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We discuss the dissipative preparation of p-wave superconductors in number-conserving one-
dimensional fermionic systems. We focus on two setups: the first one entails a single wire coupled to
a bath, whereas in the second one the environment is connected to a two-leg ladder. Both settings
lead to stationary states which feature the bulk properties of a p-wave superconductor, identified
in this number-conserving setting through the long-distance behavior of the proper p-wave correla-
tions. The two schemes differ in the fact that the steady state of the single wire is not characterized
by topological order, whereas the two-leg ladder hosts Majorana zero modes, which are decoupled
from damping and exponentially localized at the edges. Our analytical results are complemented by
a numerical study based both on an exact representation of the density matrix and on a matrix-
product-density-operator one. With these tools we characterize the steady-state properties of the
protocols, their asymptotic decay rate and their robustness.

PACS numbers:

I. INTRODUCTION

Topological quantum computation has recently
emerged as one of the most intriguing paradigms for the
storage and manipulation of quantum information1,2.
The defining features of topological order, namely the
existence of degenerate ground states which (i) share
the same thermodynamic properties and (ii) can only
be distinguished by a global measurement, portend for
a true many-body protection of quantum information.
Additionally, the non-Abelian anyons which typically
appear in these models are crucial for the active manip-
ulation of the information, to be accomplished through
their adiabatic braiding3,4.

Among the several systems featuring topological or-
der, free p-wave superconducting systems with symmetry
protected topological properties have lately attracted a
significant amount of attention5–7. On the one hand, they
are exactly-solvable fermionic models which help building
a clear physical intuition of some aspects of topological
order8,9. On the other one, they are physically relevant,
and several articles have recently reported experimen-
tal evidences to be linked to p-wave-like superconductors
featuring zero-energy Majorana modes10–14.

Whereas up to now these experimental results have
been obtained in solid-state setups, it is natural to ask
whether such physics might as well be observed in cold
atomic gases15, which owing to their well-controlled mi-
croscopic physics should allow for a more thorough un-
derstanding of these peculiar phases of matter. Impor-
tant theoretical efforts have thus proposed a variety of
schemes which exploit in different ways several proper-

ties of such setups16–22.
Among these ideas, that of a dissipative preparation

of interesting many-body quantum states23,24 is particu-
larly appealing: rather than suffering from some unavoid-
able open-system dynamics, such as three-body losses or
spontaneous emission, one tries to take advantage of it
(see Refs.19,25–28 for the case of states with topological
order, such as p-wave superconductors). The key point
is the engineering of an environment that in the long-
time limit drives the system into the desired quantum
state. This approach has the remarkable advantage of
being a workaround to the ultra-low temperatures nec-
essary for the observation of important quantum phe-
nomena which constitute a particularly severe obstacle in
fermionic systems. The trust is thus that the mentioned
“non-equilibrium cooling” may open the path towards
the experimental investigation of currently unattainable
states, e.g. characterized by p-wave superconductivity.

In this article we discuss the dissipative engineering of
a p-wave superconductor with a fixed number of parti-
cles, an important constraint in cold-atom experiments.
We consider two different setups: (i) A single quantum
wire, introduced in Ref.19; this system displays the typ-
ical features of a p-wave superconductor but it is not
topological in its number conserving variant. This re-
sult is completely analogous to what has already been
discussed in a Hamiltonian context for homogeneous
number-conserving single wires29,30. (ii) A two-leg lad-
der21,29–34, supporting a dissipative dynamics which en-
tails a four-dimensional steady state space characterized
by p-wave superconducting order with boundary Majo-
rana modes for every fixed particle number.

We identify the p-wave superconducting nature of the
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steady states by studying the proper correlators, which
saturate to a finite value in the long distance limit. Their
topological properties are best discussed using a mathe-
matical connection between dark states of the Markovian
dynamics and ground states of a suitable parent Hamilto-
nian. In both setups we demonstrate that the dissipative
gap closes at least polynomially in the system size and
thus that the typical decay time to the steady state di-
verges in the thermodynamic limit. This contrasts with
the case where number conservation is not enforced, for
which the decay time is typically finite in the thermo-
dynamic limit19,26. This difference reflects the presence
of dynamical slow modes related to the particle-number
conservation35,36, which also exist in non-equilibrium sys-
tems (see also Ref.37–39).

Our exact analytical findings are complemented by a
numerical study based on a matrix-product-operator rep-
resentation of the density matrix40,41, one of the tech-
niques for open quantum systems which are recently at-
tracting an increasing attention42–50. These methods are
employed to test the robustness of these setups to per-
turbations, which is thoroughly discussed.

The article is organized as follows: in Sec. II we re-
view the key facts behind the idea of dissipative state
preparation using the dark states of a many body prob-
lem, and exemplify them recalling the problem studied
in Ref.19. A simple criterion for signalling the divergence
of the decay-time with the system size is also introduced.
In Sec. III we present the exact analytical study of the
single-wire protocol, and in Sec. IV a numerical analysis
complements the previous discussion with the characteri-
zation of the robustness to perturbations of these setups.
In Sec. V we discuss the protocol based on the ladder
geometry. Finally, in Sec. VI we present our conclusions.

II. DISSIPATIVE STATE PREPARATION OF
MAJORANA FERMIONS: KNOWN FACTS

In this section we review the framework of dark states
for Markovian many-body quantum dynamics. We re-
call some general concepts, among which that of parent
Hamiltonian, and some recent results related to some par-
ticular topological systems. In addition we present some
new results on the relation between the asymptotic de-
cay rate of the Markovian dynamics and the gap of the
related parent Hamiltonian.

A. Dark states and parent Hamiltonian of
Markovian dynamics

The dissipative dynamics considered in this article is
Markovian and, in the absence of a coherent part, can be
cast in the following Lindblad form:

∂

∂t
ρ̂ = L[ρ̂] =

m∑
j=1

[
L̂j ρ̂L̂

†
j −

1

2
{L̂†jL̂j , ρ̂}

]
, (1)

where L is the so-called Lindbladian super-operator and
the L̂j are the (local) Lindblad operators. We now discuss
a fact which will be extensively used in the following. Let
us assume that a pure state |Ψ〉 exists, with the property:

L̂j |Ψ〉 = 0; ∀ j = 1, . . . ,m. (2)

A simple inspection of Eq. (1) shows that |Ψ〉 is a steady
state of the dynamics, and it is usually referred to as dark
state. Although the existence of a state satisfying Eq. (2)
is usually not guaranteed, in this article we will mainly
consider master equations which enjoy this property.

A remarkable feature of dark states is that they can
be searched through the minimization of a parent Hamil-
tonian. Let us first observe that Eq. (2) implies that

〈Ψ|L̂†jL̂j |Ψ〉 = 0 and since every operator L̂†jL̂j is pos-

itive semi-definite, |Ψ〉 minimizes it. Consequently, |Ψ〉 is
a ground state of the parent Hamiltonian:

Ĥp =

m∑
j=1

L̂†jL̂j . (3)

Conversely, every zero-energy ground state |Φ〉 of Hamil-
tonian (3) is a steady state of the dynamics (1). In-

deed, Ĥp|Φ〉 = 0 implies that 〈Φ|L̂†jL̂j |Φ〉 = 0 for all
j = 1, . . . ,m. The last relation means that the norm of
the states L̂j |Φ〉 is zero, and thus that the states them-

selves are zero: L̂j |Φ〉 = 0. As we have already shown,
this is sufficient to imply that |Φ〉 is a steady-state of the
dynamics.

In order to quantify the typical time-scale of the con-
vergence to the steady state, it is customary to consider
the right eigenvalues of the super-operator L, which are

defined through the secular equation L[θ̂λ] = λθ̂λ. The
asymptotic decay rate (ADR) for a finite system is de-
fined as

λADR = inf
λ is eigenvalue of L

<(λ)6=0

{−<(λ)}. (4)

The minus sign in the previous equation follows from the
fact that the real part of the eigenvalues of a Lindbladian
super-operator satisfy the following inequality: <(λ) ≤ 0.

Remarkably, for every eigenvalue ξ of Ĥp there is
an eigenvalue λ = −ξ/2 of L which is at least two-
fold degenerate. Indeed, given the state |ψξ〉 such that

Ĥp|ψξ〉 = ξ|ψξ〉, the operators made up of the dark state
|Ψ〉 and of |ψξ〉

θ̂
(1)
−ξ/2 = |Ψ〉〈ψξ|, θ̂

(2)
−ξ/2 = |ψξ〉〈Ψ| (5)

satisfy the appropriate secular equation. This has an im-

portant consequence: if Ĥp is gapless, then λADR
L→∞−−−−→ 0

in the thermodynamic limit, where L is the size of the
system. Indeed:

0 < λADR ≤
ξ

2
, (6)
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for every eigenvalue ξ of Ĥp; if the Hamiltonian gap closes
as L−α (α > 0), then the dissipative gap closes at least
polynomially in the system size. Note that this argument
also implies that if L is gapped, then the parent Hamil-
tonian is gapped as well.

It is important to stress that the spectral properties
of the parent Hamiltonian Ĥp do not contain all the in-
formation concerning the long-time dissipative dynamics.
As an example, let us assume that the Markovian dynam-
ics in Eq. (1) (i) supports at least one dark state and (ii)
has an associated parent Hamiltonian which is gapped.
If the Lindblad operators are Hermitian, then the fully-
mixed state is a steady state of the master equation too.
The presence of such stationary state is not signaled by
the parent Hamiltonian, which is gapped and only detects
the pure steady states of the dynamics.

Whereas some of the above relations have been of-
ten pointed out in the literature23,24, to the best of our
knowledge the remarks on the relation between the spec-
tral properties of L and Ĥp are original.

B. The Kitaev chain and the dissipative
preparation of its ground states

Let us now briefly review the results in Ref.19 and use
them to exemplify how property (2) can be used as a
guideline for dissipative state preparation in the number
non-conserving case. This will be valuable for our detailed
studies of its number conserving variant below.

The simplest model displaying zero-energy unpaired
Majorana modes is the one-dimensional Kitaev model at
the so-called “sweet point”8:

ĤK = −J
∑
j

[
â†j âj+1 + âj âj+1 + H.c.

]
, J > 0, (7)

where the fermionic operators â
(†)
j satisfy canonical anti-

commutation relations and describe the annihilation (cre-
ation) of a spinless fermion at site j. The model can be
solved with the Bogoliubov-de-Gennes transformation,
and, when considered on a chain of length L with open
boundaries, it takes the form:

ĤK = E0 +
J

2

L−1∑
j=1

ˆ̀†
j
ˆ̀
j , (8)

with

ˆ̀
j = Ĉ†j + Âj , (9)

Ĉ†j = â†j + â†j+1, Âj = âj − âj+1. (10)

The ground state has energy E0 and is two-fold degen-
erate: there are two linearly independent states |ψe〉 and
|ψo〉 which satisfy:

ˆ̀
j |ψσ〉 = 0; ∀ j = 1, . . . , L− 1; σ = e, o. (11)

The quantum number distinguishing the two states is the

parity of the number of fermions, P̂ = (−1)
∑
â†j âj , which

is a symmetry of the model (the subscripts e and o stand
for even and odd). Both states |ψσ〉 are p-wave supercon-
ductors, as it can be explicitly proven by computing the
expectation value of the corresponding order parameter:

〈ψσ|âj âj+1|ψσ〉
L→∞−−−−→ 1

4
. (12)

It is thus relevant to develop a master equation which
features |ψe〉 and |ψo〉 as steady states of the dynam-
ics19,26. Property (11) provides the catch: upon identifi-

cation of the ˆ̀
j operators with the Lindblad operators of

a Markovian dynamics, Eq. (2) ensures that the states
|ψσ〉 are steady states of the dynamics and that in the
long-time limit the system evolves into a subspace de-
scribed in terms of p-wave superconducting states. This
becomes particularly clear once it is noticed that the par-
ent Hamiltonian of this Markov process coincides with
ĤK in Eq. (8) apart from an additive constant.

Let us conclude mentioning that the obtained dy-
namics satisfies an important property, namely locality :

the Lindblad operators ˆ̀
j only act on two neighboring

fermionic modes. On the other hand, they do not con-
serve the number of particles, thus making their engi-
neering quite challenging with cold-atom experiments.
The goal of this article is to provide dissipative schemes
with Lindblad operators which commute with the num-
ber operator and whose steady states feature the typical
properties of a p-wave superconductor.

III. SINGLE WIRE: ANALYTICAL RESULTS

In this section we consider a number-conserving dis-
sipative scheme which is related to the one presented in
Sec. II B. We characterize the steady states and show that
none of them has topological properties, although they
all display p-wave superconducting order. This is analo-
gous to what has been already pointed out for the ground
state of homogeneous number-conserving single wires.

The simplest way to generalize the previous results to
systems where the number of particles is conserved is to
consider the master equation induced by the Lindblad
operators19,26:

L̂′j = Ĉ†j Âj , ∀ j = 1, . . . , L− 1, (13)

for a chain with hard-wall boundaries and spinless
fermions:

∂

∂t
ρ̂ = L′[ρ̂] = γ

L−1∑
j=1

[
L̂′j ρ̂L̂

′†
j −

1

2
{L̂′†j L̂

′
j , ρ̂}

]
; γ > 0;

(14)
where γ is the damping rate. This Markovian dynam-
ics has already been considered in Refs.19,26. Using the
results presented in Ref.33, where the parent Hamilto-
nian related to the dynamics in Eq. (14) is considered,
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it is possible to conclude that for a chain with periodic
boundary conditions (i) there is a unique dark state for
every particle number density ν = N/L, and (ii) this
state is a p-wave superconductor. A remarkable point is
that the L̂′j are local and do not change the number of
particles: their experimental engineering is discussed in
Ref.19, see also51.

Here we clarify that for the master equation for a single
wire with hard-wall boundaries, the steady state is not
topological and does not feature Majorana edge physics,
although they still display the bulk properties of a p-wave
superconductor (instead, the two-wire version studied be-
low has topological properties associated to dissipative
Majorana zero modes). The ADR of the master equation
is also characterized. An extensive numerical study of the
stability of this protocol is postponed to Sec. IV.

A. Steady states

In order to characterize the stationary states of the
dynamics, let us first observe that Eq. (11) implies33

Ĉ†j |ψσ〉 = −Âj |ψσ〉, (15)

so that:

L̂′j |ψσ〉 = Ĉ†j Âj |ψσ〉 = −Ĉ†j Ĉ
†
j |ψσ〉 = 0. (16)

Thus, |ψσ〉 are steady states of the dynamics. Let us de-
fine the states

|ψN 〉 = Π̂N |ψσ〉, (17)

where Π̂N is the projector onto the subspace of the global
Hilbert (Fock) space with N fermions (Π̂N |ψσ〉 = 0 when
the parity of N differs from σ and thus we avoid the
redundant notation |ψσ,N 〉). Since [L̂′j , N̂ ] = 0, where

N̂ =
∑
j â
†
j âj is the particle-number operator, it holds

that L̂′j |ψN 〉 = 0 for all j = 1, . . . , L − 1 and thus the
|ψN 〉 are dark states. Let us show that there is only one
dark state |ψN 〉 once the value of N is fixed. To this end,
we consider the parent Hamiltonian (3) associated to the
Lindblad operators (13):

Ĥ′p=2J

L−1∑
j=1

[
n̂j+n̂j+1−2n̂j n̂j+1−â†j+1âj−â

†
j âj+1

]
,

(18)

where n̂j ≡ â†j âj and J > 0 is a typical energy scale
setting the units of measurement. Upon application of the
Jordan-Wigner transformation, the model Ĥ′p is unitarily
equivalent to the following spin-1/2 chain model:

Ĥ′p,spin = J

L−1∑
j=1

[
1 + σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1 − σ̂

z
j σ̂

z
j+1

]
, (19)

where σ̂αj are Pauli matrices. Apart from a constant pro-

portional to L − 1, Ĥ′p,spin is the ferromagnetic Heisen-

berg model (for an introduction to the properties of this

model, see Refs.52–54). The particle-number conservation
corresponds to the conservation of the total magnetiza-
tion along the ẑ direction. It is a well-known fact that
this model has a highly degenerate ground state but that
there is only one ground state for each magnetization sec-
tor, both for finite and infinite lattices. Thus, this state
corresponds to the state |ψN 〉 identified above; therefore,

the possibility that the ground state of Ĥ′p is two-fold de-
generate (as would be required for the existence of Majo-
rana modes) for fixed number of fermions and hard-wall
boundary conditions is ruled out.

Summarizing, the dynamics induced by the Lindblad
operators in (13) conserves the number of particles and
drives the system into a quantum state with the proper-
ties of a p-wave superconductor (in the thermodynamic

limit |ψe〉 and Π̂N |ψe〉 have the same bulk properties, as
it is explicitly checked in Ref.19,26, but see also the dis-
cussion below). Since the steady states of the system for
open boundary conditions are unique, they do not display
any topological edge property.

B. P-wave superconductivity

Let us explicitly check that the states |ψN 〉 have the
properties of a p-wave superconductor. Since each state
has a definite number of fermions, the order parameter
defined in Eq. (12) is zero by symmetry arguments. In
a number-conserving setting, we thus rely on the p-wave
pairing correlations:

G
(p)
j,l = 〈ψN |Ô(p)†

j Ô
(p)
l |ψN 〉 = 〈ψN |â†j â

†
j+1âl+1âl|ψN 〉.

(20)
If in the long-distance limit, |l − j| → ∞, the expecta-
tion value saturates to a finite value or shows a power-
law behavior, the system displays p-wave superconduct-
ing (quasi-)long-range order. If the decay is faster, e.g.
exponential, the system is disordered.

In this specific case, the explicit calculation shows a
saturation at large distance (see also Ref.33):

G
(p)
j,l

|j−l|→∞−−−−−−→ ν2(1− ν)2 (21)

in the thermodynamic limit. The saturation to a finite
value captures the p-wave superconducting nature of the
states. Note that the breaking of a continuous symmetry
in a one-dimensional system signaled by Eq. (21) is a

non-generic feature: a perturbation of Hamiltonian Ĥ′p
would turn that relation into a power-law decay to zero
as a function of |j−l| (see Ref.33 for an explicit example).

C. Dissipative gap

An interesting feature of Ĥ′p,spin is that it is gapless;

the gap closes as L−2 due to the fact that the low-energy
excitations have energy-momentum relation ωq ∼ q2, as
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follows from well-known properties of the ferromagnetic
Heisenberg model52–54. The Jordan-Wigner transforma-
tion conserves the spectral properties and thus Ĥ′p is also
gapless. Thus, according to the discussion in Sec. II A, the
ADR λ′ADR associated to the Lindbladian L′ closes in the
thermodynamic limit. This is true both for periodic and
hard-wall boundary conditions.

This fact has two important consequences. The first is
that the dissipative preparation of a fixed-number p-wave
superconductor through this method requires at least a
typical time τ ′ that scales like L2. In Sec. IV we nu-
merically confirm this polynomial scaling. Although this
requires an effort which is polynomial in the system size,
and which is thus efficient, it is a slower dynamical sce-
nario than that of the non-number-conserving dynam-
ics considered in Refs.19,26 and summarized in Sec. II B,
where τ does not scale with L (the super-operator L in
that case is gapped), and thus the approach to station-
arity is exponential in time. The difference can be traced
to the presence of dynamical slow modes related to exact
particle number conservation, a property which is aban-
doned in the mean field approximation of Refs.19,26.

The second consequence is that a gapless Lindbladian
L does not ensure an a priori stability of the dissipa-
tive quantum state preparation. Roughly speaking, even
a small perturbation εM′ (ε � 1) to the Lindbladian
L′ such that the dynamics is ruled by L′ + εM′ has
the potential to qualitatively change the physics of the
steady-state (see Refs.55–57 for some examples where the
presence of a gap is exploited for a perturbative anal-
ysis of the steady states). This concerns, in particular,
the long-distance behavior of correlation functions. To
further understand this last point, in Sec. IV we have
analyzed the effect of several perturbations through nu-
merical simulations. In the case in which the steady state
has topological properties, they may still be robust. We
further elaborate on this point in Sec. V, where we study
the ladder setup.

Notwithstanding the gapless nature of the Lindbladian
L′, we can show that waiting for longer times is beneficial
to the quantum state preparation. If we define p0(t) =

tr
[
P̂0ρ̂(t)

]
, where P̂0 is the projector onto the ground

space of the parent Hamiltonian Ĥ′p, then the following
monotonicity property holds:

d

dt
p0(t) ≥ 0. (22)

Indeed, d
dtp0(t) = tr

[
P̂0L′[ρ̂(t)]

]
= tr

[
L′∗[P̂0]ρ̂(t)

]
, where

L′∗ is the adjoint Lindbladian. It is easy to see that

L′∗[P̂0] = γ
∑
j L̂
′†
j P̂0L̂

′
j , which is a non-negative oper-

ator because for any state |φ〉 it holds that:

〈φ|L′∗[P̂0]|φ〉 =γ
∑
j

〈φ|L̂′†j P̂0L̂
′
j |φ〉 =

=γ
∑
j,α

|〈ψα|L̂′j |φ〉|2 > 0 (23)

where {|ψα〉} are a basis of the ground space of the parent

Hamiltonian Ĥ′p. If we consider the spectral decomposi-
tion of ρ̂(t) =

∑
β pβ |φβ〉〈φβ |, with pβ > 0, we obtain

Eq. (22).

IV. SINGLE WIRE: NUMERICAL RESULTS

Although the previous analysis, based on the study of
the dark states of the dynamics, has already identified
many distinguishing properties of the system, there are
several features which lie outside its prediction range. Let
us list for instance the exact size scaling of the ADR or
the resilience of the scheme to perturbations. In order
to complement the analysis of the dissipative dynamics
with these data, in this section we rely on numerical ap-
proaches. Our results include a finite size scaling of the
dissipative gap, which closes as L−2, as well as the char-
acterization of the effect of perturbations on the dissi-
pative scheme. We find that perturbing the setup both
with dissipative and Hamiltonian terms is harmful for the
creation of a p-wave superfluid.

The numerical analysis that we are going to present
is restricted to systems with hard-wall boundary con-
ditions. In order to characterize the time evolution de-
scribed by the master equation (14), we use two different
numerical methods. The first is a Runge-Kutta (RK) in-
tegration for systems of small size (up to L = 10)58. This
method entails an error due to inaccuracies in the nu-
merical integration, but the density matrix is represented
without any approximation.

On the contrary, the second method, based on a
Matrix-Product-Density-Operator (MPDO) representa-
tion of the density matrix, allows the study of longer sys-
tems through an efficient approximation of ρ̂40,41,43. The
time evolution is performed through the Time-Evolving
Block Decimation (TEBD) algorithm, which is essen-
tially based on the Trotter decomposition of the Liou-
ville super-operator etL

′
. Although this method has been

shown to be able to reliably describe problems with up
to ∼ 100 sites47, in this case we are not able to con-
sider lengths beyond L = 22 because of the highly-
entangled structure of the states encountered during the
dynamics. It is an interesting perspective to investigate
whether algorithms based on an MPDO representation
of the density matrix, which compute the steady state
through maximization of the Lindbladian super-operator
L′, might prove more fruitful in this context46,49.

Finally, we have also performed Exact-Diagonalization
(ED) studies of system sizes up to L = 12 in order to ac-
cess properties of L′, such as its spectrum, which cannot
be observed with the time-evolution.

A. Asymptotic decay rate

Let us first assess that the ADR of the system closes
polynomially with the system size (from the previous
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FIG. 1: (Color online) (Top) Runge-Kutta time evolution

of the pairing correlator G
(p)
1,L−1(t) for the largest available

system size, L = 10. The inset shows that upon subtrac-
tion of the steady value, an exponential decay is observed,
from which λADR is extracted. (Bottom) Time evolution of
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for several system sizes. The inset
shows the scaling of λADR with L, which is fitted by an alge-
braic function.

analysis we know that it closes at least polynomially).
As we discuss in Appendix A, in the asymptotic limit,
it is possible to represent the expectation value of any
observable Â as:

〈Â〉(t)− 〈Â〉ss ∼ κe−λADRt + . . . (24)

where 〈Â〉(t) = tr
[
Â ρ̂(t)

]
, 〈Â〉ss = limt→∞〈Â〉(t) and κ

is a non-universal constant. The notation −λADR is due
to the fact that λADR is positive, being defined through
the additive inverse of the real part of the eigenvalues,
see Eq. (4). It is possible to envision situations where
κ = 0 and thus the long-time decay is dominated by
eigenvalues of L′ with smaller real part (in this case the
decay is faster).

The study of the long-time dependence of any observ-

0.7 0.8 0.9 1 1.1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

log(L)

lo
g
|R

(λ
j
)|

 

 

j = 4
j = 3
j = 2

y = − 2.12*x + 1.16

y = − 1.96*x + 0.952

FIG. 2: (Color online) Finite size scaling of the real part of the
first (j = 2, 3) and the second (j = 4) excited eigenvalue of the
Liouvillian, by means of an exact diagonalization approach
of systems up to L = 12. We remark that the first excited
eigenvalue is two-fold degenerate (λ2 = λ3).

able can be used to extract the value of λADR; among
all the possible choices, we employ the pairing correla-

tor G
(p)
j,l (t) = 〈Ô(p)†

j Ô
(p)
l 〉(t) [see Eq. (20)] because of its

special physical significance. In Fig. 1(top), we consider

L = 10 and plot the time evolution of G
(p)
j,l (t) for j = 1

and l = L − 1 (no relevant boundary effects have been
observed as far as the estimation of λADR is concerned).
The calculation is performed through RK integration of
the master equation. The initial state of the evolution is
given by the ground state of the non-interacting Hamil-

tonian, Ĥ0 = −J
∑
j â
†
j âj+1 + H.c. (N = L/2 for L even,

and N = (L+ 1)/2 for L odd).
In order to benchmark the reliability of the RK integra-

tion for getting the steady state, we compare the expecta-
tion value of several observables (in particular of pairing
correlators) with the exactly-known results (Sec. III pro-
vides the exact wavefunction of the steady state, from
which several observables can be computed). In all cases
the absolute differences are below 10−6. Similar results
are obtained for smaller system sizes, where it is even
possible to compute the trace-distance of the RK steady-
state from the λ = 0 eigenstate of the Liouvillian com-
puted with ED.

In the long-time limit, the observable (20) displays a

clear stationary behavior,
[
G

(p)
j,l

]
ss

= limτ→∞G
(p)
j,l (τ),

consistently with Eq. (24). Once such stationary value
is subtracted, it is possible to fit λADR from the expo-
nential decay of

G
(p)
j,l (t)−

[
G

(p)
j,l

]
ss

(25)

The subtraction is possible to high precision because the

value of
[
G

(p)
j,l

]
ss

is known from the previous analytical
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considerations. Moreover, as we have already pointed out,

the evolution continues up to times such that G
(p)
j,l (t)

differs in absolute terms from the analytical value for
. 10−6, which makes the whole procedure reliable.

In Fig. 1(bottom) we display the quantity in (25) for
various lattice sizes L. It is clear that the convergence
of the observable requires an amount of time which in-
creases with L. A systematic fit of λADR for several chain
lengths allows for an estimate of its dependence on L [see
Fig. 1(bottom)]: the finite-size dissipative gap scales as

λADR ∝ L−2.13±0.05 . (26)

We also performed a finite size scaling analysis of the
Liouvillian eigenvalues by means of an exact diagonaliza-
tion (ED) approach, up to L = 12 sites as shown in Fig. 2.
This allows for a number of further considerations (see
also the discussion in Appendix A). First, the Liouvillian
eigenvalues with largest real part (<(λ) . 0) are inde-
pendent of the number of particles (the check has been
performed for every value of N = 1, ..., L). Second, com-
paring the ED with the previous analysis, we observe that
the λADR in Eq. (26) coincides with the second non-zero
eigenvalue of the Liouvillian, rather than with the first
[here the generalized eigenvalues are ordered according to
the additive inverse of their real part −<(λ)]. Numerical
inspection of small systems (up to L = 12) shows that the
first excited eigenvalue of L′ is two-fold degenerate and
takes the value −ξ/2, where ξ is the energy of the first

excited state of Ĥ′p (see the discussion in Sec. II A). Our
RK time-evolution suggests that it does not play any role
in this particular dissipative evolution, hinting at the fact
that the chosen ρ̂(0) does not overlap with the eigenspace
relative to −ξ/2 (see Appendix A). In this case, the value
of κ in Eq. (24) is zero.

B. Perturbations

In order to test the robustness of the dissipative scheme
for the preparation of a p-wave superconductor, we now
consider several perturbations to the Lindbladian L′ of
both dissipative and Hamiltonian form. The robustness of
the dissipative state preparation of the p-wave supercon-
ductor is probed through the behavior of the correlations

G
(p)
j,l (t), which define such phase.

1. Perturbations of the Lindblad operators

Let us define the following perturbed Lindblad opera-
tor:

L̂′j,ε = Ĉ†j Âj,ε; Âj,ε = âj − (1− ε)âj+1; ε ∈ R, (27)

which allows for slight asymmetries in the action of the
dissipation between sites j and j+1. The continuity equa-
tion associated to the dynamics, ∂tn̂i = −γ(ĵi − ĵi−1),

10 15 20
−2

−1.5

−1

−0.5

0

jth site

lo
g
[G

’(
p
)

4
,j
] s
s

 

 

ǫ = 0
ǫ = 0.01
ǫ = 0.02
ǫ = 0.05
ǫ = 0.1

5 10 15 20
0

0.5

1

jth site

〈n̂
j
〉 s

s

FIG. 3: (Color online) Steady-state values of
[
G
′(p)
4,j

]
ss

[see
Eq. (28)] for a lattice with L = 22 sites at half-filling, ν = 1/2,

computed with MPDO for different values of ε in L̂′j,ε [see
Eq. (27)]. The inset displays the steady-state values of the
local number of fermions 〈n̂j〉ss for the same systems.

is characterized by the following current operator: ĵi =
n̂i − (1 − ε)2n̂i+1 + (ε2 − 2ε)n̂in̂i+1. When ε 6= 0, ĵi is
not anymore odd under space reflection around the link
between sites i and i+1, so that in the stationary state a
non-zero current can flow even if the density profile is ho-
mogeneous (and even under the previous space-inversion
transformation), which is quite intuitive given the ex-
plicit breaking of inversion symmetry in this problem.

We employ the MPDO method to analyze the steady-
state properties of a system with size L = 22 initialized in
the ground state of the free Hamiltonian Ĥ0 for N = 11
and subject to such dissipation. The results in the in-
set of Fig. 3 show that the steady state is not homoge-
neous and that a relatively high degree of inhomogene-

ity 〈n̂L〉−〈n̂1〉
〈n̂L/2〉

≈ 1 is found also for small perturbations

ε = 0.05. This is not to be confused with the phase-
separation instability which characterizes the ferromag-
netic parent Hamiltonian Ĥ′p,spin. Indeed, if PBC are con-
sidered, the system becomes homogeneous and a current
starts flowing in it (not shown).

P-wave superconducting correlations are affected by
such inhomogeneity. Whereas for ε = 0 the correlations[
G

(p)
j,l

]
ss

do not show a significant dependence on |j − l|,
this is not true even for small perturbations ε ≤ 0.05. In
order to remove the effect of the inhomogeneous density,
in Fig. 3 we show the value of properly rescaled p-wave
correlations:

[
G
′(p)
j,l

]
ss
≡ 〈 Ô′(p)†j Ô

′(p)
l 〉ss =

(N/L)4 〈Ô(p)†
j Ô

(p)
l 〉ss

〈n̂j〉ss〈n̂j+1〉ss〈n̂l〉ss〈n̂l+1〉ss
(28)

where Ô
′(p)
j = (N/L)2Ô

(p)
j /(〈n̂j〉ss〈n̂j+1〉ss). An exponen-

tial decay behavior appears as a function of |j− l|, which
becomes more pronounced when ε is increased. Even if
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FIG. 4: (Color online) (Top) Pairing correlations
[
G

(p)
4,j

]
ss

for
the steady state of the dynamics in the presence of a Hamilto-
nian perturbation (29). The calculation of the steady state is
performed with MPDO technique for L = 22 and N = 11.

(Bottom) The decay of
[
G

(p)
4,j

]
ss

is exponential in j (here,
ε = 0.1, 0.2).

the simulation is performed on a finite short system, for

significant perturbations, ε = 0.1, the value of
[
G
′(p)
j,l

]
ss

decays of almost two decades, so that the exponential
behavior is identified with reasonable certainty.

In Appendix B we discuss some interesting analogies
of these results with the properties of the ground state of

the parent Hamiltonian Ĥ′p,ε = J
∑
j L̂
′†
j,εL̂

′
j,ε. It should

be stressed that, since Ĥ′p,ε does not have a zero-energy
ground state, there is no exact correspondence between
its ground state and the steady states of L′ε.

Concluding, we mention that a similar analysis can
be done introducing an analogous perturbation in the

operator Ĉ†j ; our study did not observe any qualitative

difference (not shown).

2. Perturbations due to unitary dynamics

An alternative way of perturbing the dynamics of L′ in
Eq. (14) is to introduce a Hamiltonian into the system,
chosen for simplicity to be the already-introduced free
Hamiltonian Ĥ0:

∂

∂t
ρ̂ = −i[εĤ0, ρ̂] + L[ρ̂]. (29)

Using the MPDO method to characterize the steady state
of the dynamics, we analyze the spatial decay of the pair-
ing correlations for L = 22 and at half-filling (N = 11);
the initial state is set in the same way as in the previous
section. In Fig. 4 (top) we display the results: even for

very small perturbations the pairing correlator
[
G

(p)
4,j

]
ss

decays rapidly in space. The long-distance saturation ob-
served in the absence of perturbations is lost and quali-
tatively different from this result. In Fig. 4 (bottom) we
highlight that the decay is exponential in j.

Summarizing, in all the cases that we have considered,
the p-wave pairing correlations of the stationary state[
G

(p)
j,l

]
ss

are observed to decay as a function of |j−l|. Due
to the interplay between the targeted dissipative dynam-
ics and the perturbations, which do not support a p-wave
ordered dark state, the steady state is mixed, similar thus
to a finite temperature state. From this intuition, the
result in Fig. 4 is easily rationalized: Any (quasi) long
range order is destroyed in one-dimensional systems at
finite temperature. We note that the true long range or-
der found in the unperturbed case (correlators saturating
at large distance; opposed to the more generic quasi-long
range order defined with algebraic decay) is non-generic
in one-dimensional systems and a special feature of our
model, see33 for a thorough discussion. However, the de-
struction of any such order via effective finite tempera-
ture effects must be expected on general grounds. The ab-
sence of quasi-long-range p-wave superconducting order,
which in one-dimension only occurs at zero-temperature
for pure states, is likely to be in connection with this fact.

3. Perturbation strength

Finally, we perform a quantitative investigation of the
dependence of the pairing correlations on the perturba-
tion strength, ε.

Lindblad perturbation – In Fig. 5 we plot the p-wave

superconducting correlation
[
G

(p)
2,L−2

]
ss

of a system of
length L = 8 as a function of the intensity of the per-
turbation ε in L̂′j,ε (for completeness, the complementary

case L̂
′(2)
j,ε = Ĉ†j,εÂj , with Ĉ†j,ε = â†j + (1− ε)â†j+1, is also

included). Our data confirm that correlations undergo
a clear suppression in the presence of ε 6= 0, which in
one case is exponential in ε and in the other in ε2. The
calculation is performed through RK integration of the
dynamics.

Hamiltonian perturbation – We begin with the two
cases: Ĥ0 and Ĥnn = −J

∑
j n̂j n̂j+1. Fig. 6 shows, in

both cases, an exponential decay to zero of
[
G
′(p)
2,L−2

]
ss

when ε is increased. On the contrary, a Hamiltonian
which introduces p-wave correlations in the system, such
as

Ĥpair = −J
∑
j,l

(â†j â
†
j+1âl+1âl + H.c.), (30)
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FIG. 5: (Color online)
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]
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in the presence of a per-
turbed Lindblad operator as a function of the perturbation
strength ε. The perturbation is considered both for the Âj
(top) and Ĉ†j (bottom) operators (see text for the definitions).
The calculation is done with RK integration of the equation
of motion for L = 8 and N = 4.
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FIG. 6: (Color online)
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ss

in the presence of a perturb-
ing Hamiltonian as a function of the perturbation strength ε.
We consider Ĥ0, Ĥnn and Ĥpair (see text for the definitions).
The inset highlights the exponential decay with ε.

changes the value and the sign of
[
G
′(p)
2,L−2

]
ss

, leaving it
different from zero.

Concluding, we have shown that in all the consid-
ered cases perturbations of both dissipative and Hamil-
tonian form are detrimental to the creation of a number-
conserving p-wave superconductor. This is rationalized
by the mixedness of the perturbed stationary state in
that case, thus paralleling a finite temperature situation.
Additionally, since in any generic, algebraically-ordered
system at zero temperature one has gapless modes, the
system lacks a dissipative gap protecting the distinguish-
ing features of the unperturbed steady state.

V. TWO WIRES

The results presented in the previous sections moti-
vate the search for a number-conserving dissipative model
where a degenerate subspace exists which is not affected
by dissipation and which is characterized by the presence
of Majorana edge modes.

An intuitive explanation of why the dissipative setup
discussed in Sec. III does not show topological dark states
with fixed number of particles is the fact that this con-
straint fixes the parity of the state, and thus no topo-
logical degeneracy can occur. It has already been real-
ized in several works that a setup with two parallel wires
can overcome this issue21,29–34. In this case it is possible
to envision a number-conserving p-wave superconducting
Hamiltonian which conserves the parity of the number of
fermions in each wire: such symmetry can play the role
of the parity of the number of fermions for ĤK in Eq. (8).
Several equilibrium models have already been discussed
in this context. In this section we consider the novel pos-
sibility of engineering a topological number-conserving
p-wave superconductor with Markovian dynamics.

A. Steady states

Let us study a system composed of two wires with
spinless fermions described by the canonical fermionic

operators â
(†)
j and b̂

(†)
j . For this model we consider three

kinds of Lindblad operators:

L̂′′a,j = Ĉ†a,jÂa,j ; (31a)

L̂′′b,j = Ĉ†b,jÂb,j ; (31b)

L̂′′I,j = Ĉ†a,jÂb,j + Ĉ†b,jÂa,j . (31c)

We now characterize the dark states of the Markovian
dynamics induced by these operators for a two-leg ladder
of length L with hard-wall boundary conditions:

∂

∂t
ρ̂ = L′′[ρ̂] = γ

L−1∑
j=1

∑
Λ=a,b,I

[
L̂′′Λ,j ρ̂L̂

′′†
Λ,j −

1

2
{L̂′′†Λ,jL̂

′′
Λ,j , ρ̂}

]
.

(32)
In particular, we will show that, for every fermionic den-
sity different from the empty and filled cases, there are
always two dark states.

It is easy to identify the linear space SN of pure states
which are annihilated by the L̂′′a,j and L̂′′b,j and have a
total number of particles N :

SN = span{|ψa,0〉|ψb,N 〉, |ψa,1〉|ψb,N−1〉, . . . , |ψa,N 〉|ψb,0〉}.
(33)

where the states |ψα,N 〉 are those defined in Eq. (17) for
the wire α = a, b. Let us consider a generic state in SN :

|ψ〉 =

N∑
m=0

αm|ψa,m〉|ψb,N−m〉,
N∑
m=0

|αm|2 = 1. (34)
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From the condition Ĉ†j |ψσ〉 = −Âj |ψσ〉 we obtain:

Ĉ†j |ψN−1〉 = −Âj |ψN+1〉, N ∈ (0, 2L) (35a)

0 = −Âj |ψ1〉, (35b)

Ĉ†j |ψ2L−1〉 = 0, (35c)

and when we impose the condition L̂′′I,j |ψ〉 = 0, which is:

L̂′′I,j |ψ〉 =

N−1∑
m=0

αmĈ
†
a,jÂb,j |ψa,m〉|ψb,N−m〉+

N∑
m=1

αmĈ
†
b,jÂa,j |ψa,m〉|ψb,N−m〉 =

=

N−1∑
m=0

αmĈ
†
a,jÂb,j |ψa,m〉|ψb,N−m〉 −

N+1∑
m=2

αmĈ
†
a,jÂb,j |ψa,m−2〉|ψb,N−m+2〉 = 0 , (36)

we obtain αm = αm+2. Thus, two linearly independent
states can be constructed which are annihilated by all
the Lindblad operators in (31):

|ψN,ee〉 =
1

N 1/2
N,ee

∑
m

|ψa,2m〉|ψb,N−2m〉, (37a)

|ψN,oo〉 =
1

N 1/2
N,oo

∑
m

|ψa,2m−1〉|ψb,N−2m+1〉. (37b)

The subscripts ee and oo refer to the fermionic parities in
the first and second wire assuming that N is even; NN,ee
and NN,oo are normalization constants33. For N odd one
can similarly construct the states |ψN,eo〉 and |ψN,oe〉. By
construction, the states that we have just identified are
the only dark states of the dynamics.

It is an interesting fact that at least two parent Hamil-
tonians are known for the states in (37), as discussed in
Refs.33,34. We refer the reader interested in the full char-
acterization of the topological properties of these steady-
states to those articles.

Finally, let us mention that the form of the Lindblad
operators in (31) is not uniquely defined. For example

one could replace L̂′′I,j in Eq. (31c) with the following:

L̂′′I,j =
(
Ĉ†a,j + Ĉ†b,j

)(
Âa,j + Âb,j

)
, (38)

without affecting the steady states in Eq. (37)33. The
latter operator is most realistic for an experimental im-
plementation, as we point out below.

B. P-wave superconductivity

Let us now check that the obtained states are p-wave
superconductors. Similarly to the single-wire protocol
discussed in Eq. (21), the explicit calculation33 shows
that p-wave correlations saturate to a final value at large

distances in the thermodynamic limit [for the two-leg lad-
der we consider ν = N/(2L)]

〈ψN,ee|Ô(p)†
j Ô

(p)
l |ψN,ee〉

|j−l|→∞−−−−−−→ ν2(1− ν)2. (39)

This relation clearly highlights the p-wave superconduct-
ing nature of the states.

C. Dissipative gap

In order to demonstrate that λADR associated to L′′
tends to 0 in the thermodynamic limit, we consider the
parent Hamiltonian of the model:

Ĥ′′p =− 4J

L−1∑
j=1
α=a,b

[
(α̂†jα̂j+1+H.c.)−(n̂αj + n̂αj+1) +n̂αj n̂

α
j+1

]

− 2J

L−1∑
j=1

[
(n̂aj + n̂aj+1)(n̂bj + n̂bj+1)− (â†j âj+1b̂

†
j b̂j+1

+ â†j âj+1b̂
†
j+1b̂j − 2b̂†j b̂

†
j+1âj+1âj + H.c.)

]
,

(40)

where J > 0 is a typical energy scale setting the units of
measurement. This Hamiltonian has been extensively an-
alyzed in Ref.33. Numerical simulations performed with
the density-matrix renormalization-group algorithm as-
sess that Ĥ′′p is gapless and that the gap is closing as

1/L2. According to the discussion in Sec. II A, the ADR
λADR associated to the Lindbladian L′′ closes in the ther-
modynamic limit with a scaling which is equal to ∼ L−2

or faster. This is true both for periodic and hard-wall
boundary conditions.
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D. Experimental implementation

The Lindblad operators in Eqs. (31a), (31b) and (38)
lend themselves to a natural experimental implementa-
tion. The engineering of terms like L̂′′a,j and L̂′′b,j has been

extensively discussed in Ref.19 starting from ideas orig-
inally presented in Ref.23. As we will see, the Lindblad
operator L̂′′I,j in Eq. (38) is just a simple generalization.

The idea is as follows: a superlattice is imposed which
introduces in the system additional higher-energy aux-
iliary sites located in the middle of each square of the
lower sites target lattice. Driving lasers are then applied
to the system, whose phases are chosen such that the
excitation to the auxiliary sites happens only for states
|ϕ〉 such that (Âa,j + Âb,j)|ϕ〉 6= 0. If the whole system
is immersed into, e.g., a Bose-Einstein condensate reser-
voir, atoms located in the auxiliary sites can decay to
the original wire by emission of a Bogoliubov phonon of
the condensate. This process is isotropic and, for a wave-
length of the emitted phonons comparable to the lattice
spacing, gives rise to the four-site creation part with rel-

ative plus sign: Ĉ†a,j + Ĉ†b,j .

The decay rate for the desired engineered processes
scales as ∼ κ̃(Ω/∆)2. Here, Ω is the Rabi frequency
which coherently couples the target system to the auxil-
iary level, κ̃ the decay rate from the upper level (opened
up due to the decay into the bosonic bath into which
the system is immersed), and ∆ is the detuning from the
auxiliary level’s resonance. Although this rate is pertur-
bative, by increasing the driving laser intensity, Ω and
thus the engineered decay rate can be made comparable
to typical inverse timescales in optical lattices59. Hamil-
tonian perturbations can be made small by using a deep
target lattice (low kinetic energy), and tuning the scat-
tering length to small values in the proximity to Feshbach
resonances (low onsite interaction energy). The perturba-
tions to the Lindblad operators, such as a drift term ε in
Eq. (27), should be even better controlled, as they relate
to the precisely tunable driving laser. Nevertheless, in or-
der to obtain a comprehensive picture, in this work we
discuss both Hamiltonian and Liouvillian perturbations
in a common framework.

E. Perturbations

An important property of topological Hamiltonians
is the robustness of their edge physics to local pertur-
bations. Similar features have been highlighted in the
case of topological superconductors where the setup is
not number conserving19,26. The goal of this section is
to probe the resilience of the twofold-degenerate steady
states of L′′. A conclusive analysis is beyond our current
numerical possibilities; here we present some preliminary
results obtained via exact diagonalization methods.

We consider the natural choice of Lindblad operators
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FIG. 7: (Color online) Real part of the first six eigenvalues
of the Lindbladian operator L′′ε for L = 6 and N = 6 as a
function of ε. Eigenvalues λj are sorted according to increasing
−<(λj). The plot highlights the presence of a λ = 0 eigenvalue
(within numerical accuracy 10−15), of three eigenvalues which
scale as ε2 and of other eigenvalues of magnitude ∼ 1.

Eqs. (31a), (31b), and (38), subject to perturbations:

L̂′′a,j,ε = Ĉ†a,jÂa,j,ε; Âa,j,ε = âj − (1− ε)âj+1; (41a)

L̂′′b,j,ε = Ĉ†b,jÂb,j,ε; Âb,j,ε = b̂j − (1− ε)b̂j+1; (41b)

L̂′′I,j =
(
Ĉ†a,j + Ĉ†b,j

)(
Âa,j,ε + Âb,j,ε

)
; ε ∈ R (41c)

They define a perturbed Lindbladian L′′ε . They are a sim-
ple generalization of those defined in Eq. (27) for the
single-wire setup.

Let us begin our analysis by showing that for small
sizes L ∼ 6 the degeneracy of the steady space for ε = 0
is broken. Let us first remark that for ε = 0 the steady
space is four-fold degenerate; a possible parameterization
is:

B = {|ψN,ee〉〈ψN,ee|, |ψN,ee〉〈ψN,oo|, (42)

|ψN,oo〉〈ψN,ee|, |ψN,oo〉〈ψN,oo|}. (43)

A direct inspection of the eigenvalues of Lε shows that
this degeneracy is broken once ε 6= 0. Results, shown in
Fig. 7 for a fixed lattice size L = 6 and N = 6, display a
quadratic splitting of the steady steady degeneracy with
the perturbation strength.

Let us now check the behavior with the system size
of the first eigenvalues of the system for longer system
sizes. In order to obtain a reasonable number of data,
the extreme choice of setting N = 2 in all simulations
has been taken, which allows us to analyze system sizes
up to L = 20. Results shown in Fig. 8 (top) show that
the Liouvillian eigenvalues related to the steady-state de-
generacy display an algebraic scaling λADR ∼ L−1 in
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FIG. 8: (Color online) Real part of the eigenvalues j = 2, 3
and 4 (top) and j = 5 and 6 (bottom) of the Lindbladian
operator L′′ε for N = 2 as a function of L (here, L ≤ 20). The
two values ε = 0.1 and ε = 0.01 are considered. In the top
panel, the values of the eigenvalues relative to ε = 0.1 have
been rescaled by 0.01 in order to facilitate the readability of
the plot.

the accessible regime of system sizes for small perturba-
tions (ε = 10−2), while they are gapped for larger per-
turbations (ε = 10−1). Note that, for the system sizes
which could be accessed, larger eigenvalues clear display
an algebraic decay, as shown in Fig. 8 (bottom), also
for ε = 0.1. The scaling of the eigenvalues related to
the steady state degeneracy is not exponential and thus
in principle should not be connected to the topological
properties of the system. However, these preliminary con-
siderations suffer from two significant biases: (i) the small
considered sizes, (ii) the fact that they are not performed
at exactly fixed density, and (iii) the very low filling. A
more thorough analysis is left for future work.

VI. CONCLUSIONS

In this article we have discussed the dissipative quan-
tum state preparation of a p-wave superconductor in
one-dimensional fermionic systems with fixed number of
particles. In particular, we have presented two proto-
cols which have been fully characterized in the presence
of hard-wall boundaries. Whereas the former does not
display topological property, the latter features a two-
dimensional steady space to be understood in terms of
boundary Majorana modes for any number of fermions.
Through the analysis of a related parent Hamiltonian,
we are able to make precise statements about the gapless
nature of the Lindbladian super-operators associated to
both dynamics.

The peculiar form of the master equations considered
in this article allows for the exact characterization of sev-
eral properties of the system, and in particular of the
steady state, even if the dynamics is not solvable with
the methods of fermionic linear optics60,61 exploited in
Refs.19,26. This result is very interesting per se, as such
examples are usually rare but can drive physical intuition
into regimes inaccessible without approximations. It is a
remarkable challenge to investigate which of the proper-
ties presented so far are general and survive to modifica-
tions of the environment, and which ones are peculiar of
this setup.

Using several numerical methods for the study of dissi-
pative many-body systems, we have presented a detailed
analysis of the robustness to perturbations of these se-
tups. Through the calculation of the proper p-wave cor-
relations we have discussed how external perturbations
can modify the nature of the steady state. In the ladder
setup, where the steady states are topological, we have
presented preliminary results on the stability of the de-
generate steady-space of the system.

The analysis presented here has greatly benefited from
exact mathematical relations between the properties of
the Lindbladian and of a related parent Hamiltonian.
Since the study of closed systems is much more devel-
oped than that of open systems both from the analytical
and from the numerical points of view, a more detailed
understanding of the relations between Lindbladians and
associated parent Hamiltonian operators stands as a pri-
ority research program.
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Appendix A: Spectral properties of the Lindbladian
super-operator and the asymptotic decay rate

In order to discuss the long-time properties of the
dissipative dynamics, it is convenient to start from the
spectral decomposition of the Lindbladian. Since L is in
general a non-Hermitian operator, its eigenvalues are re-
lated to its Jordan canonical form62. Let us briefly re-
view these results. The Hilbert space of linear operators
on the fermionic Fock space, H, can be decomposed into
the direct sum of linear spaces Mj (usually not orthogo-
nal) such that if we denote with Pj the projectors onto
such subspaces (usually not orthogonal) and with Nj a
nilpotent super-operator acting on Mj , the following is
true:

L =
∑
j

[λjPj +Nj ] . (A1)

The {λj} are the generalized complex eigenvalues of the
super-operator L and, for the case of a Lindbladian, have
non-positive real part; the Nj can also be equal to zero.
By this explicit construction it is possible to observe that
the {Pj} and {Nj} are all mutually commuting (PjPk =
δj,kPj , PjNk = NkPj = δj,kNj and NjNk = δj,kN 2

j ).
Using these properties, the time evolution can be writ-

ten as:

ρ̂(t) = etL[ρ̂(0)] =
∑
j

eλjtetNjPj [ρ̂(0)], (A2)

which highlights that at a given time t only the terms
of the sum such that |<(λj) t| � 1 play a role. In the
long-time limit, it is possible to represent the expectation
value of any observable Â as:

〈Â〉(t) ≈ tr[ÂP0[ρ̂(0)]]+ e−λADRt tr[Â etNADRPADR[ρ̂(0)]].
(A3)

Eq. (A3) is the mathematical formula motivating Eq. (24)
in the text, and it also defines the meaning of κ.

We now specialize this analysis to the example dis-
cussed in the text, Sec. IV A. In Fig. 9 we plot the spec-
trum of L′ in Eqs. (13)-(14) for a system with L = 12
and for all of its distinct particle-number sectors N =
1, . . . , L. The result is obtained through ED. As discussed
in the text, we see that the Liouvillian eigenvalues with
the largest real part (<(λ) . 0) are independent of the
number of particles. This is an interesting property which
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−0.1

0

j

R
(λ

j
)

 

 

N = 1
N = 2
N = 3
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FIG. 9: (color online) First excited eigenvalues of the Liouvil-
lian spectrum for a single wire of length L = 12 with no per-
turbations, as given in Eqs. (13)-(14). The various data sets
stand for distinct particle-number sectors N = 1, . . . , L. The
spectrum is particle-hole symmetric, therefore the eigenvalues
of the N -th and (L−N)-th sectors are identical. Black-thick
lines connects the denegerated eigenvalues corresponding to
the eigenoperators given in Eq. (5).

is related to the features of the magnon exitations of
Hamiltonian (18).

Explicit inspection also shows that λADR = ξ/2, where
ξ is the first excited eigenvalue of the parent Hamiltonian
Ĥ′p in Eq. (18) (see Fig. 9). According to the discussion
in Sec. II A, we can thus explicitly write the two eigen-
operators corresponding to the asymptotic decay rate,

θ̂
(1)
−λADR

and θ̂
(2)
−λADR

as in Eq. (5). Additionally, since

L′[θ̂(i)
−λADR

] = −λADRθ̂
(i)
−λADR

, i = 1, 2, we also obtain
that NADR = 0.

Depending on the initial state and on the observable
under study, some of the generalized complex eigenval-
ues of the super-operator L′ may not influence the ex-
pectation value of the observable. We now discuss the
situation encountered in the text, where this happens for
the ADR eigenvalue, λADR. Unfortunately, as in princi-
ple the projector PADR associated to λADR is not the
standard orthogonal projector, we do not know its form,
and thus a fully general study cannot be performed. We
can however study a simple example where depending on
the initial state the time evolution of p-wave correlations
may decay according to the ADR or faster.

We consider the following initial state:

|φin〉 =
|Ψ〉+ eiα|ψADR〉√

2
, (A4)

where α is an arbitrary phase, |Ψ〉 is the dark state of
the dissipative evolution, and |ψADR〉 is the first excited
eigenstate of the parent Hamiltonian.

In the long-time limit, even if we do not know PADR,
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FIG. 10: (Color online) Time evolution of G
(p)
1,L−1(t) −[
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]
ss

for two distinct initial states of the form in
Eq. (A4), with α = π/2 (black data set, crosses) and α = 0
(red data set, circles). Here we address the single-wire dissipa-
tive setting [see Eq. (13)] with L = 6 and N = 3. We observe
an exponential decay, from which we can extrapolate λADR.

we can argue by symmetry reasons that:

ρ̂(t)
t→∞−−−→p0|Ψ〉〈Ψ|+

+ p1

(
e−iα|Ψ〉〈ψADR|+ eiα|ψADR〉〈Ψ|

)
e−λADRt+

+ . . . ; (A5)

with p0, p1 ∈ R.. This form will be indirectly verified a
posteriori in the numerical simulations. Let us now con-
sider an observable Â; in order to observe that its time-
evolution decays, in the long-time regime, as e−λADRt, it
is necessary that the condition

1

2

[
e−iα〈ψADR|Â|Ψ〉+ eiα〈Ψ|Â|ψADR〉

]
6= 0 , (A6)

is fulfilled.
Following the analysis performed in this article, we

choose the pairing correlation Â ≡ Ĝ
(p)
1,L−1. For such ob-

servable, it is natural to expect a symmetry between the
two matrix elements in the above inequality. Consider-
ing, for example, a single wire with L = 6 and N =

3, we can numerically check that 〈ψADR|Ĝ(p)
1,L−1|Ψ〉 =

−〈Ψ|Ĝ(p)
1,L−1|ψADR〉. Therefore, Eq. (A6) simplifies into:

〈ψADR|Ĝ(p)
1,L−1|Ψ〉 × sin(α) 6= 0 . (A7)

In Fig. 10 we illustrate the two opposite cases, by per-
forming an ADR analysis for initial states with α = π/2
and α = 0. In the former case, the necessary condi-
tion (A6) is satisfied, and we obtain λADR ≈ −0.28,
which corresponds, within numerical accuracy, to the first
excited eigenvalue of the Liouvillian (λ1 ≈ −0.27). In the
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FIG. 11: (Color online) Fidelity F(ρss, |g〉) and purity P(ρss)

for different values of ε in L̂′j,ε [see Eq. (27)].

latter case, where the condition (A6) is not satisfied, we
get λADR ≈ −0.313, corresponding to the second eigen-
value of the Liouvillian (λ2 ≈ 0.319). Note that these
results validate a posteriori the expansion in Eq. (A5).

Appendix B: Analogies with the parent Hamiltonian

In this Appendix we discuss some interesting analogies
between the steady state ρ̂ss of the dissipative dynamics
for the perturbed Lindblad operator L̂′j,ε in Eq. (27) with

the ground state |g〉 of its parent Hamiltonian Ĥ′p,ε =

J
∑
j L̂
′†
j,εL̂

′
j,ε. It should be stressed that, since Ĥ′p,ε does

not have a zero-energy ground state, there is no exact
correspondence between such states.

We first study a small lattice with L = 8 sites at
half-filling, performing a Runge-Kutta integration of the
master equation. The initial state of the evolution is the
ground state of Ĥ0. In Fig. 11 it is shown that both the
purity of the steady state P(ρss) = tr

[
ρ̂2
ss

]
and its fidelity

with the ground state of the parent Hamiltonian decrease
with the perturbation strength. Notice, however, that for
small perturbations the fidelity F(ρ̂ss, |g〉) = 〈g|ρ̂ss|g〉 re-
mains close to one, thus revealing the similarity of the
states in such regime.

Such feature is also observed for larger lattices. Us-
ing the MPDO method for ρ̂ss and an algorithm based
on matrix product states for |g〉, we analyze a lattice
with L = 22 sites at half-filling. We compare the pairing
correlations and density profiles for both states, which
differ only for O(10−2), when the perturbation strength
is ε . 0.05 (not shown). Let us explicitly show the re-
sults for the Hamiltonian case. In Fig. 12 we show that,
for a lattice with L = 200 sites at half-filling, even a
small perturbation (ε ∼ 10−3) produces a non-negligible
inhomogeneity. Moreover, the pairing correlations decay,
indicating that such perturbation breaks the p-wave or-
dered nature of the purely dissipative dark state.
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` |g〉,

with j = (L/2)− 2 and ` > j. The computation is performed
for a lattice with L = 200 sites at half-filling and different
values of ε in L̂′j,ε [see Eq. (27)].

This similarity encourages the possibility of accessing
some steady-state properties for large lattices through
the study of the ground states of the corresponding par-
ent Hamiltonians, even if no mathematical connection
is present and the mixedness of the state is expected to
act like a finite temperature, washing out several ground-
state properties.
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48 S. Finazzi, A. Le Boité, F. Storme, A. Baksic, and C. Ciuti,

Phys. Rev. Lett. 115, 080604 (2015).
49 E. Mascarenhas, H. Flayac, and V. Savona, Phys. Rev. A

92, 022116 (2015).
50 A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco,

J. Eisert, and S. Montangero, arXiv:1412:5746 (2014).
51 M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Adv. At.

Mol. Opt. Phys. 61, 1 (2012).
52 M. Karbach and G. Müller, Computers in Physics 11, 36

(1997); and arXiv:cond-mat/9809162 (1998)
53 M. Karbach and G. Müller, Computers in Physics 12, 565

(1998); and arXiv:cond-mat/9809162 (1998).
54 P. Lu, G. Müller, and M. Karbach, arXiv:0909.2728 (2009).
55 N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze,

J. J. Garcia-Ripoll, J. I. Cirac, G. Rempe, and S. Dürr,
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