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Monte Carlo simulations are a powerful tool for elucidating the properties of complex systems,
but when applied to fermionic quantum systems, quantum Monte Carlo (QMC) algorithms suffer
from the so-called “negative sign problem”, causing the computational effort to grow exponentially
with problem size. Here we demonstrate that the fermion sign problem originates in topological
properties of the configurations. Using the widely used determinantal approaches, that remove the
trivial sign problem due to particle exchange, we prove that the negative sign of a configuration
is a topological invariant – an imaginary time counterpart of the Aharonov-Anandan phase – and
reduces to a Berry phase in the adiabatic limit. This provides an intriguing connection between
QMC simulations and classification of topological states.

The powerful method of Monte Carlo sampling can be
applied to quantum systems by introducing an imaginary
time formulation of the Schrödinger equation which de-
scribes classical particles performing a random walk in an
external potential [1]. Identifying finite imaginary times
with the inverse temperature β = 1/kBT has led to the
path-integral formulation of quantum mechanics, where
the partition function Z = Tr exp(−βH) of the quantum
system is mapped into a sum Z =

∑
c wc over the paths

c with statistical weights wc. The stochastic sampling of
these paths forms the basis of finite temperature quan-
tum Monte Carlo (QMC) algorithms, which have been
widely applied to simulate quantum lattice models [2–
5], the electronic structure of materials [6, 7], ultracold
atoms [8, 9], nuclear matter [10], and lattice quantum
chromodynamics [11].

While in classical systems the Boltzmann weights are
always positive, in QMC the weight of a configuration
can be negative due to particle statistics or gauge fields
[12] [13]. Negative weight configurations then cancel con-
tributions of positive ones, resulting in an exponential
increase of statistical errors with system size and inverse
temperature (see Appendix A for details). The sign prob-
lem hence severely limits the applicability of QMC meth-
ods. While it is representation-dependent, which leaves
hope for a solution, it is also nondeterministic polyno-
mially (NP) hard [14]. This implies that unless P=NP
[15], which is believed to be highly unlikely, there is no
generic solution.

Since the sign problem can be solved in specific cases
[16–20], one may ask if a broader solution may exist
for a restricted class of models, such as e.g. Hubbard
models. The origin of the sign problem in these models
has remained controversial and several, so far unsuccess-
ful, attempts at a solution have been made [4, 21–29].
In this Letter we will show that the origin of the sign
problem in common fermionic QMC approaches lies in
topological properties of the path configurations and a
nonzero Aharonov-Anandan phase picked up during evo-
lution [30]. We will here only consider unbiased algo-
rithms, ignoring approximations such as the fixed node
approximation [31] which may modify the physics of the
model.

FIG. 1. Time evolution in the world-line representation for
2 + 1 dimensions. The configuration returns either to itself
without exchanging particles and has a positive weight or par-
ticles exchange, resulting in a negative sign. The topological
nature becomes apparent when connecting the two worldlines
by sheet, which closes either to a cylinder or a Möbius strip.

The simplest QMC approach is the world line algo-
rithm (WL-QMC), which samples real-space world lines
of particles evolving in imaginary time. Indistinguish-
able particles can be exchanged during the evolution, as
sketched in Fig. 1. For fermions, an odd number of ex-
changes results in a final state that differs in sign from the
initial state. After closing the trace it thus contributes
with a negative weight. The topological nature of the
sign problem, due to the braiding of fermions, is readily
apparent. It implies that no local transformation can re-
move this sign problem but more drastic changes of the
representation are needed. In some specific cases this
sign problem might be removed by an ansatz on the dis-
tribution of positive and negative sign regions of phase
space [32].

The hope to solve the sign problem by restrict-
ing the sampling to antisymmetric wavefunctions has
prompted the development of determinantal QMC algo-
rithms which have become state of the art in fermionic
simulations [4, 5, 33–36]. Most of these are formulated
in an auxiliary field approach which maps interacting
fermions to non-interacting ones coupled to a fluctuat-
ing auxiliary field. Integrating out the fermions one
ends up with an action of only the bosonic auxiliary
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field. Nevertheless, contrary to initial expectations [37],
these algorithms still suffer from an exponential sign
problem whose origin has been controversially discussed
[12, 23, 26, 28, 29, 38–40].

To illustrate that the remaining sign problem is linked
to a nontrivial value of a topological invariant, we will
initially focus on the Hubbard mode, but note that our
conclusions apply more generally. The Hamiltonian of
the Hubbard model

H = −t
∑
〈ij〉,σ

c†iσcjσ −
∑
iσ

µσc
†
iσciσ + U

∑
iσ

c†i↑ci↑c
†
i↓ci↓

(1)
describes fermions with spin σ = ↑, ↓, that hop between
neighboring lattice sites with a matrix element t and in-
teract via an on-site repulsion U . The spin-dependent
chemical potential µσ combines the chemical potential µ
and a Zeeman term. Our knowledge of the phase dia-
gram of the Hubbard model remains incomplete, not the
least due to the fermion sign problem.

To perform auxiliary-field QMC one discretizes the in-
verse temperature into small imaginary time steps dτ .
We use an infinitesimal notation but understand that
it refers to both discrete time formulations with finite
time steps δτ and the infinitesimal limit [41]. Using
a Hubbard-Stratonovich decomposition one rewrites the
contribution of each of the interaction terms to the weight
exp(−dτH) of one time step as

e−dτUc
†
i↑ci↑c

†
i↓ci↓ →

∫ ∞
−∞

dρie
−

ρ2
i

2dτ|U|+ρi(c
†
i↑ci↑+c

†
i↓ci↓),

(2)
where ρi is one component of the auxiliary field. Here
a particle-hole transformation is performed on one spin
species in the case of repulsive interactions. Other choices
of auxiliary field decouplings exist but do not improve the
sign problem [5, 22]. A discrete version, is more common
in practice [42], is discussed in Appendix B. Our deriva-
tion and its conclusions can be repeated for any such
transformation with real fields [43]

After the Hubbard-Stratonovich decomposition we ob-
tain an action that is quadratic in the fermion field opera-
tors. One integrates out the fermion degrees of freedom,
obtaining a partition function Z =

∫
D[(τ)]Z↑[ρ]Z↓[ρ]

that is a path integral over just the auxiliary field con-
figurations. The weight of a specific configuration ρ(τ) is
given by

Zσ[ρ] = det

[
1 + eβµσT exp

∫ β

0

dτHaux[ρ(τ)]

]
, (3)

where T indicates time ordering and the chemical po-
tentials µσ may have been changed by the particle-hole
transformation. The matrix Haux is defined through the
auxiliary field Hamiltonian

Ĥaux[ρ(τ)] = −t
∑
〈ij〉,σ

c†iσcjσ +
∑
i

ρi(τ)n̂i =

=
∑
ij,σ

Haux
ij (τ)c†iσcjσ. (4)

In certain symmetric cases, for example in the spin-
balanced attractive Hubbard model or the half-filled re-
pulsive one, Z↑ and Z↓ have the same sign for each con-
figuration, thus making all weights positive.

As for most QMC algorithm, the zero temperature
limit can be obtained by letting β →∞. In this the evo-
lution operator approaches the projector onto the ground
state. Taking the expectation value of this operator on a
trial wavefunction nonorthogonal to the ground state one
obtains the so-called projection-QMC scheme, for which
all of our derivations can be repeated identically.

The origin of the sign problem in determinantal QMC
methods has been controversial from the beginning. Al-
ready the first paper suggested that the sign problem
should be absent for smooth auxiliary fields [4]. How-
ever, attempts to remove the sign problem by introduc-
ing a smoothing term to the action failed [37]. It has also
been suggested that in a ground state projector version
of the algorithm a topological sign problem may exist
due to particle exchange similar to WL-QMC [23]. A
similar claim was made based on an example in the adi-
abatic limit at T = 0, where a topologically nontrivial
soliton was found to be responsible for the negative sign
in a specific configuration [39]. The absence of a sign
problem for smooth paths reappeared in recent claims
based on a bosonization approach [28, 29]. Following a
different line of argument, it was suggested that the sign
problem was merely an artifact of numerical instabilities
and could be ignored [26, 40]. However, these claims were
refuted by comparing to numerically exact solutions on
small clusters [27].

To investigate the role of time discretization and nu-
merical inaccuracies in the sign problem we performed
simulations using δτ as small as t/200, and implemented
a resilient numerical stabilization procedure and a 4096-
bit precision version of the algorithm. We found that
smaller time steps, numerical stabilization, and high pre-
cision improved the sign problem, but there remained
configurations with negative sign even after smoothing
the paths (i.e. cutting the high frequency components).
This indicates an intrinsic sign problem even for smooth
paths in the continuous time limit.

To elucidate the origin of these negative signs we dis-
cuss the structure of single-fermion modes in Haux. While
instantaneous eigenvectors |ψn(τ)〉, defined by

Haux(τ)|ψn(τ)〉 = εn(τ)|ψn(τ)〉, (5)

seem intuitive, the important ones are the time inte-
grated eigenvalues and eigenstates of the evolution matrix

G(0;β) = T exp
∫ β

0
dτ ′Haux[ρ(τ ′)]:

G(0;β)|φn(0)〉 = λn|φn(0)〉. (6)

We stress that this definition does not depend on smooth-
ness or any periodicity of the evolution and it is com-
pletely valid for the case of interaction expansion algo-
rithms and zero temperature methods (see Appendix C).
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FIG. 2. Imaginary time evolution of the highest occupied
state |φn(τ)〉 for a smoothed negative-sign configuration on a
4 × 4 Hubbard plaquette. Red (blue) color indicates regions
of positive (negative) wave function.

We examined the evolved eigenvectors (which are the
also the eigenstates of the time shifted evolution [44])

|φn(τ)〉 = T exp

∫ τ

0

dτ ′Haux[ρ(τ ′)]|φn(0)〉 (7)

for negative sign configurations and we found that there
are always some that change sign during time evolution,
i.e. λn < 0. The evolution of one of these states is plotted
in Fig. 2, where the negative and positive domain wind
around each other, giving a negative weight.

Expressing the weight of Eq. (3) in terms of the λn we
obtain

Zσ[ρ] =
∏
n

(1 + λne
βµσ ), (8)

which is negative whenever an odd number of negative-
sign single-particle states are more than 50% occupied,
i.e. |λn| > e−βµ.

We now present a simple, smooth auxiliary field con-
figuration that allows us to understand how the negative
signs emerge. This configuration is given by the auxiliary
field Hamiltonian

Haux(τ) =

 v sin(τ) −t −t
−t v sin(τ + 2π/3) −t
−t −t v sin(τ + 4π/3)

 ,

(9)
which couples a periodic three-site chain to a rotating ex-
ternal field of strength v. Similar configurations can be
constructed for longer chains. The non-interacting limit
v = 0 trivially has positive weights λn = e−βεn . Since
G(τ ;β) is real and has positive determinant no eigen-
value can vanish, complex eigenvalues λn must come in
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FIG. 3. Eigenvalues of the single particle propagator G(0;β)
with β = 1 as a function of field strength v of the auxiliary
Hamiltonian (9). The dotted lines represent the projections
of the paths onto the plane.

complex conjugate pairs, and there must always be an
even number of negative eigenvalues, as was sketched in
Ref. 17.

By plotting, in Fig. 3, the eigenvalues of G(0;β) we
see that increasing v a doubly degenerate positive real
eigenvalue splits into a complex conjugate pair that winds
around the λ = 0 line, and rejoins on the negative real
axis. A sign problem can appear once upon further in-
creasing v beyond this critical value v∗ ≈ 11.2, the pair
splits into two different real negative eigenvalues, and one
of the corresponding states becoming occupied and the
other unoccupied. Increasing β shows v∗ → 0 such that
in the zero temperature limit the sign problem can occur
for any interaction strength and only depends on the ge-
ometry of the auxiliary field configuration. This winding
of pairs of eigenvalues around zero, to become negative,
causes the bosonization treatment of Ref. [28] to break
down (see Appendix D).

We turn now to the most general case, without as-
sumptions on the size or nature of the system. The only
requirement is that the weight of a configuration can be
written as

w(c) = det [1 +G(0;β)] . (10)

The sign of a single-particle state in the general case
is understood as a geometric phase by decomposing the
eigenvalues in Eq. (6) as λn = eiθnωn where ωn > 0. The
phases θn, given by

eiθn =

β∏
τ=0

〈φn(τ + dτ)|φn(τ)〉 (11)

are imaginary time versions of the Aharonov-Anandan
(AA) phase, which is used to describe the geometric prop-
erties of non-adiabatic unitary evolution [30]. The global
geometric phase θ determining the sign of the configu-
ration is then obtained as the sum of the individual AA
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FIG. 4. Instantaneous levels of the Hamiltonian (9) for v = 6.

phases θn of the occupied levels, which in turn depend
only on the geometric properties of the auxiliary field.
The weights ωn either diverge or vanish in the β → ∞
limit, which means that a level is either fully occupied or
completely empty, as expected in the case of zero thermal
fluctuations.

As we see, θ can be nonzero even for smooth field con-
figurations, a fact that was missed by Refs. [4, 28]. Since
the auxiliary Hamiltonian is real, and complex eigenval-
ues of G(0;β) are always degenerate and thus do not
contribute to the overall phase of the configuration, we
only consider real λn. For these eigenvalues, the wave-
functions |φn(τ)〉 can be chosen to be real at all times,
implying that the AA phases θn are quantized to be ei-
ther 0 or π. The phases vanish if the wave function can
be chosen real and singlevalued, i.e. ψ(0) = ψ(β) at all
times τ . However, it may not be possible to make such
a choice globally continuous τ ∈ [0, β], and the wave
function may change sign during evolution, resulting in
θn = π.

When the evolution becomes adiabatic, such as if we
stretch a smooth finite temperature configuration by
taking β → ∞, the Hamiltonian is locally constant
and e−δτH(τ) projects onto the instantaneous eigenvec-
tors so that |ψn(τ)〉 = |φn(τ)〉. The weights then are

wn = exp[−
∫ β

0
εn(τ)dτ ] and the AA phases θn reduce to

Berry phases.

Our result relates the fermionic sign problem to the
field of geometric phases arising from cyclic evolu-
tion [45–47]. Quantizations of these phases are known
to appear as a consequence of symmetry and correspond
to topological invariants, as e.g. in the integer quan-
tum Hall effect [48]. Recently these concepts are widely
utilized in the field of symmetry protected topological
phases (SPT), and topological insulators [49, 50]. Exten-
sive classification of topological insulators exist [51, 52],
assigning topological invariants to gapped single-particle
Hamiltonians depending on their symmetries. Connect-
ing systems with different topological invariants is guar-
anteed to give raise to metallic interface or edge states

that are topologically protected against disorder.

The analogy between the our framework and topologi-
cal materials can made more concrete by identifying the
single particle states of our model at a definite imaginary
time τ with bands of a one-dimensional crystal and relate
τ to the crystal momentum k. Each band has a quan-
tized AA θn = 0, π phase accumulated moving across the
Brillouin zone as illustrated in Fig. 4, that is a topolog-
ical invariant and can only change introducing complex
gauge fields or closing the band gap. For non-adiabatic
evolution, integrated eigenstates contain different contri-
butions from the instantaneous ones. The sign of a con-
figuration depends on which contributions are dominant,
as we illustrate in Appendix E. This allows to understand
two core principles that allow sign-problem free simula-
tions.

First, in the presence of time-reversal-like symmetries,
single-particle states come in Kramers pairs, with both
states having the same geometric phase. As a conse-
quence, the total phase winding vanishes, making the
model sign-free, as shown in Refs. [17, 19, 20]. Second,
the common wisdom that half-filled bipartite lattices are
sign-problem free is shown to be a consequence of a topo-
logical constraint causing the negative eigenvalue pairs to
be in even numbers (see Appendix F).

Our approach applies also to diffusion QMC (DMC)
schemes, in which many-body states are generated by
interpreting the elements of the Hamiltonian or evolution
matrix as transition matrix of a Markov process. DMC
is conceptually similar to a zero-temperature version of
WL-QMC and, as in the latter, sign problems can occur
due to particle exchange. This led to the development of
a family of DMC schemes that restrict the sampling to
antisymmetric wavefunctions, in the hope of solving the
sign problem [24, 25]. However even when formulating
DMC explicitly in the space of Slater determinants there
is still a residual sign problem that does not originate
from particle exchange and bosonic collapse.

The topological origin of the sign problem discussed
here corresponds to the residual one encountered in DMC
and WL-QMC. In fact, a configuration in determinantal
QMC can be mapped into a sum of configurations in
DMC [53, 54] and WL-QMC [55] by taking into account
all possible permutations of the particles. Thus, DMC
and WL-QMC are subject to two sign problems: one
trivially due to Slater determinants being antisymmetric
sums of configurations, and the residual topological one
discussed in this paper.

Once the wavefunction antisymmetry is taken into ac-
count, the exponential sign problem of fermionic QMC
is due to a non-trivial topological invariant. Hence,
negative signs cannot be simply removed by any local
modification or basis change. Understanding the sign
of Monte Carlo configurations in terms of Aharonov-
Anandan phases of the single particle eigenstates, and
the connection to topological insulators and supercon-
ductors clarifies long-standing open questions about the
fermion sign problem [4, 23, 28, 29, 38], opening interest-



5

ing perspectives for further studies, and providing a path
towards the construction of a wider class of sign-problem
free models.
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Appendix A: The negative sign problem

The foundation of quantum Monte Carlo (QMC) simu-
lation is a mapping of a quantum system to an equivalent
classical one by expressing both the partition function

Z = Tr exp(−βH) =
∑
c∈Ω

wc (A1)

and the thermal expectation values of any observable

〈O〉 =
1

Z
Tr[O exp(−βH)] =

1

Z

∑
c∈Ω

Ocwc. (A2)

as a sum over set of “classical” configurations Ω. In the
case of a path integral representation this is the set of
all path configurations, c is a specific path, wc its weight
and Oc the contribution of the path to the expectation
value of the observable O.

For non-negative weights wc ≥ 0, this classical system
can be sampled by choosing a set ofM configurations {ci}
from Ω according to the distribution wci . The average
can then estimated by the sample mean

〈O〉 ≈ O =
1

M

M∑
i=1

Oci , (A3)

within a statistical error

∆O =

√
VarO

M
(2τO + 1), (A4)

where VarO is the variance of O and τO is the integrated
autocorrelation time of the sequence {Oci}.

The standard way of dealing with the negative weights
wc is to sample with respect to the absolute values of the
weights |wc| and to assign the sign sc ≡ signwc to the
quantity being sampled:

〈O〉 =

∑
cOcwc∑
c wc

(A5)

=

∑
cOcsc|wc| /

∑
c |wc|∑

c sc|wc| /
∑
c |wc|

≡ 〈Os〉
′

〈s〉′
.

While this allows Monte Carlo simulations to be per-
formed, the errors increase exponentially with the par-
ticle number N and the inverse temperature β. To see
this, consider the mean value of the sign 〈s〉 = Z/Z ′,
which is just the ratio of the partition functions of the
fermionic system Z =

∑
c wc with weights wc and the

bosonic system used for sampling with Z ′ =
∑
c |wc|.

As the partition functions are exponentials of the corre-
sponding free energies, this ratio is an exponential of the
differences ∆f in the free energy densities [12, 56, 57]:

〈s〉 =
Z

Z ′
= exp(−βV∆f), (A6)

where V is the volume of the system. As a consequence,
the relative error ∆s/〈s〉 increases exponentially with
particle number and inverse temperature:

∆s

〈s〉
=

√
(〈s2〉 − 〈s〉2) /M

〈s〉
=

√
1− 〈s〉2√
M〈s〉

∼ eβV∆f

√
M

.

(A7)
Similarly the error for the numerator in Eq. (7) in-

creases exponentially and the time needed to achieve a
given relative error scales exponentially in V and β.

Appendix B: BSS algorithm

For the discussions in the main paper we focus on the
BSS algorithm [4], but note that our results apply more
broadly to any auxiliary field algorithm. To explain this
algorithm in more detail we split the Hubbard Hamilto-
nian into noninteracting and interacting parts

H0 = −t
∑
〈ij〉,σ

c†iσcjσ −
∑
iσ

µσc
†
iσciσ, (B1)

HI = U
∑
iσ

c†i↑ci↑c
†
i↓ci↓. (B2)

We then decompose the thermal density matrix using
a Trotter decomposition

e−βH = lim
N→∞

(
e−

β
NH0e−

β
NHI

)N
. (B3)

coupled with either a continuous Hubbard-Stratonovich
transformation

e−dτUc
†
i↑ci↑c

†
i↓ci↓ =

∫ ∞
−∞

dρie
ρ2

2dτU +ρi(c
†
i↑ci↑−c

†
i↓ci↓), (B4)

where the auxiliary field ρi can take any real value or
alternatively a discrete one

e−dτUc
†
i↑ci↑c

†
i↓ci↓ = 1 + γc†i↑ci↑c

†
i↓ci↓

=
1

2

∑
σi

(1 +
√
γσic

†
i↑ci↑)(1−

√
γσic

†
i↓ci↓)

=
1

2

∑
ρi

e−dτρi(c
†
i↑ci↑−c

†
i↓ci↓) (B5)
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where γ = 1− e−dτU and the auxiliary field ρi can have
the two values − ln(1±

√
edτU − 1)/dτ . ρi diverges with

dτ → 0, showing its fractal nature.
The partition function can be then rewritten as a sum

over all configurations of the auxiliary field

Z =
∑
{ρi(τ)}

tr

[
N∏
τ=1

e−
β
NH0e−dτρi(c

†
i↑ci↑−c

†
i↓ci↓)

]
(B6)

Since the product in the trace is composed of one-particle
operators only (exponents are quadratic in the fermionic
fields), the result can be obtained through the determi-
nant of matrices in the single-particle picture

Z =
∑
{ρi(τ)}

det

{
1 +

N∏
τ=1

e−
β
NH0e−dτρi(c

†
i↑ci↑−c

†
i↓ci↓)

}
,

(B7)
where the operators have been replaced by matrices. This
can be written compactly using a time-ordered exponen-
tial

Z =

∫
D[ρ(τ)] det

{
1 + T exp

∫ β

0

dτHaux[ρ(τ)]

}
,

(B8)
having defined

Haux[ρ(τ)] = Hkinetic +
∑
i

ρi(τ)(n̂i,↑ − n̂i,↓). (B9)

Moreover, it can be decomposed into the product of de-
terminants for the up and down spin components

Z =

∫
D[ρ(τ)]Z↑[ρ]Z↓[ρ]. (B10)

When the two contributions are equal, the algorithm is
sign-problem free.

In the case of an attractive potential U < 0, one can
obtain a decomposition of the interacting Hamiltonian
with a field that couples to the total number of particles
rather than the magnetization

e−dτc
†
i↑ci↑c

†
i↓ci↓ =

∑
ρi

e−dτρi(c
†
i↑ci↑+c

†
i↓ci↓). (B11)

In this case, and in absence of any magnetic field making
the up and down populations imbalanced, we have Z↑ =
Z↓ and the sign problem vanishes. The same is true when
one looks at the half-filled repulsive case, which is related
to the above by a particle-hole transformation.

The zero temperature algorithm is obtained from the
fact that in the long imaginary time limit the density ma-
trix exp(−βH) becomes identical to the projector onto
the ground state |ψ0〉. Then one can start from a trial
wavefunction |φT 〉 having finite overlap with the ground
state. The decomposition above can then be applied to
the following expressions

〈φT |e−βH |φT 〉 = (B12)

= 〈φT |
∫
D[ρ(τ)]T exp

∫ β

0

dτHaux[ρ(τ)]|φT 〉

〈φT |e−
βH
2 Oe−

βH
2 |φT 〉 = (B13)

= 〈φT |
∫
D[ρ(τ)]T exp

∫ β

β/2

dτHaux[ρ(τ)]OT exp

∫ β/2

0

dτHaux|φT 〉

If the trial wavefunction is a Slater determinant the ex-
pressions above reduce to a simple determinant, as in the
case of the finite temperature algorithm.

A conceptually simpler view comes from the fact that
the trial wave function can be thought of as the ground
state of a trial Hamiltonian HT . In this case we can
rewrite (B12) as

〈φT |e−βH |φT 〉 = lim
θ→∞

tr
[
e−θHT e−βH0

]
. (B14)

From this representation one can trivially see that all the
derivations in the Main Text can apply unchanged to the
zero-temperature algorithm.

1. Arbitrary precision algorithm

To examine the sign of a configuration we implemented
the BSS algorithm using arbitrary precision floating point
numbers. This required the implementation of a QR al-
gorithm, used to compute the determinant in Eq. (3) of
the Main Text and a double QZ step, to find the eigenval-
ues of the product G. Both algorithms were implemented
following Ref. [58]. The power method was used to cal-
culate eigenvectors for Fig. 2 of the main text.

The QZ step is a decomposition followed by an ex-
change of Q and R. The step is performed twice to keep
all terms real.

A = QR→ A′ = Q−1AQ = RQ = Q′R′

→ A′′ = Q′−1A′Q′ = R′Q′ (B15)

Since this high precision algorithm is too slow for ac-
tual simulations it was primarily used to periodically
check for correctness of weights. The algorithm gave the
same results in all our tests for 4096 and 2048 bits of
precision, but lower precision calculations using 1048 or
512 sometimes gave different results, in agreement with
observed condition numbers that were as high as 10300.

2. Stabilization procedure

At the core of the BSS algorithm is the calculation of
the matrix

G(β) = T exp

∫ β

0

dτ ′Haux[ρ(τ ′)]. (B16)

in Eq. (3) of the Main Text. Using a discrete time formu-
lation with M time steps one has to compute a product
of matrices

Gi = e−δτH(τi) (B17)
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FIG. 5. Average sign s and number of particles n at µ = 0
(U/2 below half filling) as a function of temperature computed
with varying distances τ between SVD decompositions on a
6 × 6 plaquette. With decreasing temperature, coarser de-
compositions start to develop a worse sign problem than finer
grained ones. This influences even the simplest observables
such as particle density.

with δτ = β/M . The configuration weight is then com-
puted as

Z = det

(
1 +

M∏
i=1

Gi

)
. (B18)

However, multiplying a string of matrices results, in
general, in a very ill-conditioned matrix. As the ratio
between the largest and lowest eigenvalue diverges infor-
mation about the lowest eigenvalues and eigenstates is
lost when the ratio between smallest and largest eigen-
values become of the order of roundoff. Calculations of
the determinant of G(β) then becomes inaccurate.

Numerical stabilization of the product of matrices with
an acceptable accuracy is made possible by periodi-
cally decomposing the intermediate result using a rank-
revealing decomposition such as a singular value decom-

position (SVD) or pivoting QR. An SVD is performed
on each partial product of a subset consisting of m of
the matrices Gi, corresponding to an evolution of time
τ = mδτ . We start with

m∏
i=1

Gi → UkD1V
T
1 (B19)

The next set of m matrices is then multiplied by UD and
decomposed again.(

2m∏
i=m+1

Gi

)
U1D1 → U2D2V

T
2 (B20)

The procedure is repeated until the full product has been
performed

M∏
i=1

Gi = UM/mDM/mV
t
M/m . . . V

T
1 . (B21)

The value of m (or equivalently τ) should be chosen so
that the condition number of the partial products can be
stored within machine precision.

We used the arbitrary precision algorithm to check
the numerical accuracy of negative sign configurations
encountered with different numbers of decompositions .
Our results confirmed that while negative signs can creep
into the simulation due to numerical errors with a low
number of decompositions, such errors disappear with a
finer grained stabilization scheme. This is corroborated
by the results shown in Fig. 5.

Thus we confirm that there are no issues with numeri-
cal stability and precision issues provided that the stabi-
lization scheme is performed correctly.

Appendix C: Continuous-time QMC

We can use the same derivations also to understand
the sign problem in a CTQMC scheme. The following
is based on the LCT-INT scheme detailed in Ref. [36].
Other schemes such as CT-INT and CT-AUX can be
equally treated, since the weights are identical in both
algorithms.

Continuous-time quantum Monte Carlo (CTQMC)
methods stem from a perturbative expansion

Z = tr e−βH = tr

[
e−βH0T e−

∫ β
0
dτHI(τ)

]
= (C1)

=

∞∑
k=0

1

k!
tr

[
T e−βH0

∫ β

0

dτ1 . . .

∫ β

0

dτk

k∏
i=1

(−HI(τi))

]

where (after a chemical potential shift)

HI = −U
∑
x

(1− c†x↑cx↑)(1 + c†x↓cx↓). (C2)
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The weight can be rewritten as

Z =
∑
k

∫ β

0

dτ1

∫ β

τ1

. . .

∫ β

τk−1

dτk
∑

x1,...,xk

w(c) (C3)

where the factor 1
k! is taken care of by time ordering

τ1 < τ2 < . . . < τk. c = {(x1, τ1), . . . , (xkτk)} denotes a
continuous time path integral configuration with k ver-
tices. The weight can still be cast in the necessary form

w(c) = det [1 +G(0;β)] . (C4)

The analysis from the Main Text proceeds unchanged.
The matrix G is defined as

G(0;β) = e−(β−τk)H0h(xk) . . . e−(τ2−τ1)H0h(x1)e−τ1H0 ,
(C5)

where

[h(xi)]xσ,yσ′ = U(δxyδσσ′+δxxiδxiyδσ↑δσ′↑−δxxiδxiyδσ↓δσ′↓),
(C6)

CT-QMC now proceeds by sampling from all possible
configurations c according to their weight w(c). It can
be more intuitive to imagine a smoothed vertex

h̃(xi) =

√
2π

ε

∫
dτe

−τ2

2ε2 e−τH0h(xi)e
τH0 (C7)

and letting ε→ 0+.
While it is common to employ CTQMC in an auxiliary

field framework, this is not necessary as illustrated here
and in Ref. [36]. This shows that the analysis in the
present Letter applies beyond auxiliary field schemes and
adiabatic approximations.

Appendix D: Relationship to prior work

In this section we discuss in more detail the relation-
ship of our results to prior work, in particular the sug-
gestion of a topological sign problem in projector QMC
[23], Berry phases in spin models [38] and the suggestion
that the sign problem can be removed by bosonization
[28].

We were made aware of an unpublished result by J.
Hirsch, where a negative-sign auxiliary field configuration
was explicitly constructed to create two localized single
particle fermionic states, distant from each other, and
then braid them [59]. In this configuration there is a
clear link between the exchange of particles and the sign.
This view however cannot be translated to the general
case, where the single particle states are delocalized.

1. Projection Monte Carlo

The first suggestion of a topological origin of the sign
problem appears in the context of projector quantum
Monte Carlo (PQMC), attempting to explain the sign

problem similar to the world line algorithm in terms of
particle exchange [23].

In PQMC one takes the T → 0 limits, which allows
the trace over the thermal density matrix

Ĝ(ρ, β) =

N∏
τ=1

e−
β
NH0e−dτρi(c

†
i↑ci↑−c

†
i↓ci↓) (D1)

for a particular auxiliary field configuration ρ to be re-
placed by a projection from a trial state |ψT 〉 (as long as
this state is not orthogonal to the ground state):

Z[ρ] = 〈ψT |Ĝ(β)|ψT 〉. (D2)

By choosing a trial state that is a Slater determinant
of p fermions described by the p× n matrix P

|ψT 〉 =
∏
p

(Pp1c
†
1 + . . .+ Ppnc

†
n)|0〉 (D3)

we can express the overlap of |ψT 〉 with the time evolved

state Ĝ(β)|ψT 〉 as a determinant in terms of the single
particle matrices

〈ψT |Ĝ(β)|ψT 〉 = det(PTG(β)P ) (D4)

If, as is the case for the world-line Monte Carlo, the
configuration comes back to itself, i.e. |ψT 〉 ∝ Ĝ(β)|ψT 〉,
it would be clear that each fermion has either come back
to its original state, or has exchanged with another par-
ticle. In this case the sign would positive or negative
depending on the sign of the permutation involved.

This simple picture is complicated in the current case
since the time evolved state Ĝ(β)|ψT 〉 is , in general, not
proportional to |ψT 〉. Moreover, it cannot even be writ-
ten as a Slater determinant of orthogonal vectors as the
projection will squeeze the p single particle wave func-
tions that make up |ψT 〉 towards the same ground state.

In Ref. [23] a Gram-Schmidt orthogonalization of the
vectors is used to obtain the weight as the determinant
of one orthogonal matrix Q times a positive-determinant
matrix. The sign then depends on whether Q describes a
proper or improper rotation (i.e. rotation plus reflection).
Since the orthogonal matrix can be defined at each time
step, after specifying a connection to uniquely identify Q
at each step, one can see the evolution as an open curve
in the space of orthogonal matrices.

The relationship between this representation of the
many-body wave function and the Aharonov-Anandan
phases of the single particle states is an interesting topic
and deserves additional study.

2. Spin Berry phase

An interpretation of the sign problem in terms of a
spin Berry phase was suggested by Ref. [38]. There an
auxiliary field decomposition of the Heisenberg Hamilto-
nian HI = J

∑
〈ij〉 si · sj is proposed. Decoupling the
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spins with an auxiliary vector field ∆i(τ) the weight for
a given field configuration is expressed as

Z =

∫
D∆Z[∆] (D5)

=

∫
D∆e

−
∫ β
0
J−1
∑
〈ij〉

∆i(τ)·∆j(τ)dτ

× tr

[
T exp

∫ β

0

dτ
∑
i

∆i(τ) · si(τ)

]
The phases gained by the eigenvectors under imaginary
time evolution are standard Berry phases of the decou-
pled spins and may generate a phase problem for the spin
Hamiltonian. To our knowledge this paper is the first dis-
cussion of a Berry phase in a diffusive (imaginary time)
context.

The paper then speculates that a similar Berry phase
of spin fluctuations may be the origin of the fermion sign
problem in the Hubbard model. However, this relation-
ship is not worked out and in particular because there
is no clear relationship between the auxiliary vector field
for the decomposition of spin models and the auxiliary
scalar field used in fermionic models. Note also that the
auxiliary field approach is not used for spin Hamiltoni-
ans, since it generally introduces a phase problem even
in models that have no sign problem in a world line for-
mulation. As we have seen, while the origin of the sign
problem is also a geometric phase in the Hubbard model,
it is not related to the spin Berry phase of Ref. [38].

3. Bosonization

Ref. [28] suggested that bosonization can be used to
remove the sign problem. In their approach the logarithm
of the weight of a configuration is written as

lnZ[ρ] =

∫ 1

0

∂vZ[vρ]dv

Z[vρ]
+ lnZ[0] + 2πin, (D6)

where n is an arbitrary integer, as the phase of lnZ is only
defined up to a multiple of 2π. This can be understood
as obtaining the weight Z[ρ] of a configuration starting
from the free Hamiltonian Z[0] and slowly ramping up
the field strength. As long as the integral remains real,
no sign change can occur in the weight. Whether this
is true depends on the behaviour of 1/Z[vρ]. Since the
integrand is real, it might seem reasonable to assume
that the integral is as well – this however assumes the
absence of divergencies. Following the analysis in the
main text, we now explicitly show how such divergencies
arise. Making the dependence of the configuration weight
on the strength of the auxiliary field v explicit we obtain

Z[vρ] =
∏
n

(1 + eβµλn(v)), (D7)

for which the bosonization procedure gives

lnZ[ρ]− lnZ[0] =
∑
n

∫ 1

0

dv
λ′n(v)

e−βµ + λn(v)

=
∑
n

∫
γn

dλ
1

e−βµ + λ
(D8)

where γn is the trajectory of the n-th eigenvalue. We can
see from our three-site example that one of the eigenval-
ues crosses the pole at −e−βµ at some value of the field
strength v. In this case the integrand must be rewritten
using the regularization

1

x
→ P 1

x
± πiδ(x). (D9)

depending on whether it is regularized using the ad-
vanced or retarded Green function. Regardless of the
choice, the integral will pick up a contribution πi for each
eigenvalue crossing the pole, and the weight will be neg-
ative when the number of such crossings is odd. As we
can see divergencies are common and linked to a change
in the Berry phase of the states when increasing the field
strength.

A different bosonization scheme was later suggested,
which modifies the probability distribution to make all
the weights positive [29]. While this method is expected
to give different expectation values on finite size lattices,
the authors argue that it will converge to the correct
values the thermodynamic limit. However, this has not
yet been demonstrated.

4. Solitonic solutions

A similar analysis to the present paper has been carried
in Ref. 39. The numerical precision obtainable with 32-
bit and 64-bit floating point numbers was examined, con-
cluding that several different methods to perform matrix
computations (sparse matrix methods, Gaussian elimina-
tions and small rank updates) are essentially equivalent
up to a certain condition number. It was then concluded
that the results were correct when results in 32-bit and
64-bit precision agreed. Our findings confirm that this is
the case by comparing finite and arbitrary calculations.

The authors also explicitly constructed an auxiliary-
field configuration having a negative eigenvalue smaller
than −1. This was achieved for the continuum limit in
both space and time and in the ground state limit β → 0.
Since the constructed zero mode is a soliton and topo-
logically nontrivial, the authors conclude that topological
features of the auxiliary field and fermionic wavefunction
may be the root cause for the sign problem. They identi-
fied two main problems in their conjecture related to the
discretization of space and adiabaticity. First, solitonic
solutions are qualitatively different in the continuum and
on a lattice [39]. Second, their solution is an adiabatic
one. As adiabatic configurations are a zero-probability
set in the ground-state limit, the topological origin re-
mained a conjecture. Our proof of a topological invariant
(the AA phase) being related to the sign even in the non-
adiabatic limit confirms the conjecture of these authors.

Ref. 39 also makes an important point that the
fermionic weight Z[ρ] can be written as a ratio of two
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bosonic weights

det[1 +G(0;β)] =
det[1−G2(0;β)]

det[1−G(0;β)]
(D10)

where both the numerator and denominator of the RHS
can be written as a series with positive summands. How-
ever, the authors caution that when negative eigenvalues
are present, this series becomes similar to

−1 =
1

1− 2
= 1 + 2 + 22 + 23 + . . . (D11)

i.e. a series that while formally having a finite value, does
not converge in practice when sampled via Monte Carlo.
This shows once again that seemingly innocuous manip-
ulations that appear to remove the sign problem may in
fact also make the Monte Carlo estimates incorrect.

Appendix E: The adiabatic limit

Given a configuration ρ at temperature β, we can relate
it to a second one ρ′ at β′ simply by scaling (“stretching”)

ρ′(τ) = ρ

(
β

β′
τ

)
. (E1)

In the limit T → 0, the evolution can be taken piece-
wise constant, so that the element e−δτH(τ) essentially
projects onto the instantaneous eigenstates.

In Fig. 6 we illustrate the adiabatic limit for the
smooth three-site configuration of the main text. We plot
the overlap overlap |〈φn(τ)|ψm(τ)〉|2 of the time-periodic
eigenstates |φn(τ)〉 with the instantaneous ones |ψm(τ)〉
at three temperatures: above the critical value for the
appearance of a sign problem in this configuration, just
below the critical value and at very low temperature. On
can observe how at high temperature two periodic eigen-
states are degenerate and have the same overlaps. As
the eigenvalues λn split at lower temperature, the over-
laps also start to differ and the periodic states pick up
a nontrivial phase from the instantaneous states. When
the adiabatic approximation becomes valid (last row),
each periodic state follows the corresponding band.

It is interesting to note that the phase in the interme-
diate temperature (middle row) is already nontrivial but
the adiabatic approximation is not yet valid. This is evi-
denced by the fact that the periodic states do not follow
the instantaneous ones, and the particles cross from one
band to the other near the gaps.

Appendix F: Bipartite lattices

It is common wisdom that half-filled bipartite lattices
can be simulated without a sign problem, however un-
til recently no rigorous proof has been devised and no
general scheme for devising sign-problem free simulations

FIG. 6. The periodic eigenstates |φ(τ)〉 of the three band
model are shown for different temperature β at v = 6. The
line positions correspond to the instantaneous bands of Fig. 4
in the main text, and the line thickness is proportional to the
overlap |〈φn(τ)|ψm(τ)〉|2. At very low temperature (bottom
row), the periodic eigenstates follow the instantaneous ones,
as the configuration is stretched and the adiabatic approxima-
tion becomes valid. The lowest band A is always topologically
trivial and does not give rise to a negative sign. At low tem-
peratures the second and third bands B and C carry a π Berry
phase and are topologically non-trivial. Since only band B is
occupied the overall configuration is negative. Raising the
temperature (top row) the adiabatic approximation breaks
down, bands B and C become degenerate and do not con-
tribute a net phase to the weight.

was known. We can show that this fact is the result of a
topological obstruction, that forces the number of occu-
pied topologically nontrivial levels to be even.

In a half-filled, bipartite lattice with sublattices A,B,
one can find a decomposition of H[ρ] such that

eτH[ρ]η = ηe−τH[ρ] (F1)

where η = (−1)x flips the wavefunction sign sites be-
longing to sublattice B. Consequently we see that the
full evolution matrix G satisfies

Gtη = ηG−1 (F2)

Turning to the single particle levels Gψi = λiψi we focus
on the real nontrivial ones i.e. λ < 0. While of course
there is an even number of such eigenvalues, we need to
prove that the number of those λi < −1 is even as well.

We first see that due to the above chiral symmetry
(F2)

ψt∗i ηψj = ψt∗i G
tηGψj = λiλjψ

t∗
i ηψj . (F3)

which implies that ψi is orthogonal (with respect to the
metric η) to all other eigenvectors except ψj with λj =

λ−1
i . We call ψi eigenvectors corresponding to eigenvalue



11

λi < −1 and ψ̃i those with eigenvalue λ−1
i . Then we can

choose

ψt∗i ηψj = 0 (F4)

ψ̃t∗i ηψ̃j = 0 (F5)

ψt∗i ηψ̃j = δij (F6)

which means that we can identify ψ̃i(x) = (−1)xψi(x).
We now turn to show that a topological obstruction is

present. If we take the restriction of G to one sublattice
GAA we see by continuity that it must have a positive
determinant [60]. In physical terms this means that if we
start with a wavefunction restricted to the A sublattice,
evolution will never make it vanish on the whole A sub-
lattice, because the density difference between sublattices
ψtηψ is conserved.

We now show how this leads to sign problem free sim-
ulations. The explicit form of GAA is

1 + η

2
G

1 + η

2
=

=
1

4

∑
i

λi(1 + η)ψiψ̃
t∗
i η(1 + η) +

+ λ−1
i (1 + η)ψ̃iψ

t∗
i η(1 + η) (F7)

but since (F4)–(F6) imply ψ̃i = ηψi, we have

1 + η

2
G

1 + η

2
=

1

4

∑
i

(λi+λ
−1
i )(1+η)ψiψ

t∗
i (1+η) (F8)

and consequently

detGAA =
∏
i

(λi + λ−1
i ) > 0 (F9)

which proves that there are an even number of (λi, λ
−1
i )

pairs and the determinant det(1 +G) is positive.

An algebraic proof that takes care of the case with de-
generate eigenvalues was found on the mathematical web-
site MathOverflow [61] through the open collaboration
of many researchers. Unlike the present proof, the full
mathematical statement generalizes to degenerate eigen-
values. Since such configurations are a null measure set
in any case, this is of marginal importance for actual sim-
ulations. The full theorem (nicely summarized in Terence
Tao’s blog [62]) also characterises completely the set of in-
teractions that can be simulated without a sign problem
and determines the einvariants associated with negative
sign sectors.
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[29] K. B. Efetov, C. Pépin, and H. Meier, Phys. Rev. B 82,
235120 (2010).

[30] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1017/S030500410003752X
http://dx.doi.org/10.1017/S030500410003752X
http://dx.doi.org/10.1143/PTP.56.1454
http://dx.doi.org/10.1143/PTP.56.1454
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/ 10.1103/PhysRevLett.89.117203
http://dx.doi.org/ 10.1103/PhysRevLett.89.117203
http://dx.doi.org/10.1103/PhysRevLett.93.200404
http://dx.doi.org/ http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/ http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/10.1103/PhysRevD.38.1278
http://dx.doi.org/10.1103/PhysRevD.38.1278
http://dx.doi.org/ 10.1103/PhysRevB.41.9301
http://dx.doi.org/ 10.1103/PhysRevB.41.9301
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1103/PhysRevLett.83.3116
http://dx.doi.org/10.1103/PhysRevLett.83.3116
http://dx.doi.org/10.1103/PhysRevB.71.155115
http://dx.doi.org/10.1103/PhysRevD.82.025007
http://dx.doi.org/10.1126/science.1227769
http://dx.doi.org/10.1126/science.1227769
http://dx.doi.org/10.1103/PhysRevB.89.111101
http://dx.doi.org/10.1103/PhysRevB.89.111101
http://stacks.iop.org/0295-5075/8/i=7/a=014
http://stacks.iop.org/0295-5075/8/i=7/a=014
http://dx.doi.org/10.1103/PhysRevB.42.2282
http://dx.doi.org/10.1103/PhysRevB.42.2282
http://dx.doi.org/10.1142/S0129183192000154
http://dx.doi.org/10.1142/S0129183192000154
http://dx.doi.org/10.1103/PhysRevLett.67.3074
http://dx.doi.org/10.1103/PhysRevLett.67.3074
http://dx.doi.org/10.1103/PhysRevLett.85.3547
http://dx.doi.org/10.1103/PhysRevLett.85.3547
http://dx.doi.org/10.1142/S0129183105007571
http://dx.doi.org/10.1142/S0129183105007571
http://dx.doi.org/ 10.1142/S0129183105007911
http://dx.doi.org/ 10.1142/S0129183105007911
http://dx.doi.org/10.1103/PhysRevLett.103.186403
http://dx.doi.org/10.1103/PhysRevLett.103.186403
http://dx.doi.org/10.1103/PhysRevB.82.235120
http://dx.doi.org/10.1103/PhysRevB.82.235120
http://dx.doi.org/10.1103/PhysRevLett.58.1593


12

(1987).
[31] J. B. Anderson, The Journal of Chemical Physics 65,

4121 (1976).
[32] J. L. DuBois, E. W. Brown, and B. J. Alder, ArXiv

e-prints (2014), arXiv:1409.3262 [cond-mat.str-el].
[33] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein,

Physical Review B 72, 035122 (2005).
[34] E. Gull, P. Werner, O. Parcollet, and M. Troyer, 82,

57003 (2008).
[35] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,

M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349
(2011).

[36] M. Iazzi and M. Troyer, ArXiv e-prints (2014),
arXiv:1411.0683 [cond-mat.str-el].

[37] D. Scalapino, “Private communications,” Unpublished.
[38] J. Samson, International Journal of Modern Physics B

07, 593 (1993).
[39] J. Gubernatis and X. Zhang, International Journal of

Modern Physics C 05, 599 (1994).
[40] H.-G. Matuttis and N. Ito, Journal of the Physical Soci-

ety of Japan 70, 1519 (2001).
[41] As always in the definition of path integrals the integrand

is well defined only at finite time steps δτ . Using the
notation of infinitesimals implies that the limit δτ → 0
is taken after performing all evaluations at finite δτ .

[42] J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).

[43] We note the generic transformation e
−dτUc†↑c↑c

†
↓c↓ →∫∞

−∞ dρP (ρ)e
− ρ2

2dτ|U|+ρ(c
†
↑c↑+c

†
↓c↓) with an arbitrary prob-

ability distribution P . Similar transformations can take
into account particle-hole superpositions using a Bogoli-
ubov transformation.

[44] One can verify it by directly applying the shifted evolu-

tion G(τ ;β) = T exp
∫ τ+β
τ

dτ ′Haux[ρ(τ ′)] where the aux-
iliary field is extended periodically. For projection meth-
ods the same applies by inserting the projection on the
trial wavefunction at time β.

[45] M. V. Berry, in Proceedings of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences,

Vol. 392 (The Royal Society, 1984) pp. 45–57.
[46] F. Wilczek and A. Shapere, Geometric phases in physics,

Vol. 5 (World Scientific Singapore, 1989).
[47] C. A. Mead, Reviews of modern physics 64, 51 (1992).
[48] D. Thouless, M. Kohmoto, M. Nightingale, and

M. Den Nijs, Physical Review Letters 49, 405 (1982).
[49] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[50] X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics

83, 1057 (2011).
[51] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[52] A. Kitaev, arXiv preprint arXiv:0901.2686 (2009).
[53] S. Fahy and D. R. Hamann, Phys. Rev. B 43, 765 (1991).
[54] S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev.

B 55, 7464 (1997).
[55] J. E. Hirsch, Phys. Rev. B 34, 3216 (1986).
[56] N. Hatano and M. Suzuki, Physics Letters A 163, 246

(1992).
[57] D. M. Ceperley, in Monte Carlo and Molecular Dynam-

ics of Condensed Matter Systems (Editrice Compositori,
Bologna, Italy, 1996).

[58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, 3rd ed. (Cambridge University
Press, New York, NY, USA, 2007).

[59] R. T. Scalettar, “Private communications,” Unpublished.
[60] In fact, if the determinant vanishes, we would have a

state (v, 0) such that GAAv = 0

v†v = (vt, 0)η

(
v
0

)
= (vt, 0)GtηG

(
v
0

)
= −vtGtBAGBAv

(F10)
which is clearly contradictory, hence detGAA cannot van-
ish and by extension cannot become negative.

[61] “How to prove this determinant is positive?” (2015).
[62] T. Tao, “The standard branch of the matrix logarithm,”

(2015).

http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/http://dx.doi.org/10.1063/1.432868
http://dx.doi.org/http://dx.doi.org/10.1063/1.432868
http://arxiv.org/abs/1409.3262
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://arxiv.org/abs/1411.0683
http://dx.doi.org/10.1142/S0217979293001244
http://dx.doi.org/10.1142/S0217979293001244
http://dx.doi.org/10.1142/S0129183194000775
http://dx.doi.org/10.1142/S0129183194000775
http://dx.doi.org/10.1143/JPSJ.70.1519
http://dx.doi.org/10.1143/JPSJ.70.1519
http://dx.doi.org/10.1103/PhysRevB.28.4059
http://dx.doi.org/10.1103/PhysRevB.43.765
http://dx.doi.org/10.1103/PhysRevB.55.7464
http://dx.doi.org/10.1103/PhysRevB.55.7464
http://dx.doi.org/10.1103/PhysRevB.34.3216
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(92)91006-D
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(92)91006-D
http://mathoverflow.net/questions/204460/how-to-prove-this-determinant-is-positive
https://terrytao.wordpress.com/2015/05/03/the-standard-branch-of-the-matrix-logarithm/
https://terrytao.wordpress.com/2015/05/03/the-standard-branch-of-the-matrix-logarithm/

	Topological Origin of the Fermion Sign Problem
	Abstract
	Acknowledgments
	The negative sign problem
	BSS algorithm
	Arbitrary precision algorithm
	Stabilization procedure

	Continuous-time QMC
	Relationship to prior work
	Projection Monte Carlo
	Spin Berry phase
	Bosonization
	Solitonic solutions

	The adiabatic limit
	Bipartite lattices
	References


