing fluctuating magnetic fields, which is a relativistic ef-
fect, we find agreement between the components Θµ0 of
the canonical energy-momentum tensor and the interme-
diate expressions jε? and u? considered in Appendix B of
Ref. 22, as well as between our expressions (A14) and
(A15) for the gauge-invariant energy density and current
and the final expressions obtained in Ref. 22.

Next, we specialize on the Coulomb gauge, the gauge
used in the main text. It is convenient to decompose
A = A‖ + A⊥, with ∇A⊥ = 0 and ∇ × A‖ = 0. The
Coulomb gauge ∇A = 0 eliminates the longitudinal de-
grees of freedom A‖ = 0, so that A = A⊥. The elec-
tric field E = −∇A0 − ∂tA, in contrast, has both a
longitudinal and a transversal part, E‖ = −∇A0 and
E⊥ = −∂tA⊥. Then, A0 is determined by the Poisson
equation and

E‖ = − 1

4π
∇
∫
dr′

ρ(r′, t)

|r− r′| . (A16)

In the non-relativistic limit we may neglect A⊥ (so that
E⊥ → 0 and B→ 0). In this case one obtains

T 00 =
1

2m
∇ψ∗∇ψ +

1

8π
[E‖]2. (A17)

This is the expression for the energy density that will
form the starting point for our considerations in the main
text.

Appendix B: Contractions rules

We state here the contraction rules for Gaussian av-
erages with the action S0 of Eq. (37). To begin with,
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the matrix P̂ can be represented as a matrix in Keldysh
space as29

P̂εε′(r) =

(
0 dclεε′(r)

dqεε′(r) 0

)
, (B1)

where dcl/q are two hermitian matrices. The elementary
contraction derived from S0 reads〈

dclαβ;ε1ε2(q)dqγδ;ε3ε4(−q1)
〉

= − 2

πν0
D(q, ω)δq,q1

δε1,ε4δε2,ε3δαδδβγ , (B2)

where ω = ε1 − ε2, δq,q1
= (2π)dδ(q − q1), δε1,ε2 =

2πδ(ε1− ε2), and α, β, γ, δ are spin indices. The diffuson
D was defined in Eq. (38). Starting from Eq. (B2), one
can formulate two convenient contraction rules for the
matrices P̂ . The first rule can be used when the two
matrices P̂ appear under two different traces〈

tr
[
ÂP̂ε1ε2(r1)

]
tr
[
B̂P̂ε3ε4(r2)

]〉
(B3)

= − 2

πν0
tr
[
Â⊥Π̂ε1ε2(r1 − r2)B̂⊥

]
δε1,ε4δε2,ε3 .

Here, we denoted Â⊥ = 1
2 (Â− σ̂3Âσ̂3), and

Π̂ε+ω
2 ε−

ω
2

(q) =

(
Dq,ω 0

0 Dq,ω

)
(B4)

contains both the advanced and the retarded diffusions
D and D, respectively. The following second contraction
rule is useful when the two matrices P̂ stand under the
same trace

〈tr [APε1ε2(r1)BPε3ε4(r2)]〉 (B5)

= − 1

πν0

(
tr[AΠ̂ε1ε2(r1 − r2)]tr[B]

−tr[Aσ̂3Π̂ε1ε2(r1 − r2)]tr[Bσ̂3]
)
δε1,ε4δε2,ε3 .

Appendix C: A list of contributions to χdynnn and χdynkk

In this Appendix, we provide details for the calcula-

tion of χdynkk,i and χdynnn,i. These represent the contribu-
tions of different diagrams to the dynamical parts of the
heat-density heat-density and density-density correlation
functions, respectively. In particular, the Appendix con-
tains the definitions of the logarithmic integrals Ii, I

h
i

and Ji. A classification of the different types of logarith-
mic integrals was discussed in Sec. VI C.

1. Horizontal diagrams

Here, we consider contributions to the correlation
functions originating from the expressions χdynεε and

χdynnn . We specialize on those terms, whose diagram-
matic representation contains a horizontal interaction
line. They are depicted in Fig. 6. A few remarks
concerning these terms are in order here: diagram
(a) contains a Hikami box. The interaction part of
Sη=0 enters in the form 〈Tr[φσ3P ]Tr[φσ3P ]〉φ, diagram

(b) contains 〈Tr[φσ3P
2]Tr[φσ3P

2]〉φ, and diagram (c)

〈Tr[φσ3P ]Tr[φσ3P
3]〉φ. Here, φ = u ◦ φ ◦ u (for the sake

of notational simplicity matrices in Keldysh spaces are
denoted without the hat symbol here), and we used the
notation

〈
φi(x)φj(x′)

〉
φ

=
i

2
V̂ ij(x− x′). (C1)

Each diagram displayed in Fig. 6 has a symmetry-related
partner that is not displayed, but will be included in the
expressions stated below. A common characteristic of
the terms corresponding to the diagrams of Fig. 6 is that
they contain two diffusions D2

q,ω and, in the case of χdynεε ,

also the factor ε2. The latter fact is the main distinction
from the vertical diagrams to be discussed below.

The result for the horizontal diagrams before expan-
sion in Dq2 and ω reads

[
χkk,1
χnn,1

]dyn
q,ω

=2πν0D2
q,ω

∫
ε

[
ε2

1

]
∆ε,ω

∑
i=a−d

X1i(ε,q, ω),

(C2)

where

X1a =− 1

6

∫
k,ν

(Fε1 −Fε2 + Fε2+ν −Fε1−ν)V Rk,ν ,

×D2
k,ν [D(k2 + q2)− i(ν + ω)] (C3)

X1b =− 1

2

∫
k,ν

[
2V Kk,ν + (Fε1 −Fε2)V Rk,ν ,

+(Fε1+ν −Fε2−ν)V Ak,ν
]
Dk+q,ν+ω (C4)

X1c+X1d =
2

3

∫
k,ν

(Fε1 −Fε2 + Fε2+ν −Fε1−ν)

× V Rk,νDk,ν . (C5)

After expansion in Dq2 and ω one arrives at the simpli-
fied expressions

[
χkk,1
χnn,1

]dyn
q,ω

= −2πiν0D2
q,ω

∫
ε

[
ε2

1

]
∆ε,ωT1(ε,q, ω),

(C6)

where

T1 =− 2(Dq2 − iω)I1(ε) +Dq2ID(ε)− iωIz(ε)
+ J1(q, ω, ε). (C7)
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The logarithmic integrals Ii are defined as

I1(ε) =
−i
6

∫
k,ν

(Fε+ν −Fε−ν) D2
k,νV

R
k,ν , (C8)

ID(ε) =
−2i

d

∫
k,ν

(Fε+ν −Fε−ν) Dk2D3
k,νV

R
k,ν , (C9)

Iz(ε) =
1

2

∫
k,ν

(∂εFε+ν + ∂εFε−ν)Dk,ν ReV Rk,ν . (C10)

Momenta k and frequencies ν in these integrals fulfill the
conditions Dk2 < 1/τ and |ν| < 1/τ , i.e., they are con-
fined to the diffusive regime. Due to the presence of ∆ε,ω

in Eq. (C6) important values of |ε| under the integral are
smaller or of the order of the temperature T . All three
integrals I1, ID, Iz are proportional to the dimensionless
resistance ρ = (4π2ν0D)−1, the small parameter of the
theory.

Next, we turn to the logarithmic divergencies arising
from these integrals. Important momenta for the k-
integral in I1 lie in the range |ν|/(Dκs) < k <

√
|ν|/D.

One obtains

I1(ε) ≈ πρ

12

∫
ν

Fε+ν −Fε−ν
ν

log
Dκ2s
ν

≈ ρ

6
log

1

max(|ε|, T )τ
log

Dκ2s
max(|ε|, T )τ

.(C11)

As will be discussed below, the double-logarithmic diver-
gence arising from I1 cancels from the density-density
and the heat-density heat-density correlation function
after taking all corrections into account. For the inte-
grals ID and Iz, relevant momenta lie in the interval
|ν| < Dk2 < 1/τ , and one finds

ID(ε) ≈ πρ

2

∫
ν

Fε+ν −Fε−ν
ν

≈ ρ log
1

max(|ε|, T )τ
,

(C12)

Iz(ε) ≈
πρ

2

∫
ν

∂εFε+ν log
1

|ν|τ ≈
ρ

2
log

1

max(|ε|, T )τ
.

In contrast to the three I-terms in Eq. (C7), the term
J1 does not vanish in the limit (q, ω) → 0. With the
accuracy relevant for the present calculation, it can be
written as

J1(q, ω, ε) =∫
k,ν

[
Bν −

1

2
(Fε+ν −Fε−ν)

]
Dk+q,ν+ωImV Rk,ν . (C13)

The subsequent integration in the electronic frequen-
cies ε is controlled by the window function ∆ε,ω ≈
ω∂εF . Therefore, in order to obtain J1(q, ω), the in-
tegral J1(q, ω, ε) may be evaluated at |ε| ≈ T . The same

remark applies to J2(q, ω) as well as the integrals J̃2 and
J3. We will return to the discussion of the J-terms later
in Appendix D.

2. Vertical diagrams

Here, we discuss the contribution corresponding to the
diagram displayed in Fig. 7 and its symmetric partner.
Technically, their origin is the same as for diagram 1(b),
i.e., the use of 〈Tr[φσ3P

2]Tr[φσ3P
2]〉φ in the expressions

for χdynεε and χdynnn . The bare result reads[
χkk,2
χnn,2

]dyn
q,ω

=2πν0D2
q,ω

∫
ε,k,ν

[
ε(ε+ ν)

1

]
∆ε,ωDk+q,ν+ω

× [V Kk,ν −Fε2+νV Rk,ν + Fε1+νV Ak,ν ].

(C14)

An expansion up to first order in Dq2 and ω gives[
χkk,2
χnn,2

]dyn
q,ω

= −2πiν0D2
q,ω

∫
ε

∆ε,ω

[
ε2T kk2 (ε,q, ω)
T nn2 (ε,q, ω)

]
.

(C15)

The quantity T nn2 associated with the density-density
correlation function reads

T nn2 = iωIz(ε) + J2(q, ω, ε), (C16)

where J2 = −J1 and J1 was defined in Eq. (C13). The
quantity T kk2 associated with the heat density-heat den-
sity correlation function contains additional terms

T kk2 =T nn2 − (Dq2 − iω)Ĩh2 (ε) +Dq2Ireg(ε)− iωI2(ε)

+ J̃2(ε). (C17)

Let us comment on the appearance of these additional
terms. If we denote the frequency associated with the
right frequency vertex as ε, then the left frequency ver-
tex carries the frequency ε±ν due to the finite frequency
transfer ν flowing through the interaction line. Corre-

spondingly, we can decompose the expression for χdynkk,2

into a part that contains the factor ε2 and a second one
that contains the factor εν. The former part is accounted
for by T nn2 , the latter part gives rise to the additional

terms in Eq. (C17). The integrals I2 and Ĩh2 are defined
as

I2(ε) = − 1

2ε

∫
k,ν

ν ∂ε(Fε+ν −Fε−ν)Dk,ν ReV Rk,ν ,

(C18)

Ĩh2 (ε) =
1

ε

∫
k,ν

ν (Fε+ν + Fε−ν) D2
k,ν ImV Rk,ν . (C19)

The integral Ireg(ε) is not logarithmic (regular) and just
listed for completeness.

Let us discuss the integrals I2 and Ĩh2 one by one. Rele-
vant momenta in the integral I2 are confined to the range
|ν| < Dk2 < 1/τ and one finds with logarithmic accuracy

I2(ε) ≈ − π

4ε
ρ

∫
ν

ν∂ε(Fε+ν −Fε−ν) log
1

|ν|τ

≈ ρ

2
log

1

max(|ε|, T )τ
. (C20)
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The integral Ĩh2 is the first in a series of (ii)-type integrals
that will be considered. As was explained in Sec. VI C 3,
these integrals are mostly determined by momenta in the
interval |ν|/(Dκs) < k <

√
|ν|/D, while the integration

over the frequency ν is severely limited by the combina-
tion Fε+ν + Fε−ν . As a result one gets

Ĩh2 ≈
πρ

2ε

∫
ν

(Fε+ν + Fε−ν) log
Dκ2s
|ν| ≈ ρ log

Dκ2s
max(|ε|, T )

.

(C21)

Finally, let us state the integral

J̃2(ε) =
1

ε

∫
k,ν

ν (Fε+ν + Fε−ν)Dk,ν ImV Rk,ν . (C22)

This integral J̃2 will be discussed further in Appendix D.
Note that this term, unlike J1 and J2, does not depend
on q and ω.

3. Drag diagrams

The two classes of diagrams discussed in Sec. C 1 and
Sec. C 2 contain a single (screened) interaction line. In
this section we will discuss so-called drag diagrams, see
Fig. 8, which form a subclass of those diagrams with two
(screened) interaction lines. The diagrams are generated
from the expressions for χdynεε and χdynnn given in Eqs. (33)
and (35). It turns out that the drag diagrams do not
contribute to the dynamical density-density correlation
function,

χdynnn,3 = 0. (C23)

The full result for the drag contribution to the heat-
density heat-density correlation function reads

χdynkk,3(q, ω) =− 2iπν20D2
q,ω

∫
ε

ε∆ε,ω

∫
k,ν

ν(ν − ω)

× (Fε1−ν + Fε2+ν)V Rk,νV
A
k−q,ν−ω

×Dk,ν(Dk,ν + D̄k−q,ν−ω). (C24)

The following two identities were used to obtain this re-
sult

π

∫
ε

[
ε
1

]
[Fε1 + Fε2 −Fε1−ν −Fε2+ν ] =

[
ν(ν − ω)

0

]
.

(C25)

Here, ε1,2 = ε ± ω/2. The fermion frequency ε in
Eq. (C24) is associated with the right loop of the drag di-
agram, while the integration in the above identities runs
over the fermion frequency associated with the left loop.

Upon expansion in Dq2 and ω one finds

χdynkk,3 = −2πν0iD2
q,ω

∫
ε

∆ε,ωε
2T εε3 (ε,q, ω), (C26)

where

T kk3 (ε,q, ω) = Ih3Dq2 − Ih2 iω + J3(ε). (C27)

The integrals Ih2 and Ih3 are rather complicated expres-
sions resulting from the expansion of Eq. (C24) in ω and
Dq2 and we refrain from displaying them here. With
logarithmic accuracy, one finds

Ih3 =
1

2
Ĩh2 , Ih2 = Ĩh2 . (C28)

Relevant momenta in these integrals lie in the interval
|ν|/(Dκs) < k <

√
|ν|/D, and they originate from ener-

gies smaller than temperature.
Among other terms, there also appears a finite piece

in the expression for T kk3 , Eq. (C27),

J3(ε) =
2ν0
ε

∫
k,ν

ν2(Fε+ν + Fε−ν)

×DRk,νV Rk,νV Ak,νReDk,ν , (C29)

which will be discussed in Appendix D together with the
related terms J1, J2, and J̃2.

4. Regular vertex corrections

The terms considered in this section are obtained from
the expressions for χdynεε [Eq. (33)] and χdynnn [Eq. 35] by
taking into account nonlinear terms in the expansion of
δQ̂ in P̂ -modes at the vertices. The corresponding di-
agrams are displayed in Figs. 9 and 10. As it turns
out, the drag-type diagrams of Fig. 10 vanish both for
the density-density correlation function and for the heat-
density heat-density correlation function.

The expression corresponding to diagram 4a, see Fig. 9
reads

χdynkk,4a(q, ω) =− 2

3
πν0Dq,ω

∫
ε

ε2∆ε,ω (C30)

×
∫
k,ν

(Fε1−ν −Fε2+ν −∆ε,ω)D2
k,νV

R
k,ν .

Due to a cancellation between the term corresponding
to the horizontal diagram (4b) and the vertical diagram
(4c) it is convenient to state the sum:

χdynkk,4b(q, ω) + χdynkk,4c(q, ω) (C31)

=πν0Dq,ω

∫
ε

∆ε,ω

∫
k,ν

[ε(ε− ν)Fε1−ν − ε(ε+ ν)Fε2+ν

− ε2∆ε,ω]Dk,νDk+q,ν+ωV
R
k,ν .

Correspondingly, for the density-density correlation func-
tion we get the somewhat simpler expressions

χdynnn,4a(q, ω) =− 2

3
πν0Dq,ω

∫
ε

∆ε,ω (C32)

×
∫
k,ν

(Fε1−ν −Fε2+ν −∆ε,ω)D2
k,νV

R
k,ν ,
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χdynnn,4b(q, ω) + χdynnn,4c(q, ω) = πν0Dq,ω

∫
ε

∆ε,ω (C33)

×
∫
k,ν

[Fε1−ν −Fε2+ν −∆ε,ω]Dk,νDk+q,ν+ωV
R
k,ν .

Unlike for the contributions considered in the previous
sections, no expansion in Dq2 and ω is needed for the

vertex corrections for both χdynnn and χdynkk ; we may safely
put q→ 0, ω → 0.

The result can be written in the following form[
χkk,4
χnn,4

]dyn
q,ω

= −2πiν0Dq,ω

∫
ε

∆ε,ω

[
ε2T kk4 (ε,q, ω)
T nn4 (ε,q, ω)

]
,

(C34)

where

T nn4 = I1(ε), (C35)

T kk4 = I1(ε) +
1

2
Ih4 (ε). (C36)

The logarithmic integral I1(ε) was defined in Eq. (C8)
and the new integral is

Ih4 (ε) = − i
ε

∫
k,ν

ν(Fε+ν + Fε−ν)D2
k,νV

R
k,ν . (C37)

Note that the same corrections also originate from the
corresponding diagrams for the left vertex. Only ImV Rk,ν
is relevant and one finds the same integral as for the
vertical diagrams: Ih4 = Ĩh2 .

5. Anomalous vertex corrections

We refer to those vertex corrections that originate from

χdynεV and χdynV ε as anomalous. For an illustration, see
Fig. 11; no anomalous vertex corrections exist for the
density-density correlation function. The analytical ex-
pressions are

χdynkk,5a(q, ω) =
i

2
πν0Dq,ω

∫
ε

ε∆ε,ω

∫
k,ν

(Fε1−ν + Fε2+ν)

×Dk−q,ν−ωV
R
k,ν (C38)

χdynkk,5b(q, ω) =
i

2
πνDq,ω

∫
ε

ε∆ε,ω

∫
k,ω

(Fε1−ν + Fε2+ν)

×Dk,νV
R
k,ν . (C39)

As we are dealing with vertex corrections, we may safely
set (q, ω) → 0. When combining these two results, one
finds

χdynkk,5(q, ω) = −2πν0iDq,ω

∫
ε

∆ε,ωε
2T kk5 (ε) (C40)

with

T kk5 = −I5(ε). (C41)

The logarithmic integral I5 is defined as

I5(ε) =
1

2ε

∫
k,ν

(Fε+ν + Fε−ν)Dk,νReV Rk,ν . (C42)

The main contribution originates from large momenta
Dk2 > ν and one easily finds

I5(ε) =
ρ

2
log

1

max{|ε|, T}τ . (C43)

Another anomalous vertex correction arises from the
drag-type diagrams of Fig. 12 (note that only the correc-
tion to the γ1 vertex is written here)

χdynkk,6(q, ω) =πν20Dq,ω

∫
ε

∆ε,ω

∫
k,ν

εν(Fε1−ν + Fε2+ν)

× V Rk,νV Ak−q,ν−ωDk,ν(Dk,ν +Dk−q,ν−ω)

(C44)

Putting (q, ω)→ 0, we find

χdynkk,6(q, ω) = −2πν0iDq,ω

∫
ε

∆ε,ωε
2T kk6 (ε), (C45)

where

T kk6 = −Ih6 (ε), (C46)

Ih6 (ε) = − iν0
ε

∫
k,ν

ν(Fε+ν + Fε−ν)V Rk,νV
A
k,νDk,νReDk,ν .

(C47)

Using the relation

−2ν0νV
R
k,νV

A
k,νReDk,ν = ImV Rk,ν (C48)

one can transform the integral to

Ih6 (ε) =
i

2ε

∫
k,ν

(Fε+ν + Fε−ν)Dk,νImV Rk,ν . (C49)

Since relevant momenta are in the interval |ν|/(Dκs) <
k <

√
|ν|/D, one finds with logarithmic accuracy Ih6 =

1
2 Ĩ
h
2 .
Unlike Ii, which are determined by very different in-

tegrals, see Sec. VI C for the general classification of the
logarithmic integrals, all the integrals Ihi reduce to the
same expression.

Appendix D: Cancellation of finite J-terms and the
collision integral

We reinterpret in the language of kinetics the cancel-
lation of the J-terms between horizontal and vertical di-
agrams for the density-density correlation function, and
between vertical, horizontal and drag diagrams for the
heat-density heat-density correlation function.
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1. The case of the density-density correlation
function

Consider the deviation of the density from its equilib-
rium value caused by a weak, slowly varying external po-
tential. In linear response, this deviation is characterized
by the density-density correlation function. Our goal is
to compare the J-terms arising during the calculation of
the density-density correlation function to the Coulomb
collision integral, which is well known and reads29,45

Icoll(ε, x) = −2

∫
k,ν

ReDk,νImV Rk,ν (D1)

× [1−Fε−ν(x)Fε(x)− Bν(x)(Fε(x)−Fε−ν(x))] ,

where

Bν(x) =
π

ν

∫
ε′

(1−Fε′(x)Fε′−ν(x)) . (D2)

This expression for Bν(x) is a generalization of the well
known relation connecting the bosonic and fermionic
equilibrium distribution functions, Bν = π

ν

∫
ε
(1 −

FεFε−ν).
In equilibrium, i.e., for Fε(x)→ Fε, the collision inte-

gral vanishes identically. Writing Fε(x) = Fε + δFε(x),
the linearized collision integral reads

δIcoll(ε, x) = −2

∫
k,ν

ReDk,νImV Rk,ν [δFε−ν(x)(Bν −Fε)

−δFε(x)(Bν + Fε−ν) + δBν(x)(Fε−ν −Fε)] , (D3)

where

δBν(x) = −π
ν

∫
ε′
δFε′(x)(Fε′+ν + Fε′−ν). (D4)

In the language of kinetics the conservation of the number
of particles requires the vanishing of

∫
r,ε
δIcoll(ε, x). We

will explain here that the cancellation of J-terms origi-
nating from horizontal and vertical diagrams is a result
of the relation

∫
r,ε
δIcoll(ε, x) = 0.

In an iterative approach to the kinetic problem,
which corresponds to our perturbative treatment of the
screened Coulomb interaction, we next use the change in
the distribution function calculated in the absence of in-
teractions, δF (0)

ε , as a zeroth order solution. It is easy to

see that then δF (0)
ε is proportional to the window func-

tion ∆ε,ω and that, therefore, the bosonic distribution

function remains unchanged, δB(0)ν (x) = 0.
It is now possible to establish a connection of

∫
ε
δIcoll

with the diagrammatic calculation. The term propor-

tional to δF (0)
ε in the linearized collision integral (D3)

evaluated for δF = δF (0) is related to the horizontal dia-
grams considered in Sec. C 1. In a similar vein, the term

proportional to δF (0)
ε−ν is related to the vertical diagrams,

see Sec. C 2. Finally, the vanishing of δB(0)ν (x) is directly
related to the absence of drag-type corrections for χdynnn .

Turning more specifically to the question of number

conservation, we next focus on the expression for
∫
ε
δI

(0)
coll.

For the purpose of comparison, we reproduce here the
integral J1, (C13), in the limit (q, ω) → 0, which arises
from the horizontal diagrams considered in Sec. C 1:

J1 =

∫
k,ν

[
Bν −

1

2
(Fε+ν −Fε−ν)

]
ReDk,νImV Rk,ν . (D5)

Now note that the term containing δFε(x) in Eq. (D3)
is proportional to J1. In order to see this clearly, one
should symmetrize the expression in ν, using the odd-
ness of ReDk,νImV Rk,ν . A similar operation has to be

performed for the term generated by δF (0)
ε−ν in order to

see that it is related to J2 = −J1. This operation consists
of a frequency shift ε → ε + ν under the integral

∫
ε

and
subsequent symmetrization in ν. In summary, one finds
that horizontal and vertical terms in the collision integral
are determined by J1 of Eq. (D5) and J2 = −J1, respec-
tively. The cancellation observed in the diagrammatic
calculation therefore results from particle number con-

servation expressed though
∫
ε
I
(0)
coll(ε,q = 0, ω) = 0. In

the context of the diagrammatic calculation, it manifests
itself in the absence of a mass of the diffusion.

As a final remark on this topic let us note that the
separation into horizontal and vertical diagrams does not
correspond to the separation into out- and in-terms in the
studied collision integral.

2. The case of the heat density-heat density
correlation function

Let δF (0)
ε now be the perturbation caused by a

smoothly varying gravitational potential calculated in

the absence of interactions. In this case one finds δF (0)
ε ∝

ε∆ε,ω. As before, in δI
(0)
coll terms with δF (0)

ε−ν are related

to the vertical diagrams, and terms with δF (0)
ε to the

horizontal diagrams. Unlike for the density-density cor-

relation function, however, δB(0)ν , which is related to the
drag diagrams, does not vanish.

As we will explain in the remainder of this section,
the cancellation of constant terms between horizontal,
vertical and drag diagrams for the heat density-heat
density correlation function is a result of the relation∫
r,ε
εδIcoll(ε, x) = 0. As a first step, one obtains the

following relation with the help of Eq. (D3) and after

shifting ε→ ε+ ν in the expression containing δF (0)
ε−ν :∫

ε

εδI
(0)
coll = −2

∫
k,ν

ReDk,νImV Rk,ν

×
∫
ε

[(ε+ ν)δF (0)
ε (Bν −Fε+ν)− εδF (0)

ε (Bν + Fε−ν)

+ εδB(0)ν (Fε−ν −Fε)]. (D6)

The x-dependence of δF (0) and δB(0) was suppressed for
the sake of brevity.
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We see that the terms proportional to ε cancel between
the first and the second term upon symmetrization in
ν. This is the cancellation between the horizontal and
the vertical diagrams encountered before for the density-
density correlation function. The Bν term cancels be-
cause it is antisymmetric in ν. Further, we can use the
identity

∫
ε
ε(Fε−ν −Fε) = −ν2/2π for the last term. Af-

ter symmetrizing the remaining integrand with respect
to ν ↔ −ν, one obtains∫

ε

εδI
(0)
coll = 2

∫
k,ν

ReDk,νImV Rk,ν (D7)

×
[∫

ε

νδF (0)
ε

1

2
(Fε+ν + Fε−ν) +

1

2π
ν2δB(0)ν

]
= 0.

The second equality in (D7) becomes obvious upon sub-

stituting the expression for δB(0)ν , compare Eq. (D4). The
first of the two terms in the integral displayed in Eq. (D7)

corresponds to J̃2, i.e., it originates from the vertical di-
agrams, the second term corresponds to the contribution
from the drag diagram, i.e, to J3. To see this clearly, one
should insert the identity (C48) into the definition of J3,
Eq. (C29), which becomes

J3 = −1

ε

∫
k,ν

ν(Fε+ν + Fε−ν)Dk,νImV Rk,ν = −J̃2. (D8)

This concludes our discussion of the cancellation of con-
stant terms for the calculation of the heat density-heat
density correlation function.
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