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Considerations of the observed bad-metal behavior in Fe-based superconductors led to an early
proposal for quantum criticality induced by isoelectronic P for As doping in iron arsenides, which
has since been experimentally confirmed. We study here an effective model for the isoelectronically
tuned pnictides using a large-N approach. The model contains antiferromagnetic and Ising-nematic
order parameters appropriate for J1-J2 exchange-coupled local moments on an Fe square lattice,
and a damping caused by coupling to itinerant electrons. The zero-temperature magnetic and
Ising transitions are concurrent and essentially continuous. The order-parameter jumps are very
small, and are further reduced by the inter-plane coupling; consequently, quantum criticality occurs
over a wide dynamical range. Our results reconcile recent seemingly contradictory experimental
observations concerning the quantum phase transition in the P-doped iron arsenides.
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Introduction. Iron pnictide and chalcogenide materi-
als not only show high-temperature superconductivity1,
but also feature rich phase diagrams. For the undoped
parent iron arsenides, the ground state has collinear (π, 0)
magnetic order2. Because superconductivity occurs at
the border of this antiferromagnetic (AF) order, a natu-
ral question is whether quantum criticality plays a role in
the phase diagram. Early on, it was proposed theoreti-
cally that tuning the parent iron arsenide by isoelectronic
P-for-As doping induces quantum criticality associated
with the suppression of both the (π, 0) AF order and
an Ising-nematic spin order3. This proposal was made
within a strong-coupling approach, which attributes the
bad-metal behavior of iron arsenides4–7 to correlation ef-
fects that are on the verge of localizing electrons8–10 along
with their associated magnetic moments. The P doping
increases the in-plane electronic kinetic energy (as P is
smaller than As), and thus the coherent electronic spec-
tral weight while leaving other model parameters little
changed11,12. This weakens both the magnetic order and
the associated Ising-nematic spin order3,13.

Experimental evidence for a quantum critical point
(QCP) has since emerged in the P-doped CeFeAsO14,15

and P-doped BaFe2As2
16–20. In the phase diagram of

the P-doped BaFe2As2, an extended temperature and
doping regime has been identified for non-Fermi liquid
behavior16–19. An Ising-nematic order, inferred from the
tetragonal-to-orthorhombic structural distortion, is sup-
pressed around the same P-doping concentration (xc ≈
0.33) at which the AF order disappears. While there is
evidence for a QCP “hidden” inside the superconduct-
ing dome18, quantum criticality has now been observed
and studied in the normal state when superconductiv-
ity is suppressed by a high field19,20. We note that the
bad-metal behavior persists through xc

16.

Recently, evidence for a weakly first-order nature of the
transition has come from the neutron-scattering experi-
ments in the P-doped BaFe2As2

28. It is in seeming con-

tradiction with the accumulated experimental evidence
for quantum criticality. This puzzle calls for further the-
oretical analyses on the underlying quantum phase tran-
sitions. More generally, the interplay between the mag-
netic and nematic orders exemplifies the kind of compet-
ing or coexisting orders that is of general interest to a
variety of strongly correlated electron systems.
In this letter, we study the zero-temperature phase

transitions in the appropriate effective Ginzburg-Landau
field theory that was introduced earlier3,13 to describe
the low-energy properties of a J1-J2 model of local mo-
ments on a square lattice coupled to coherent itinerant
electrons3,8,22–24. The theory contains antiferromagnetic
(vector) and Ising-nematic (scalar) order parameters as
well as a damping term. Since it is important to estab-
lish the nature of quantum criticality in the absence of
superconductivity14,19,20, we will focus on the transitions
in the normal state and will not consider the effect of
superconductivity25. Using a large-N approach26,27, we
demonstrate that the AF and Ising-nematic transitions
are concurrent at zero temperature both for the case of a
square lattice and in the presence of interlayer coupling.
Moreover, both transitions are only weakly first order in
accordance with the marginal nature of the relevant cou-
pling, with jumps in both order parameters that are very
small, which implies a large dynamical range for quan-
tum criticality. Our results provide a natural resolution
to the aforementioned puzzle.
The model. The proximity of a bad metal to a Mott

transition can be measured by a parameter w, the per-
centage of the single-electron spectral weight in the co-
herent itinerant part3,8,9,29. This approach has been suc-
cessful in describing the spin excitation spectrum of the
iron pnictides33,36,39,43, and in understanding the fact
that Tc in the iron-based superconductors with purely
electron Fermi pockets is at least comparably high com-
pared with those with nested Fermi surfaces of co-existing
hole and electron pockets44–50. At the zeroth order in
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FIG. 1: (a) Illustration of the J1 − J2 model on a square lattice. The staggered magnetizations
⇀
mA and

⇀
mB are defined on

two interpenetrating Néel square lattices; (b) Schematic phase diagram proposed for the P-doped iron arsenides3. P-doping
increases w, the spectral weight of the coherent itinerant electrons. The yellow dot denotes the tuning parameter wc for the
QCP. The purple solid line and the green dashed one respectively mark the AF and structural transitions.

w, all the single-electron excitations are incoherent; inte-
grating out the corresponding charge excitations leads to
couplings J1 and J2 among the residual local moments:

H =
∑

〈i,j〉

J1
⇀

Si ·
⇀

Sj +
∑

〈〈i,j〉〉

J2
⇀

Si ·
⇀

Sj (1)

where 〈· · ·〉 and 〈〈· · · 〉〉 respectively denote the near-
est neighbor and next nearest neighbor sites; see
Fig. 1(a). Both general considerations8 and first-
principal calculations30,31 suggest that J2 > J1/2. In
this regime, we consider two interpenetrating sublattices
[the dotted squares in Fig. 1(a)], having independent

staggered magnetizations with Néel vectors
⇀
mA and

⇀
mB.

While the mean-field energy is independent of the an-

gle φ between
⇀
mA and

⇀
mB, this degeneracy is broken by

quantum or thermal fluctuations. It leads to the collinear

order with φ = 0 or π22,32. Thus
⇀
mA · ⇀

mB = ±1 becomes
an Ising variable.

At non-vanishing orders in w, the coherent itinerant
electrons provide Landau damping. This leads to the
following Ginzburg-Landau action3,13:

S = S2 + S4 (2)

with
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⇀
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(3)

The ~mA/B are in either momentum and Matsubara fre-
quency space (S2) or real space and imaginary time (S4).
In S2, the inverse susceptibility is

χ−1
0 (

⇀
q , iωl) = r + ω2

l + c q2 + γ |ωl| , (4)

where c is the square of the spin-wave velocity and
in S4, the coupling uI > 03,22. The parameter v
leads to the anisotropic distribution of the spin spectral
weight in momentum space, which is observed in neutron
scattering39,43. It is described by the ellipticity

ǫ ≡
√

(c− v)/(c+ v), (5)

which goes from full isotropy ǫ = 1 (v = 0) to extreme
anisotropy ǫ = 0 (v = c). In addition, γ is the (Landau)
damping rate and r = r0 + wAQ, where r0 is negative,
reflecting ground-state order in the absence of damping,
and AQ > 0 is related to a quasiparticle susceptibility at
Q = (π, 0) or (0, π)3. The mass r vanishes at w = wc,
the point of quantum phase transition. When the damp-
ing is present, the effective dimensionality of the fluctu-
ations is d + z = 4. From a renormalization-group (RG)
perspective, because “−uI” is negative, it is marginally
relevant w.r.t the underlying QCP at d + z = 43,35. So
unlike thermally-driven transitions or the case of a zero-
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temperature transition in the absence of damping (where
uI is relevant), the marginal nature of the coupling is ex-
pected to yield only a small change to the underlying
QCP; this leads to a qualitative phase diagram shown in
Fig. 1(b)3,13.
Given the aforementioned experimental observations,

we shall study the phase transitions beyond qualita-
tive RG-based considerations. Our focus is on the zero-
temperature limit, and we place particular emphasis on
the effect of damping. We note that the effect of damp-
ing on the transitions and dynamics at non-zero tem-
peratures has been studied before36. The action S is
a functional of the (vector) magnetization fields ~mA/B

and we may derive the free-energy density from F =
− ln

∫

D{m} exp(−S({m}).
Large-N approach.— To study the phase transitions

for the two-sublattice action of Eq. (3) beyond mean-field
theory, we generalize the spin symmetry of the model
to O(N) (~mA/B will have N components) and study it
through a 1/N expansion. Our goal is to investigate
general properties, including issues of universality and
the order of the phase transitions of the present setting,
which contains two order parameters possibly compet-
ing or coexisting. We note that the well-known large-N
approach has proved fruitful for many problems in sta-
tistical physics26,27.
To proceed, we rescale the quartic couplings in S({m})

by a factor 1/N and in the functional integral over e−S for
F , we decompose them in terms of Hubbard-Stratonovich
fields λA/B and ∆I . For details, refer to the Supple-

mentary Material (SM)37. To leading order in 1/N ,
iλA/B = 〈m2

A/B〉 ≡ m2 contribute to the renormaliza-

tion of the mass (coefficient of the quadratic term in the

action S2) and ∆I =
〈

⇀
mA · ⇀

mB

〉

is the Ising order pa-

rameter. We carry out our analysis from the ordered

side, and set
⇀
mA/B =

(√
NσA/B ,

⇀
πA/B

)

with σA/B and
⇀
πA/B as the static order and fluctuation fields of sub-
lattices A and B respectively. To order O(1/N) we can

integrate out
⇀
πA/B, which yields an effective free energy

density F(σ,m2,∆I) that depends parametrically on the
damping strength γ, the square of the spin-wave velocity
c, the anisotropy parameter v, and the quartic coupling
constants uI , 2u1 + u2. From SM, Eqs. (S6,S7), we have
the free energy density

F =
∆2

I

uI
− (m2 − r)2

2u1 + u2

+ (m2 ±∆I)σ
2 + g(m2,∆I) (6)

with

g(m2,∆I) =
1

2βV

∑

~q,l

ln
{

(D−1
0,~q,l +m2)2

− [v(q2x − q2y) + ∆I ]
2
}

, (7)

where D−1
0,~q,l = χ−1

0,~q,l − r, containing γ, see Eq. (4). The

two cases σA = σB = σ (+sign in Eq. (6)) and σA =

−σB = σ (−sign) correspond to Q = (0, π) and (π, 0))
AF orders, respectively.
Then we have variational equations w.r.t σ, m2 and

∆I ,

∂F
∂σ

=
∂F
∂∆I

=
∂F
∂m2

= 0 (8)

which in turn correspond to [see SM, Eqs. (S9-S11)]37

(

m2 − |∆I |
)

σ = 0, (9)

∆I

uI
= m2−r

2u1+u2

− 2σ2 −G+, (10)

∆I

uI
= − m2−r

2u1+u2

+G−. (11)

Here G± are given by

G± =
1

2βV

∑

~q,l

1

D−1
0,~q,l ± v(q2x − q2y) +m2 ±∆I

. (12)

Several limits provide a check on our approach. From
Eqs. (10,11), setting uI = 0 will lead to ∆I = 0; this
is consistent with the Ising order being driven by the
interaction uI . In the absence of coupling to coherent
itinerant fermions i.e., setting γ2/|∆I | = 0 and w = 0,
we have a nonzero Ising order at zero temperature, which
is what happens for the pure J1 − J2 model22,32. The
detailed analysis of these saddle-point equations is in SM,
Eqs. (S12-S15). It follows that the vanishing of the Ising
order implies a vanishing magnetic order. The converse
can also be shown explicitly by analyzing Eq. (S15) of
the SM, and is numerically confirmed (see below).
Nature of the magnetic and Ising transitions at zero

temperature.— We are now in position to address the
concurrent magnetic and Ising transition at T = 0. The
RG argument we described earlier suggests that there will
be a jump of the order parameters across the transition,
but the jump will be smaller as the damping parameter γ
increases. To see how the damping affects the transition,
we first consider the parameter regime where analytical
insights can be gained in our large-N approach. When γ
is sufficiently large so that x, y ≪ 1, Eq. (10) simplifies
to be37

A(η) = aη − η ln η = µ(w) (13)

with η = |∆I |/γ2, and

a = −8π2Γ (aI − a0)

ǫ+ 1/ǫ
− ln 2− 1/2,

µ(w) =
8π2a0

(ǫ+ 1/ǫ)Γ

r(w)

cΛ2
c

+
tan−1(2/Γ)

Γ
− 1

4
ln(1 +

4

Γ2
),

(14)

where Γ = γ
c1/2Λc

is the normalized damping rate, while

a0 = Λcc
3/2

2u1+u2

and aI = Λcc
3/2

uI
relate to the normalized in-

teractions. As described in detail in the Supplementary
Material37, it follows from this equation that the transi-
tion is first order, with the jump of the order parameter
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0.27≈ε

0.27≈ε

FIG. 2: The evolution of the Ising order parameter ∆I (a)
and the collinear AF order parameter σ (b) vs. the control

parameter at different damping rates (Γ = γ/(c1/2Λc)) at a
relatively large anisotropy ǫ ≈ 0.27, with fixed values of the
normalized interactions aI and a0. Each order parameter is
normalized so that its value deep in the ordered phase is 1.
The transition is very weakly first order, with jumps in the
order parameters (insets) that are very small and decrease
with damping: already for relatively small damping rate, the
jump is on the order of 10−6 (and 10−3) for the nematic (and
AF) order parameter.

decreasing as the damping rate Γ is increased. The jump
is exponentially suppressed when Γ becomes large.

To study the transition more quantitatively, we have
solved the large-N equations numerically. Fig. 2 shows
how the Ising and magnetic order parameters change
when tuning w, where, for comparison, we assume r can
still be tuned even at γ = 0. The jump of the order pa-
rameters is seen to be very small, even for the case of a
relatively large anisotropy: of ellipticity ǫ ≈ 0.27.

As explained in SM (and verified numerically: compare
Fig. 2 and Fig. S2 for a case of extreme anisotropy with
ǫ ≈ 0.025), the order-parameter jump decreases with de-
creasing anisotropy (i.e., increasing ellipticity ǫ). Ex-
periments in the iron arsenides observe an ellipticity of
ǫ ≈ 0.736,39, i.e. an anisotropy weaker than that shown
in Fig. 2. We then expect even smaller jumps of the order
parameters across the quantum phase transition.

Effect of the third-dimensional coupling.— Iron pnic-
tides have a finite Néel temperature, which results from

an interlayer exchange coupling. In order to understand
the role of this coupling on the quantum phase transi-
tion, we have studied the effective field theory in three-
dimensional space. The details of the model are described
in the Supplementary Material37, and the results for the
case with the spin-wave velocity on the third dimension
being equal to the in-plane velocity at v = 0 are shown in
Figs. S3,S4. The AF and Ising transitions are still con-
current, and become genuinely continuous. Again, this
is consistent with the RG considerations: given that the
effective dimensionality in this case is d+z = 5, the quar-
tic coupling −uI becomes irrelevant w.r.t. the underlying
QCP and will therefore not destabilize the continuous na-
ture of the transition.

In the more general case, with a varying third-
dimensional coupling, it is more difficult to solve the
large-N equations. However, the RG considerations im-
ply that turning on the interlayer coupling from the
purely 2D limit will further suppress the jump in the
order parameters.

Discussion.— Our results imply that the model for
the isoelectronically doped iron pnictides yields quantum
phase transitions of the AF and Ising-nematic orders that
are concurrent, and essentially second order. In other
words, while in two-dimensions the transition is eventu-
ally first-order, the jumps of the order parameters are
small enough to allow a large dynamical range for quan-
tum criticality; the smallness of the jumps is ultimately
traced to the marginal nature of the relevant coupling
in the effective field theory. In three dimensions, the
transition is continuous. Our conclusion reconciles the
recent observations of quantum criticality in the normal
states of P-doped BaFe2As2

19,20 on the one hand, and
the neutron-scattering determination of the weakly first
order nature of the quantum transition28.

In addition, the extremely small jump of the order
parameters across the quantum phase transition in the
two-dimensional case is also important for understanding
other experimental observations. It implies that quan-
tum criticality occurs over a wide dynamical range, with
two-dimensional character. The logarithmic divergence
of the effective mass expected from such quantum criti-
cal fluctuations3,13 has received considerable experimen-
tal support in the P-doped BaFe2As2. It fits well the
P-doping dependence of the effective mass as extracted
from the de Haas-van Alphen (dHvA) measurements40,
as well as that of the square root of the T 2-coefficient
of the electrical resistivity19. Finally, initial dynamical
evidence for quantum critical fluctuations in the antifer-
romagnetic and Ising-nematic channels has come from in-
elastic neutron scattering measurements in the electron-
doped BaFe2As2 detwinned by uniaxial strain41,42; it
would be very instructive to explore similar effects in the
P-doped BaFe2As2.

Conclusion.— We studied zero-temperature mag-
netic and Ising transitions in a model for isoelectroni-
cally tuned iron pnictides using a large-N approach. We
demonstrated that the two transitions are concurrent at
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zero temperature. We also showed that the transition
in the presence of damping are essentially continuous;
jumps in the order parameters are extremely small, and
are further suppressed by an inter-plane coupling. Our
results imply the occurrence of quantum criticality in the
isoelectronically doped iron pnictides, and reconcile sev-
eral seemingly contradictory experimental observations
in the P-doped iron arsenides.
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Chubukov, Phys. Rev. Lett 111, 057001 (2013); Phys. Rev.
B85, 024534 (2012).
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