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Aberrated electron probes for novel spectroscopy with atomic resolution: theory and
practical aspects

Ján Rusz1 and Juan Carlos Idrobo2

1Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
2Center of Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured
in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase
distribution of a electron beam. Here, we describe the theoretical and practical aspects for the
detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. We
present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

PACS numbers: 41.85.-p,41.20.Jb,61.05.J-

I. INTRODUCTION

Electron magnetic circular dichroism (EMCD) is a rel-
atively young experimental technique, proposed in 20031

along the lines of symmetry-selected electron energy-loss
spectroscopy (EELS)2. The first experimental measure-
ments were performed in 2006 in transmission electron
microscopy (TEM), using a plane wave illumination3,
with spatial resolution of ∼ 100 nm. The use of TEM
to measure an EMCD signal implied that, in princi-
ple, higher spatial resolutions — sub-nanometer or even
atomic-resolution level — could be achieved under the
right electron optical configurations. However, the intrin-
sic low EMCD signal strength has caused a slow adop-
tion of the technique, despite the initial experimental
successes4–12 and theoretical development13–17.

The field of EMCD experienced a new wave of at-
tention in 2010, when electron vortex beams (EVBs)
were achieved in electron microscopy18–20 following the
2007 prediction by Bliokh et al.21 Intense research fol-
lowed since, however, no EMCD measurements have been
achieved with EVBs, except for the initial report by
Verbeeck et al.20, and a second work from the same
laboratory22. Later, in 2013, on the basis of theoretical
calculations, it was proposed that using EVBs for mea-
suring EMCD on crystals is not efficient, unless the EVBs
are of atomic size23. The study was soon followed by a
similar work24, which instead of a crystal lattice focused
on isolated atoms or small nanoparticles. A detailed sur-
vey of expected EMCD strength measured by EVBs25

was also published, proposing optimized measurement
conditions for bcc iron. All the theoretical studies sug-
gest that in order to detect an EMCD signal in EELS in
the transmitted (direct) beam direction, EVBs must have
an atomic size and pass directly through — or very close
to (within less than approximately half of an Ångström)
— an atomic column carrying an effective magnetic mo-
ment. As of today (early 2016), isolated atomic-size
EVBs that can be used for EMCD measurements have
not been achieved experimentally, although several ways
of generating them have been suggested26–31.

Very recently, the appearance of an EMCD signal in
EELS at the transmitted beam direction was predicted

under specific diffraction interference and phase distri-
bution of the electron probe32. The theoretical predic-
tion indicated that the suitable conditions for observing
an EMCD signal in a conventional EELS-STEM experi-
ment can be summarized by the following two points: 1)
the convergent electron beam diffraction (CBED) pat-
tern must show overlapping disks. In other words, the
convergence angle α must be larger than Gλ/2, where G
is the length of a reciprocal lattice vector corresponding
to the shortest allowed reflection, and λ is the de Broglie
wavelength of electrons. This is also the necessary con-
dition for achieving atomic resolution in STEM33. 2) If
χk′ is the phase of an individual k′-vector component
of the convergent electron beam, and also the mirror
image of k with respect to a selected mirror symmetry
plane, then the phase differences ∆χk,G = χk+G − χk

should change sign under the mirror symmetry opera-
tion: ∆χk,G = −∆χk′,G. This second condition should
be fulfilled for all k and all mirror planes.34 EVBs fulfill
the second condition regardless of the symmetry of the
sample. In this sense, a vortex is a universal beam shape
that can be used to measure EMCD on any magnetic
crystals magnetized along the beam direction, assuming
that the electron probe is sufficiently small.

The same theoretical work32 also proposed an alter-
native approach to detecting an EMCD signal in EELS,
completely avoiding the necessity to generate atomic-size
vortex beams. The alternative approach simply requires
a suitable phase distribution of the electron probe, which
can be achieved by aberration-correcting scanning trans-
mission electron microscopy (STEM). There is no ne-
cessity of any modification of the STEM column. For
example, it was shown that for a cubic or a tetrago-
nal crystal aligned in the (001) orientation, a nonzero
fourfold astigmatism (labeled here as C3,4b following Kri-
vanek’s notation35) will lead to a detectable EMCD sig-
nal in atomically-resolved spectrum images in STEM ex-
periments. Not only it is easier to set up such aber-
rated probes in modern STEMs, since no hardware mod-
ifications are needed, but in addition, the whole beam
intensity can be used when acquiring the EEL spectra
— contrary to fork19,20,36,37 or spiral apertures28,38, or
phase masks18,39, which block a substantial fraction of
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the beam current.

In this manuscript, we calculate optimized conditions
for experiments with fourfold astigmatic beams as a func-
tion of Bragg scattering angle and acceleration voltage.
Optimal values of C3,4b, convergence and collection an-
gles are presented. A phase distribution for detection of
in-plane magnetization is also presented. From an ex-
perimental perspective, the practical considerations for
setting up the desired value of fourfold astigmatism are
described (Sec. V). A less patient reader or an experimen-
talist not interested into theoretical details may want to
skip over the detailed description of the model (Sec. II,
III and IV A) and jump to the results of optimization,
Sec. IV B–IV E, and practicalities of how to configure an
aberrated electron probe, Sec. V.

II. INELASTIC SCATTERING OF
CONVERGENT ELECTRON BEAMS

Here we describe the expressions for double-differential
scattering cross-section and mixed dynamical form-
factor, including the approximations used in the opti-
mizations below.

A. Scattering cross-section

A diffraction pattern with a transmitted beam with
amplitude T0, and a set diffracted disks, each having an
amplitude TG is assumed. The implied k-independence
of TG is a good approximation for a thin crystal. In
addition, for thin samples the TG is purely imaginary
and its absolute value |TG6=0| � 1, while T0 ≈ 1. Using
this notation, the elastically scattered wavefunction of
the electron beam can be described as

ψin(r) =
∑
k,G

k⊥<α/λ

TGe
iχke2πi(k+G)·r. (1)

If the convergence semi-angle α is large enough, for cer-
tain k vectors also the k + G vector may lie within the
same disk. We note that to be consistent with the aberra-
tion function defined below, in this manuscript we use a
convention with wave-vector length k = 1

λ . Thus a plane

wave is given by expression e2πik·r. The reciprocal lattice
vectors G are defined similarly by e2πiG·R = 1, where R
are lattice vectors and, for instance, |G(100)| = 1

a for a cu-
bic structure with lattice parameter a. This is therefore
different from notation used in our previous publication,
Ref. 32.

We remark here that the phase χk may well reflect also
the position of the probe over the sample in terms of a
phase ramp e2πik·∆x, which is nothing else than a phase
contribution from the beam-shift “aberrations” C0,1a and
C0,1b, in Krivanek’s notation35.

Neglecting a constant prefactor, the double-differential
scattering cross-section can be expressed as42

∂2σ

∂E∂Ω
=
∑
I,F

∣∣∣〈ψout| ⊗ 〈F |V̂ |I〉 ⊗ |ψin〉
∣∣∣2 δ(EF −EI−E),

(2)
where |I〉, |F 〉 are initial and final states of the sample,
having energies EI and EF , respectively. E is the energy
loss and V̂ is the Coulomb interaction between electrons
in the sample and the beam. The initial state probe
wavefunction ψin is given in Eq. (1) and for the final state
wavefunction we will consider a single plane wave with
wave vector kf , ψout = e2πikf ·r, hitting a chosen pixel
of the spectrometer camera. Plugging the wavefunctions
into the Eq. (1) and following the same steps in deriv-
ing the scattering cross-section expression, as detailed in
the Supplemental Material of Ref. 32, one arrives to the
following expression:

∂2σ

∂E∂Ω
=

∑
k,k′,G,G′

k⊥,k′⊥<α/λ

TGT
?
G′ei(χk−χk′ )S(q,q′, E), (3)

where

q = kf − k−G (4)

q′ = kf − k′ −G′. (5)

and S(q,q′, E) is the mixed dynamical form factor43

(MDFF) describing inelastic transitions.

B. Mixed dynamical form factor

The summation over initial and final states from
Eq. (2) is contained in the MDFF:

S(q,q′, E) =
∑
Ĩ,F

〈F |e
−2πiq·(r−uĨ)

q2
|Ĩ〉〈Ĩ|e

2πiq′·(r−uĨ)

q′2
|F 〉

× δ(E − EF + EĨ), (6)

where the summation over initial states Ĩ is restricted
over initial states of atoms within a unit cell (with basis
vectors uĨ), instead of over the whole crystal. Thus, the
summation over unit cells is already performed in Eq. 6,
and results in an important condition for constructive
interference, requiring the transversal (in-plane) compo-
nent of q− q′ and therefore also k− k′ to be a reciprocal
lattice vector. We refer the reader to the Supplemental
Information of Ref. 32 for more details.

In the numerical calculations below, there is only one
atom per unit cell, located at the origin, i.e., basis vector
u = 0. Further, the MDFF is approximated by consider-
ing only dipole transitions16

S(q,q′, E) ≈ 1

q2q′2
[q ·N(E) ·q′+ i(q×q′) ·M(E)], (7)
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FIG. 1. Schematic picture of non-magnetic and magnetic
components of a mixed dynamical form-factor, N(E) and
M(E), together with definition of L3-edge integrated non-
magnetic and magnetic quantities, N and M , discussed in
the text.

where N is, in general, a symmetric rank-two tensor de-
scribing the distribution of charge and its anisotropy, and
M is a vector containing information about spin an or-
bital magnetism and the magnetic dipole term. In gen-
eral there are 9 independent dipole contributions to the
diffraction pattern: the three x, y, z-components of the
M(E) and six real components (xx, yy, zz, xy, xz, yz) of
the tensor N(E).16,45 In the simplest case, if one as-
sumes collinear magnetization along z-direction and a
system with cubic symmetry, then N(E) → N(E)11 and
M(E)→M(E)êz, i.e.,

S(q,q′, E) ≈ 1

q2q′2
[N(E)q · q′ + i(qxq

′
y − qyq′x)M(E)].

(8)
When the energy loss spectrum is integrated over an

energy edge (e.g., Fe L2,3-edge), small changes of qz, q
′
z

due to varying energy-loss across the spectrum will be ne-
glected. Similarly, the even smaller changes of dynamical
Bloch coefficients across the edge interval with respect to
energy loss will also be neglected. Under these assump-
tions, the dependence of edge-integrated MDFF on the
electronic structure of a particular magnetic material is,
up to a common scaling factor, determined by a single pa-
rameter — the ratio of magnetic and non-magnetic com-
ponent M/N =

∫
M(E)dE/

∫
N(E)dE. Fig. 1 shows a

typical shape of N(E) and M(E) for the case of a 3d
transition metal L2,3 edges, and the definition of their
L3-edge integrals N and M , respectively.

In this work we set the value of M/N to be equal to
one. This way the results presented below, such as maxi-
mal EMCD values (relative or absolute, or signal-to-noise

ratios) became independent of a specific material. The
actual absolute value of M/N depends on the sum-rules
expressions14–16, which connect the M/N to the details
of the electronic structure of the studied material (for
example, spin and orbital moments, number of holes in
the 3d-electron shell, strength of spin-orbital coupling,
asphericity of the spin moment distribution, etc.)

The MDFF expression, Eq. 8, can be further simpli-
fied for the case of tetragonal or cubic symmetry, when
noticing that an in-plane component of q− q′ must be a
reciprocal lattice vector G⊥ = 1

a (m,n) ≡ a?(m,n) with
m,n being integer Miller indices. In such case the real
part of the MDFF can be written as

Re[MDFF ] ∝ N q.q′

q2q′2
= N

q2 + (mqx + nqy)a?

q2q′2
, (9)

the imaginary part of MDFF for magnetization along the
z-axis

Im[MDFF ] ∝ (q× q′)zM

q2q′2
= Ma?

nqx −mqy
q2q′2

. (10)

For a magnetization along the x-axis one obtains a rather
compact expression

Im[MDFF ] ∝ (q× q′)xM

q2q′2
= −Ma?nqz

q2q′2
, (11)

with its analogue for y-axis magnetization, where n gets
replaced by the Miller index −m. The q′2 in the denomi-
nator can of course be expressed as q2 +2a?(mqx+nqy)+
a?2(m2 +n2), though that does not bring any additional
insight and thus it was not used in the expressions above
in order to keep them compact.

Equations 9–11 were used to express MDFF in Eq. 3
in all optimizations presented below.

C. EMCD signal

For clarity and completeness, we include here a short
section defining the EMCD signal and its relation to the
formalism used in this article. First, within the approxi-
mations leading to Eqns. 3 and 8, we can write a general
spectrum as a linear combination of the non-magnetic
component N(E) and the magnetic component M(E) of
MDFF in the following way

∂2σ

∂E∂Ω
=

∑
k,k′,G,G′

k⊥,k′⊥<α/λ

TGT
?
G′ei(χk−χk′ )

× 1

q2q′2
[N(E)q · q′ + i(qxq

′
y − qyq′x)M(E)]

= N(E)
∑

k,k′,G,G′

k⊥,k′⊥<α/λ

TGT
?
G′ei(χk−χk′ )q · q′

q2q′2
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Energy-loss

FIG. 2. Schematic picture of a pair of typical L2,3 spec-
tra for a 3d transition metal acquired in EMCD experi-
ments (NM±EMCD). They are separated into their non-
magnetic (NM) and magnetic (EMCD) components, respec-
tively. NM and EMCD correspond to terms A(Ω, χ)N(E) and
B(Ω, χ)M(E) of Eq. 12. Then the two spectra are given by
A(Ω, χ)N(E) ±B(Ω, χ)M(E) for NM±EMCD, respectively.

+ M(E)
∑

k,k′,G,G′

k⊥,k′⊥<α/λ

iTGT
?
G′ei(χk−χk′ ) (q× q′)z

q2q′2

≡ A(Ω, χ)N(E) +B(Ω, χ)M(E) (12)

where q,q′ are defined by Eqns. 4,5 in terms of k,k′,G
and G′. This naturally splits the spectrum into a non-
magnetic component A(Ω, χ)N(E) and a magnetic com-
ponent B(Ω, χ)M(E). The latter term appears due to
the magnetic dichroism and it is what we call EMCD.
The terms A,B depend on the scattering angle Ω and
the phase distribution of the incoming beam χ.

In a typical EMCD experiment we aim to aquire a
pair of spectra with the following two properties: 1) that
their non-magnetic components are equal, i.e., A1 = A2,
and 2) that their magnetic components have opposite
sign: B1 = −B2. In a classical EMCD3 experiment
this is achieved by changing the position of the detec-
tor entrance aperture Ω1 → Ω2, while in the approach
described here we aim to do that by modification of
the phase distribution of the incoming convergent beam
χ1 → χ2. As it will be discussed below in Sec. III A
and III B, this can be achieved for example by changing
the sign of certain aberration coefficients. For complete-
ness we add that in an experiment with electron vortex
beams20 a suitable change of the phase distribution would
be achieved by a change of sign, or chirality, of the initial
orbital angular momentum of the beam.

Figure 2 shows an illustration of an EMCD experi-

ment. The non-magnetic component A(Ω, χ)N(E) (NM)
and the magnetic (EMCD) component B(Ω, χ)M(E) are
shown for a pair of spectra, which can be described as
NM±EMCD. The EMCD signal is extracted from the
difference of the two spectra.

Note that the difference of the two spectra in Fig. 2 ac-
tually leads to 2×EMCD, following the definitions used in
this manuscript. This is however of little importance, be-
cause the sum rule expression for the ratio of the orbital
angular momentum and the spin angular momentum14,15

is independent of the overal scale of the EMCD strength.
In the literature one can see the relative strength of
EMCD signal defined either as the difference of spectra
divided by their sum, or as the difference of spectra di-
vided by their average. Such percentages obviously differ
by a factor of two, nevertheless that has no influence on
the extracted physical quantities.

In Sec. IV we will optimize the ratio ofB(Ω, χ)/A(Ω, χ)
as a function of phase distribution χ, parametrized by
aberration coefficients, as discussed in Sec. III.

III. PHASE DISTRIBUTION

The symmetry of the phase distribution plays a crucial
role in detection of EMCD in spectrum imaging experi-
ments, because the phase factor ei(χk−χk′ ) can be tuned
to maximize the intensity of the magnetic signal. We
will discuss the symmetry requirements in the electron
probe for both in-plane and out-of-plane magnetization
orientations.

Generally, the phase distribution in the probe can be
described by so called aberration function

χk =
2π

λ

∑
n,m

(k⊥λ)n+1

n+ 1
(Cn,ma cosmθ + Cn,mb sinmθ),

(13)
where the Cn,ma, Cn,mb are the aberration coefficients in
Krivanek’s notation35. The index n runs from zero to
infinity and m is a non-negative integer, which runs from
n + 1 down in steps of two. n denotes the order of the
aberration and m its angular symmetry.

The angle θ is defined as arctan
ky
kx

, k⊥ =
√
k2
x + k2

y

and λ = hc√
2m0c2eVacc+(eVacc)2

is the relativistically cor-

rected de Broglie wavelength of incident electrons with
m0, e, c, h being electron mass and charge, speed of light
and Planck’s constant, respectively.

We note that the aberrations can also be expressed
following Haider’s notation, implemented in the CEOS
aberration correctors41—i.e., second order coma as B2,
threefold astigmatism as A2, fourfold astigmatism as A3,
etc. In this work we follow Krivanek’s notation because a
casual reader, with a simple inspection of the aberration
indexes (n,m), can understand the order and symmetry
of the aberrations in the electron probe. It also simplifies
the mathematical notation.
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Today’s (early 2016) state-of-the-art aberration cor-
rectors can manipulate aberrations up to the fifth order,
n = 5, and use them to partially compensate aberrations
up to the seventh order44.

Returning to Eq. 3, for each term with momentum
transfer vectors q,q′ there will be a term with a complex-
conjugated prefactor having the pair of momentum trans-
fer vectors swapped: q′,q. Since the magnetic signal is
carried by the imaginary part of the MDFF, Eqns. 10
and 11, the prefactors of MDFF in Eq. 3 need to have
sizable imaginary parts. Considering that for very thin
specimens |TG6=0| � 1 and T0 ≈ 1, the imaginary part
can only originate from the phase factor. Denoting the
phase difference ∆χk,k′ = χk − χk′ , the summed contri-
bution of the terms with q,q′ and q′,q, respectively, will
be proportional to

i(q× q′) ·Mei∆χk,k′ + i(q′ × q) ·Me−i∆χk,k′

= −2(q× q′) ·M sin ∆χk,k′ (14)

because ∆χk,k′ = −∆χk′,k. This is the key expression,
from which one can derive suitable symmetry properties
of phase distribution for detection of an EMCD signal in
an EELS-STEM experiment.

A. In-plane magnetization

We start with the simpler case of in-plane magneti-
zation. With magnetization along x-direction the scalar
triple product is (q × q′) ·M = −Ma?nqz ≡ −MGyqz,
according to Eq. 11. The qz is mostly determined by
energy loss, and the magnetization M is a material prop-
erty that is not affected by electron diffraction. Thus the
only variable in the Eq. 11 is Gy = na?.

A cubic material is a good and simple illustrative case
of what kind of aberrations are required to measure in-
plane magnetization. In this case, a horizontal mirror
axis (x-axis) associates every term of the form given by
Eq. 14 with its mirror image. The triple product changes
sign, because Gy → −Gy under mirroring with respect
to x-axis.

The main goal now is to tune the change of the phase
factor, sin ∆χk,k′ , in such way that it maximizes the mag-
netic signal.

If the phase factor would be symmetric with respect to
the x-mirror axis, then the magnetic signal would vanish
thanks to the antisymmetry of the triple product. How-
ever, if one arranges the phase factor to be also antisym-
metric with respect to the x-axis, the magnetic signals
add up instead of cancel each other out. Thus one con-
cludes that the phase distribution should be such that
∆χk,k′ is antisymmetric with respect to the x-axis.

Similar analysis can also be done with the vertical mir-
ror axis (y-axis). In this case, the sign of the triple prod-
uct does not change, because under mirror y-axis the Gy
stays invariant. Following the same line of argumentation
as above, one concludes that the phase difference ∆χk,k′

1Å

0π

π/32π/3

4π/3 5π/3

Fe

Position (Å)
-4 -2 0 2 430 mrad

a) corrected probe

b) shifted probe

c) astigmatic probe

1
Å

-4 -2 0 2 4
Position (Å)

Position (Å)
-4 -2 0 2 4

Δy = C1,0b = 1Å

C3,4b = 15μm

FIG. 3. Images of electron probes suitable for detection of
in-plane and out-of-plane magnetization. Left column shows
the k-space wavefunction of the probe corresponding to con-
vergence angle of α = 30 mrad. The color represents phase
according to the color-wheel in the inset of the third column.
The middle column shows the electron probe in real-space in
scale with the superposed atom positions of a bcc-iron struc-
ture. Hue represents phase and color brightness represents
logarithm of probe intensity, the scale bar corresponds to 2 Å.
The right column shows a radial profile (angular average) of
the probe intensity. a) electron probe with all aberrations
corrected, positioned on an Fe atomic column, b) an identical
aberration-corrected probe shifted by 1 Å along y-direction,
c) probe with all aberrations corrected except for a fourfold
astigmatism C3,4b = 15 µm, centered on an Fe atomic column.

has to be symmetric with respect to the y-axis, such that
the magnetic signals at each k,k′ add up.

In summary, for a magnetization along the x-axis, the
optimal phase distribution should be such that the phase
differences ∆k,k′ are antisymmetric with respect to the
x-axis and symmetric with respect to y-axis. While there
are infinitely many phase distributions fulfilling these
conditions, there is also a particularly simple one among
all of them: the lowest order aberration C0,1b — a simple
beam shift:

χk =
2π

λ

(k⊥λ)

1
C0,1b sin(θ) = 2πk⊥C0,1b sin(θ). (15)

Displacing the beam from an atomic column in the y-
direction up or down introduces a phase ramp in the
k-space disk of the beam wavefunction, which has the
desired symmetry property, see Fig. 3a,b.

Although, here we have used the term “aberration”, in
practice one simply needs to acquire a standard STEM
spectrum image with an aberration-corrected probe. The
magnetic signal will be present in the spectrum image
in pixels “above” and “under” the center of the atomic
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columns. This point is important because it implies that
there already might be many experimental spectrum im-
ages published, where an atomically resolved magnetic
signal is present but it has passed unnoticed. However,
we advice experimentalist to perform full dynamic elec-
tron scattering calculations before claiming atomically
resolved magnetic measurements from previous published
data and in future experiments.

In the section below we optimize the probe displace-
ments (C0,1b) to find the distance at which the magnetic
signal is the strongest, see Sec. IV D.

B. Out-of-plane magnetization

In the case of magnetization along the z-axis, the triple
product changes sign under all mirror axes: horizontal,
vertical and both diagonal ones (considering again a cu-
bic crystal). That means that an optimal phase distri-
bution should be such that the phase differences ∆χk,k′

should be antisymmetric with respect to all of the mirror
axes. Searching for a suitable solution among the aber-
rations Cn,m gives fourfold astigmatism32 C3,4b as the
lowest order aberration that satisfies the symmetry re-
quirements. The resulting phase distribution is described
by

χk =
2π

λ

(k⊥λ)4

4
C3,4b sin(4θ), (16)

see also Fig. 3c. Optimization of the conditions for mea-
suring strong magnetic signals is the subject of the fol-
lowing Section IV.

We should note that the conditions derived above for
the optimal symmetries of phase distribution are valid
for a single term, like the one in Eq. 14. However, the
inelastic scattering cross-section is a sum over many such
terms with a complicated inter-dependence. Thus, it is
well possible that a phase distribution, which is globally
optimal in terms of resulting magnetic signal strength,
will not be perfectly symmetric or antisymmetric with
respect to given mirror axes. This goes beyond the scope
of this manuscript and is left for further investigation.

IV. OPTIMIZATION OF PHASES

In this section we describe our approach and results
of optimization of the phase distribution. For a model
diffraction pattern with fixed acceleration voltage and
convergence angle, first the fourfold astigmatism is opti-
mized as a function of lattice parameter. Next, the ro-
bustness of the magnetic signal with respect to residual
aberrations is analyzed. The efficiency of beam shift is
also studied in the detection of in-plane magnetization.
Finally, for selected values of acceleration voltages the
C3,4b, convergence and collection angles are optimized for
maximal signal-to-noise ratio (SNR) in the experiments.

We should stress here that by the nature of our model,
Eq. 3, the results shown below apply exactly only for an
undistorted probe, i.e., the numerical values of EMCD
strength should be valid only for very thin samples. For
thicker samples the actual relative EMCD strength will
be most likely reduced due to elastic scattering, chan-
neling and the resulting deformation of the probe. Only
a full dynamical electron scattering calculation, includ-
ing elastic scattering effects before and after the inelas-
tic event, can provide a more reliable estimation of the
EMCD strength. Yet, the model presented here should
serve as a first-step qualitative guide for experimental-
ists and theoreticians in searching for magnetic signals in
spectrum images.

A. Model diffraction pattern

FIG. 4. Illustration of different degrees of overlap of the
CBED disks as a function of relative sizes of convergence angle
α and Bragg scattering angle ΘB .

Here we assume the case of a tetragonal crystal with
crystal axes a = b and a beam propagating along the
c-axis. In such case, the four closest diffracted disks are
at positions (0,±a?) and (±a?, 0). It is a matter of the
relative size of α/λ and a?, whether the CBED disks
overlap and by how much.

To provide some actual numbers, at Vacc = 100 kV, λ
is 3.70 pm, and at α = 30 mrad, the α/λ = 8.11 nm−1

is comparable to G(200) = 2/a = 5.68 nm−1 for fcc nickel

with lattice parameter a = 3.524 Å. The corresponding
twofold Bragg scattering angle is 2ΘB = λG = 21 mrad.
This means that all five considered CBED disks overlap
with each other, see Fig. 4. For a smaller convergence
angle, one can prove that there are only overlaps of the
transmitted beam with Bragg scattered beams. For the
case of fcc Ni at 100 kV that happens if α < λG/

√
2 =√

2ΘB = 14.8 mrad. Eventually, there will be no overlap
for α < Gλ/2 = ΘB = 10.5 mrad. All these diffraction
situations are illustrated in Fig. 4.

The example of fcc Ni was chosen because it is a close-
packed structure with relatively small interatomic dis-
tance. Fcc Ni also has quite a relative large number
of kinematically forbidden reflections, i.e., its shortest
kinematically allowed G vector is one of the longest ones
among common crystal structures. In other words, in
most of today’s aberration-corrected STEMs there will
be significant overlaps between the CBED disks, unless
the convergence angle is deliberately chosen smaller than
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FIG. 5. Relative EMCD strength for out-of-plane magnetiza-
tion for different collection angles as a function of C3,4b and
twofold Bragg scattering angle 2ΘB . The acceleration voltage
is 100 kV and convergence semi-angle 30 mrad. The collection
angle is displayed in the legend of each plot. The blue dots
mark the C3,4b values at which the absolute EMCD signal
reaches its maximum for a given value of 2ΘB . The vertical
dashed lines in the bottom right panel mark the Bragg scat-
tering angles of (La/Sr)MnO3, LaMnAOs, bcc-Fe and fcc-Ni
from left to right, respectively. Circle marks an optimal re-
gion, to which we refer in Sec. IV C.

working at conditions offering the optimal spatial resolu-
tion.

The values of Vacc = 100 kV and α = 30 mrad were
chosen, because these are typical operation conditions of
the Nion UltraSTEM 100 electron microscope, to which
we will refer in Sec. V.

In the calculations below the k-space was discretized
at 2 pixels per mrad.

B. Optimization of fourfold astigmatism for
magnetization along the optical axis (out-of-plane)

Here, the amplitude of diffracted beams TG for G 6= 0
is assumed to be negligible, i.e., TG = 0. This assump-
tion is in principle fulfilled for very thin specimens, where

10 20 30 40 50 60
2ΘB(mrad)
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Re
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β = 40mrad

FIG. 6. Absolute value of the optimized relative EMCD
strength, as a function of reciprocal lattice vector represented
by twofold Bragg scattering angle 2ΘB and collection angle
β. The position of two local maxima is marked with dashed
lines.

the elastic scattering effects on the probe shape are neg-
ligible. In such case, the double-differential scattering
cross-section can be written using Eq. 3 as

∂2σ

∂E∂Ω
=

∑
k,k′

k⊥,k′⊥<α/λ

ei(χk−χk′ )S(q,q′, E). (17)

The detector in the calculations is centered around the
optical axis direction, kf = (0, 0, kf ). For a point-like
detection one can directly utilize the expressions Eqns. 9
and 10 to evaluate the non-magnetic and magnetic sig-
nal, respectively, as a function of aberrations and a size
of the reciprocal lattice vector G. For a finite collec-
tion angle β there will be an additional summation over
x, y-components of kf , again discretized with a step of
0.5 mrad per pixel.

From the discussion in Sec. III, it is known that the
phase differences ∆χk,G = χk − χk+G should be anti-
symmetric with respect to all symmetry axes. In the cal-
culated geometry, such condition is fulfilled by C3,4b and
C5,4b aberrations. Because the latter one is much more
difficult to manipulate in aberration-corrected STEMs
available today (early 2016), the search was done for
optimal values of C3,4b as a function of twofold Bragg
scattering angle 2ΘB = λG. This is a simple optimiza-
tion of a single parameter, which was performed by a
direct evaluation of the relative strength of the EMCD
signal for each pair of G and C3,4b. The results are shown
in Fig. 5 for various collection angles. Bottom panel of
Fig. 5 shows also some typical examples of lengths of re-
ciprocal lattice vectors (vertical dashed lines), e.g., fcc
nickel or (La/Sr)MnO3 for illustration purposes.

Notice how the EMCD signal can change sign when
C3,4b gradually increases at a fixed ΘB . The actual op-
timal value of relative EMCD strength as a function of
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ΘB is plotted in Fig. 6. As it can be seen in Fig. 6, its
behavior is not monotonic. The reasons for this behavior
can be better understood from Fig. 5, where numerous
lobes with an approximately hyperbolic shape can be ob-
served. The lobes get denser towards small values of ΘB .
Moreover, at each constant ΘB value there are numerous
local minima, which results in a complicated deployment
of numerical optimization routines. In principle, only a
brute force search with a fine step, a long Monte Carlo
simulation, or a simulated annealing with a slowly de-
creasing effective temperature would recover the global
minimum.

At larger collection angles the optimized relative
EMCD strength (Fig. 6) shows two broader local max-
ima. Increasing the collection angle also results in an
EMCD signal decreasing in strength. Therefore, in ac-
tual experiments, a certain trade off must be found for
the collection angle in order to optimize the magnetic
SNR, see Sec. IV E.

C. Influence of residual aberrations for
magnetization along the optical axis

An aberration corrector is designed to reduce the aber-
ration coefficients under certain tolerable limits. In prac-
tice, some small nonzero values of aberrations are always
present, but they can be compensated with lower order
aberrations of the same symmetry. For instance, a re-
maining C5,2 aberration in the electron probe is compen-
sated with C3,2 and C1,2 aberrations44. Thus a question
arises of how sensitive is the expected EMCD strength
with respect to other unwanted aberrations?

In the calculations below the same illumination con-
ditions as in the previous sections are assumed (α =
30 mrad, Vacc = 100 kV). C3,4b and a collection angle
β are set to 20 µm and 20 mrad, respectively, for the
Bragg scattering angle of ΘB = 20 mrad. These elec-
tron optical conditions correspond to one of the optimal
regions, marked with a black circle in Fig. 5, and where
our idealized model predicts a relative EMCD strength
of about 13 % (at N = M = 1). The optimization was
performed by searching for the limits when the relative
EMCD strength is reduced by a factor of two. The four-
fold astigmatism value was fixed, while the other aberra-
tion coefficients, up to fifth order, were varied one-by-one.

The results are summarized in Table I. Some of the val-
ues deserve a few comments. First of all, the C0,1 aberra-

tions (beam shift) have limits of 0.23 Å, which means that
the EMCD signal is rather strongly localized around the
atom. This value should be compared to the diffraction-
limited probe size, which has a full-width-half-maximum
(FWHM) of 0.65 Å at Vacc = 100 kV and α = 30 mrad.
In this context, the localization of the EMCD signal is
about 2/3 of the electron probe FWHM.

The rotationally symmetric aberrations C1, C3, C5 al-
low for quite non-negligible values. In particular, the
spherical aberration (C3 or Cs) can be up to ±12 µm,

Aberration Limits Aberration Limits

C0,1ab ±0.23 Å C4,1ab ±0.28 mm

C1 = df ±8.4 nm C4,3ab ±0.65 mm

C1,2ab ±1.7/1.8 nm C4,5ab ±0.26 mm

C2,1ab ±110 nm C5 ±19 mm

C2,3ab ±270 nm C5,2ab ±12 mm

C3 = Cs ±12 µm C5,4a ±11.5 mm

C3,2ab ±5.6 µm C5,4b −16/+ 18 mm

C3,4ab ±5.4/7.5 µm C5,6ab ±61/18 mm

TABLE I. Robustness of the EMCD strength at α = 30 mrad,
β = 20 mrad, Vacc = 100 kV, ΘB = 20 mrad with respect to
parasitic aberrations. These values give limits, above which
the predicted EMCD strength is reduced by factor of two or
more.

which is more than a half of the desired fourfold astigma-
tism. Of course, reaching this value still requires an aber-
ration corrector, nevertheless the optimum seems rather
robust with respect to the value of spherical aberration.
Interestingly, some of the even-m aberrations (C1,2, C5,6)
have different limits for the a-type and b-type aberra-
tions. This is naturally the case also for m = 4 aberra-
tions, where the influence of C5,4b is also asymmetric for
positive vs negative values.

We notice that a well tuned Nion UltraSTEM 100 in a
day-to-day performance has residual averaged values of
5th order aberrations around 5 mm or smaller. The 4th
order residual aberration are in average less than 200 µm,
while the 3rd order residual aberrations are in average be-
low 4 µm. We do not know the day-to-day performance
of other aberration-corrected electron microscopes (i.e.,
FEI, JEOL and Hitachi), but since their spatial resolu-
tions are comparable at the same optical conditions, it
is safe to assume that the residual aberrations are also
similar. This means that under normal operational con-
ditions an EMCD signal should be detected, in principle,
in all aberration-corrected STEM, even in the presence
of residual aberrations.

We summarize this subsection by noting that the
EMCD signal should be well localized around the atomic
column, and that it is relatively robust with respect to
residual aberrations.

D. Optimization of beam shift for in-plane
magnetization

Replacing the expression for magnetization along the
z-axis, Eq. 10, with an expression for magnetization along
the x-axis, Eq. 11, and using the same optimization rou-
tine described above, one can obtain maps of relative
EMCD strength as a function of C0,1b and Bragg scat-
tering angle.

For in-plane magnetization, the EMCD maps are very
similar across all the considered collection angles (0, 5,
10, 20, 30, 40 mrad). Contrary to the magnetization
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FIG. 7. Relative EMCD strength for in-plane magnetization
as a function of C0,1b and twofold Bragg scattering angle 2ΘB ,
calculated for 100 kV acceleration voltage and convergence
semi-angle 30 mrad. The collection angle is displayed in the
legend of each plot. Blue dots mark the lattice parameter
corresponding to ΘB .

along the z-direction, the strength of the EMCD signal
as a function of beam shift does not degrade strongly with
the larger collection angles. Only a gradual smearing of
the EMCD signal obtained for the point-like detection is
observed. For this reason, we show in Fig. 7 only the
results for the point-like detection (β = 0 mrad) and
for the largest collection angle considered, β = 40 mrad.
As expected, the dependence of beam shift reflects the
periodicity of the crystal and dimension of the unit cell
corresponding to the Bragg scattering angle.

These results indicate that if a TEM could achieve an
atomic size probe in a Lorentz mode optical configura-
tion, there should be a sizable magnetic signal, when the
electron probe is displaced perpendicular to the direction
of the magnetic moment. This effect could be also de-
tected on strongly anisotropic magnetic materials, where
the magnetization is kept in plane due to high magneto-
crystalline anisotropy energy, despite nonzero magnetic
field of objective lens, which is parallel to optical axis.

An optimum shift of approximately 0.2 Å appears to be
almost independent of the Bragg scattering angle. Pre-
sumably, this is because the beam shape is fixed, while
the calculations are performed across unit cells of dif-
ferent sizes. We notice that an electron probe shift by
0.2 Å in the opposite direction also produces the same
EMCD signal but with opposite sign. Therefore in prac-
tice there might occur a quite strong cancellation of the
positive and negative EMCD signals due to finite source
size broadening.

We suggest that a larger probe (smaller convergence
angle) will lead to a larger separation of the regions of
positive and negative EMCD signal for in-plane magneti-
zation, and therefore it will be more robust with respect
to source size broadening.

E. Optimal signal-to-noise ratio of the EMCD
signal

In this subsection we optimize the fourfold astigma-
tism, convergence and collection angles for a range of
lattice parameters a, with an effort to reach the highest
magnetic SNR.

Definition of the magnetic signal is straightforward,
since it is represented by the contribution from the imag-
inary parts of the MDFFs. However, the noise should be
calculated from the total intensity at the core-level edges,
which consists of the magnetic signal, non-magnetic part
originating from real parts of the MDFFs, but also
from the background intensity following approximately
a power law. The background contribution depends on a
number of factors, for example presence of other nearby
edges, convergence and collection angles, but also sam-
ple thickness. Many of these factors are well beyond the
scope of our simple model. We will thus assume that
the background intensity is approximately proportional
to the non-magnetic part of the edge signal intensity.

Next, we need to choose, how do we define the SNR.
One could normalize the detection to a certain fixed num-
ber of counts, i.e., in an actual experiment that would
mean waiting until a fixed total number of counts are
accumulated at the desired edge. It is easy to show that
SNR defined in this way would be proportional to a rel-
ative strength of the EMCD signal. This might sound
reasonable on a first look, however, such optimization in-
variably leads to a preference of point-like detection, be-
cause this is where the largest relative EMCD strengths
are predicted, see Figs. 5 and 6. In practice this can-
not be a viable solution, because a very small collection
angle would mean long acquisition times and thus, most
likely, also serious problems with beam damage and sam-
ple drift.

Both sample drift and beam damage constrain the ac-
quisition time – so called dwell time – and they do that
in a different manner. Sample drift means a movement
of the sample during the acquisition of the spectrum im-
age, resulting in images that are distorted and warped.
The operator of the microscope is then forced to limit the
dwell time, so that the acquired images are interpretable.
For experiments that are sample drift limited, one should
seek to maximize the SNR per unit of acquisition time.

Achieving a maximum in the SNR per unit of acqui-
sition time typically entails for a larger beam current
(Ip ∝ α2), and a larger collection angle β (integrated
scattering cross-section is roughly proportional to β2,
when β . α). Both aspects are naturally represented in
our calculations and the definitions of A(Ω, χ), B(Ω, χ),
see Sec. II C and Fig. 2. Thus, normalizing the SNR to
the detected counts per unit of time leads to a SNR ex-
pression that is proportional to the strength of the mag-
netic component divided by a square root of the non-
magnetic component of the EEL spectrum signal, i.e.,
SNR ∝ B/

√
A.

For experiments when the beam damage is the pri-
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mary factor constraining the dwell time, one should try
to maximize the SNR per electron dose. Fixing the
electron dose means that a product of A and acquisi-
tion time t is constant. SNR will be then proportional
to Bt/

√
At =

√
t × B/

√
A, i.e.,

√
t times the crite-

rion for drift-limited optimization. The time to reach
a given dose is inversely proportional to the beam cur-
rent, which is itself proportional to squared convergence
angle: t ∝ I−1

p ∝ α−2. Finally, the quantity that we need

to optimize becomes 1/α × B/
√
A. This tends to favor

smaller convergence angles and typically leads to higher
relative strength of the EMCD signal, B/A.

Both optimization criteria have their own domain of
suitability. Interestingly, very often they lead to the same
results, especially in the case of small Bragg angles. In
this section we present results for the SNR drift-limited
experiment, but Tables II-V summarize also the results
for the dose-limited experiment.

For the optimization criteria one does not need actual
SNR values, it is sufficient to optimize a property that
is proportional to the SNR. On the other hand, with a
suitable choice of various experimental parameters one
could obtain semi-quantitative estimates of the physical
SNR. Those can give an experimentalist some idea about
what levels of data counts are needed in order to detect
a sufficiently strong EMCD signal.

The question is what parameters in an atomic resolved
EMCD spectrum imaging experiment one needs to look
out for semi-quantitative estimates of the physical SNR?

The first obvious parameter is the number of pixels,
Npix, that an atomic column covers in the spectrum im-
age. Other two straightforward parameters are the in-
tensities of the background signal and the L-edge signal
for each pixel. Since we are interested in detecting an
EMCD signal, it is better to work with their total inte-
grated intensities (or counts), i.e., CL3

and Cbkg, for the
L-edge and background, respectively. Notice that here
we work only with the L3 peak, but the same concept
applies to the L2 peak.

Our experience in ORNL’s Nion UltraSTEM 100 is
that CL3

and Cbkg can be in the order of thousand of
counts for dwell times of few tens of miliseconds, and
with atomic columns that cover Npix = 3× 3 pixels. For
simplicity we assume values of CL3

= 1000 and Cbkg =
2000.

Other parameter to take into consideration is the ra-
tio present between magnetic and non magnetic signal in
the EEL spectra, M/N (see Sec. II B). The ratio M/N
is limited by sum rules14 due to the fact that the spin
magnetic moment cannot be larger than the number of
holes in the 3d-shell. Assuming that the orbital moment
is a small fraction of the spin moment and that the spin-
orbital interaction is weak – both assumptions are typi-
cally well fulfilled for 3d materials – it’s maximum value
for L3 edge is 1/8 = 0.125 (for the L2 edge it is 1/4).
Here we assume M/N = 0.1, which is reasonable for 3d
transition metals in their high-spin state.

Integrating the signal around an atomic column leads

to a slight reduction of the relative strength of the
EMCD, and so does source broadening. This effect can
be taking into account by introducing a reduction factor
fred. For the example presented here fred = 0.8.

With all these definitions, the optimized SNR simply
becomes

SNR =
|ropt|fredMN NpixCL3√
Npix(CL3

+ Cbkg)
≈ 4.4|ropt| (18)

per magnetic column, where ropt is the ratio B/A found
at optimum conditions. We should stress that although
the resulting optimal SNR ∝ ropt, it is by no means true
during the optimization procedure, as discussed above.
This relation can be used only once the optimal condi-
tions are found and the corresponding ropt is extracted.

In the optimization of SNR, we have varied the Bragg
scattering vectors from 5 mrad to 25 mrad, which corre-
sponds to lattice parameters a within a range of 7.4–1.5 Å
at 100 kV or 5.0–1.0 Å at 200 kV, respectively. The con-
vergence angle was varied from 14 mrad to 50 mrad and
the collection angle was varied from 1 mrad up to the
value of the convergence angle. This limit of collection
angle was chosen because the simulations (Fig. 6) sug-
gest that the relative strength of EMCD drops rapidly,
once the collection angle approaches the value of the con-
vergence angle. This restriction is also well supported a
posteriori because none of the optimal solutions are at
this boundary, i.e., having a collection angle equal to the
convergence angle. Instead, the optimum collection angle
is typically between 0.5α to 0.8α. For each combination
of convergence and collection angles the value of C3,4b

was varied from 0 to 40 µm with a step size of 0.5 µm.
Representative results of the optimization procedure

are shown in Fig. 8 for twofold Bragg scattering angles
of 2ΘB = 10, 15 and 20 mrad, respectively. One can see
in the left column of Fig. 8 that the sign of the magnetic
signal does not stay the same throughout the parameter
space, instead it shows domains, within which it stays
either positive or negative. This is related to the com-
plicated topology of the magnetic signal dependence on
C3,4b, as seen in Fig. 5. The domains in Fig. 8 correlate
with qualitatively different range of values of optimized
C3,4b shown in the middle column of Fig. 8. The resulting
estimate of the SNR shown in the right column of Fig. 8
confirms the anticipated decrease of SNR for collection
angles β approaching the values of convergence angle α,
but primarily, there seems to be local optima of the SNR
within each of the domains of EMCD sign.

As a function of the lattice parameter, with increas-
ing lattice parameter (i.e., decreasing twofold Bragg
scattering angle 2ΘB) the domains seem to systemat-
ically shrink and move down and left towards smaller
convergence and collection angles. This indicates that
the preferred beam sizes approximately scale with the
lattice parameter. Along with the shrinking of do-
mains, the peak SNR within these domains is fading to
smaller values, giving space to new domains appearing at
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FIG. 8. Optimization of the magnetic SNR for Fe-L3 edge at
Vacc = 100 kV for a structure with twofold Bragg scattering
angle 2ΘB = 10 mrad (top), 15 mrad (middle row), 20 mrad
(bottom), i.e., a = 3.70, 2.47 and 1.85 Å, respectively. For
each combination of convergence angle α and collection an-
gle β < α the highest SNR (in arbitrary units; left column)
obtained for optimal C3,4b value (middle column) and the re-
sulting relative strength of the EMCD signal (right column)
are plotted. Values where β > α were not calculated (white
color).

larger convergence/collection angles and eventually offer-
ing higher SNR. It seems likely that when larger conver-
gence/collection angles can be used, there will be more
domains with alternating positive and negative signs of
the EMCD signal strength, and possibly with raising
SNR.

Summary of the optimization results over the whole
range of Bragg scattering angles are presented in Fig. 9.
The actual extracted optimum depends on the maximum
convergence angle achievable in an electron microscope.
Therefore for practical purposes, we show here results
for maximum convergence angles 30 mrad suitable for
the Nion UltraSTEM 100 electron microscope.

The optimal convergence angle is often located at the
boundary of 30 mrad, suggesting that if larger conver-
gence angles would be achievable, the SNR could be fur-
ther improved. The collection angle is varying between
11 to 28 mrad. In dependence of C3,4b on 2ΘB one can
identify a set of monotonous segments, followed by a sud-
den change of the value. These segments are related to
the domains in Fig. 8 and their changes with respect to
ΘB discussed above. The C3,4b values fall into the range
from 14 µm to 40 µm.

The plots in Fig. 9 constitute one of the primary out-

5 10 15 20 25

2ΘB (mrad)

10

15

20

25

30

α,
β 

(m
ra

d)

convergence angle α
collection angle β

7.40 4.94 3.70 2.96 2.47 2.12 1.85 1.64 1.48
a (Å)

10

15

20

25

30

5 10 15 20 25

2ΘB (mrad)

10

20

30

40

C
3,

4b
 (

µm
)

7.40 4.94 3.70 2.96 2.47 2.12 1.85 1.64 1.48
a (Å)

-0.3

-0.2

-0.1

0

0.1

0.2

R
el

at
iv

e 
E

M
C

D

FIG. 9. Summary of optimized settings for Fe-L3 edge at
Vacc = 100 kV as a function of twofold Bragg scattering angle
2ΘB or lattice parameter a, respectively. Convergence and
collection angles are shown in the top panel and the desired
fourfold astigmatism C3,4b and resulting relative strength of
EMCD signal are shown in the bottom panel. The conver-
gence angle α was restricted to a maximum of 30 mrad in
these plots.

comes of this paper. Actual numerical values are sum-
marized in Tables II, III, IV and V in the Appendix.

Returning to the question of feasibility of the experi-
ment, let’s shortly discuss the estimate of SNR as given
by Eq. 18. From Fig. 9 and Tables below one can see
than a value of ropt & 0.10 should be reachable for most,
except for the largest of the column spacings. Eq. 18 then
gives SNR of ∼ 0.44 per magnetic column, which means
that for the electron counts estimated above, the EMCD
signal would be covered by noise. To reach SNR ≈ 3 we
would need to either collect signal from approximately
7× 7 magnetic columns, which is an area of approximate
extent 1-4 nm2, or we would need to increase the electron
counts CL3

by a longer dwell time and/or finer scanning
step allowing to use higher Npix. We remind that our
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FIG. 10. Schematic of Ronchigrams of a LaMnAsO grain
oriented along the c-axis, and phase distributions of fourfold
astigmatism probes at the aperture plane. The Ronchigram
in the bottom is a copy of the top panel that has been digitally
rotated after acquisition for illustration purposes.

optimization refers to thin samples. For thick samples
(tens of nanometers) the relative strength of the EMCD
signal should drop significantly.

In classical EMCD geometries based on two-beam or
three-beam orientations3,4,9 probe sizes close to 1 nm
have been already reached, yet the EMCD on a pixel-
by-pixel basis is still rather noisy. However, with atomic
size probes one can freely decide the shape of the scanned
area, e.g., a thin stripe parallel to a surface or an inter-
face. In addition, the atomic size of the probes allows to
detect an EMCD signal also from antiferromagnetic com-
pounds, which is not possible with probes larger than a
unit cell.

V. CREATING A C3,4 ABERRATED PROBE

As it was shown in Sec. III B, a C3,4 aberrated probe
is needed in order to achieve an effective EMCD signal
when performing STEM spectrum imaging experiments.
However, it is not enough to only add an absolute value of
C3,4 aberration in the electron probe. The electron probe
when entering the sample also has to have an antisym-
metric phase distribution with respect to the main axes of
the sample. In other words, the C3,4b aberration, which is
antisymmetric about the principal longitudinal plane of
the corrector (because of its sin 4θ angular dependence),
has to be aligned with the main axes of the sample. Fig-
ure 10 shows schematically how the phase distribution
of the C3,4b aberration is antisymmetrically aligned with
the main axes of a crystalline sample. Note the Kikuchi
lines in the Ronchigrams (left column) parallel to crystal
axes b1 and b2 and the desired phase distribution (right
column).

However, it is very unlikely that the sample is loaded
in a TEM holder, such that after being tilted to zone
axis, both axes, sample and corrector, coincide. Thus, in
practice the proper amount of C3,4a and C3,4b aberrations
need to be added to produce a C3,4 phase distribution
that is antisymmetrically aligned with the sample main
axes of the sample.

The first step to produce a correct C3,4b phase distri-
bution on the electron probe is to measure the relative
alignment of the corrector longitudinal axes with the hor-
izontal axis. For instance, one method is selecting a rec-
ognizable feature in the sample when imaged with the
Ronchigram camera. Observe how that feature shifts,
using a relative large defocus of −1000 nm, with a beam
shift of few tens of nm along the a axis of the corrector.
The relative angle is obtained by tracing a line from the
initial to the final position of the selected feature, and
measuring the angle that the line has with the horizontal
axis. Other approach is to select a feature while imag-
ing the sample in STEM mode, with the scanning coils
relative rotation set to zero. Then proceed to perform a
beam shift along the a axis of the corrector, and mea-
sure the relative angle of the line formed by the shifted
feature and the horizontal axis. This last approach also
requires to know the relative angle between the axes of
the Ronchigram camera and the axes of the scanning
coils.

The next step requires to obtain the relative angle be-
tween the main axes of the sample with the horizontal
axis. This can be achieved by identifying a main Kikuchi
line of the crystalline sample, which previously has been
aligned in a main zone axis, and measuring its relative
angle with the horizontal axis. Usually an illumination
of the sample in STEM mode with a defocused electron
probe (500 − 1000 nm) is enough to resolve the Kikuchi
lines of a crystalline sample.

Notice that the sample here has to have a tetragonal
symmetry after being aligned in the major zone axis of
interest. As a consequence, pairs of Kikuchi lines with
different spacing could be observed, depending on the
lattice parameters of the sample. It is not important
which Kikuchi line is selected in this case. One can select
the line that has the smallest angle with respect to the
horizontal axis. However, the relative angles of both, the
corrector and the sample with the horizontal axis, need
to be defined consistently (either clockwise or counter
clockwise).

The desired phase distribution of the aberrated elec-
tron probe is obtained by calculating the amount of C3,4a

and C3,4b, as C3,4a = C3,4 cos δ, and C3,4b = C3,4 sin δ.
Here, δ is the difference of the relative angles between
the sample and the corrector with the horizontal axis.

Finally, the values of C3,4a and C3,4b aberrations need
to be used in the aberration correction algorithm, such
that the lenses in the corrector produce the desired phase
distribution. In a Nion microscope, this is achieved by
selecting as C3,4a and C3,4b target values the new calcu-
lated C3,4 aberrations. Then one simply needs to proceed
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FIG. 11. Simulated Ronchigrams of an amorphous sample
illuminated with a C3,4 aberrated electron probe. The sim-
ulations were performed for 100 kV acceleration voltage and
convergence semi-angle of 30 mrad. The a-axis of the correc-
tor is parallel to the horizontal axis.

FIG. 12. Phase distribution at the aperture plane of 15 µn of
C3,4a and C3,4b aberrations as a function of defocus ∆f . The
simulations were performed for 100 kV acceleration voltage.
The blue circle schematically highlights the convergence semi-
angle of 30 mrad.

with the aberration correction algorithm as in a normal
operation procedure35. The desired C3,4 aberrated probe
is normally reached within few minutes.

Fig. 10, shows two schematic examples of a LaMnAsO
grain that has been aligned such that its c-axis is par-
allel to the electron beam direction. The grain is shown
with two different relative angles between its respective
Kikuchi lines and the horizontal axis. If the relative an-
gle of the corrector with the Ronchigram camera is zero,
then for the two schematic examples shown in Fig. 10,
δ = γ and δ = γ′.

Fig. 11, shows simulated Ronchigrams of an amor-
phous sample illuminated with electron probes with
15 µm of C3,4a (top row) and C3,4b (bottom row) aber-
rations. The fourfold symmetry of the C3,4 aberration
can be appreciated in the Ronchigram for relatively large
defocus values of ±20 nm. Additionally, the relative ro-
tation of 22.5◦ degrees between the C3,4a and C3,4b aber-

FIG. 13. Experimental Ronchigrams of an amorphous sample
illuminated with a C3,4 aberrated electron probe. The exper-
iments were performed for 100 kV acceleration voltage and
convergence semi-angle of 30 mrad. The experiments were
performed by configuring the corrector such that the C3,4a

and C3,4b aberrations generate a relative rotation of the four-
fold features in the Ronchigrams. The relative rotation angle
is shown for each row.

rations can be observed by the rotation of the fourfold
features in the Ronchigram. However, it looks like if at
opposite defocus values of 20 nm and −20 nm the four-
fold features observed in the Ronchigram also rotate, in
this case by 45◦ degrees. The apparent rotation is due to
an enhancement of the negative lobes of the C3,4 aber-
rations (a and b) for a negative defocus value, while for
a positive defocus value the enhancement occurs in the
positive lobes of the C3,4 aberrations. This effect is bet-
ter appreciated if only the phase of a C3,4 probe is plotted
at the aperture plane, as shown in Fig. 12.

Fig. 13 shows experimental Ronchigrams of an amor-
phous carbon film illuminated with a C3,4 aberrated
probe. Similarly as in the case of the simulation, the
fourfold symmetry features of the C3,4 aberration and
their apparent rotation for opposite defocus values can
be observed in the Ronchigram. The dashed red lines at
a defocus value of −20 nm show the relative rotation of
the fourfold features in the Ronchigrams.

Our experience in setting a C3,4 aberrated probe in-
dicates that the alignment of the effective C3,4b phase
distribution can be achieved within ∼ 3◦ degrees of the
desired rotation. For a 15µm C3,4 probe that means less
than 1µm of a residual C3,4, which is within the limits of
C3,4a and C3,4b aberrations required for the EMCD mea-
surements (see Table I). The estimate in the accuracy
of the measurements has been obtained by comparing
the measured values of C3,4a and C3,4b with their desired
target values. The procedure was carried out at different
rotations of the C3,4 phase distribution with respect to
the longitudinal plane of the corrector.
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VI. CONCLUSIONS AND OUTLOOK

We have described in detail an approach to atomic res-
olution measurement of magnetic properties based on an
EMCD method using aberrated electron probes. Model
of inelastic scattering of a convergent electron probe pro-
vides simple explanation of the desired symmetries of
the probe phase distribution. Within the model, the
key experimental parameters – strength of fourfold astig-
matism, convergence and collection angles – have been
optimized to achieve the strongest signal to noise ratio.
Finally, the actual procedure of setting the fourfold astig-
matism in experiments has been discussed.

Based on the results of optimization of signal to noise
ratio, it appears that one could profit from the new gener-
ation of aberration correctors allowing to use larger con-
vergence angles, at least for very thin samples.

When discussing the symmetry considerations that an
electron probe has to have in its phase distribution for
EMCD measurements, one needs to distinguish between
necessary and sufficient conditions. The perfect antisym-
metry of phase distribution is a sufficient condition for
observing atomic resolution EMCD, but strictly speak-
ing it is not necessary. This opens for a possibility that
less symmetric probes utilizing several types of aberra-
tions at once might provide more optimal probes. This
is at present under investigation and will be a subject of
another publication.

Another direction of further optimization of the probe
is based on an observation that a substantial part of the
fourfold astigmatic probe wavefunction in the k-space –
the middle section – has a negligible phase variation. As
a consequence, the center of the electron probe is inactive
in the generation of the needed phase distribution for de-
tection of an EMCD signal. Using an annular aperture
with a carefully chosen inner and outer radii, instead of
a circular one, will partially reduce the center part of
the electron probe and enhance its tails in real space
with the required phase distribution. An electron probe
formed with an annular aperture should increase the rel-
ative strength of the EMCD signal without sacrificing too
much SNR.

Finally, in this work we have focused on the detection
of magnetic properties in materials. However, one could
well imagine that electron probe shapes could be tai-
lored to detect other materials properties with unprece-
dented spatial resolution, such as charge ordering, crystal
field splitting, spin-orbit-coupling, optical dichroism, and
other physical phenomena associated with broken sym-

metries such as topological insulators and quantum Hall
effect.

All these outlined directions call for further research
in what we believe is a new class of electron energy-loss
spectroscopy experiments. Experiments, where aberra-
tion correctors and shaped apertures in STEM will be
used, not only to achieve the smallest possible probes,
but instead, to sculpt the electron wave function such
that its phase distribution could be harvested at will to
reveal novel physical phenomena.
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Appendix A: Summary of optimized parameter
values for EMCD experiments with fourfold

astigmatic probes

In this Appendix we summarize the numerical values
of optimized parameters for convergence and collection
angles and fourfold astigmatism, as a function of lattice
parameter (or twofold Bragg angle). Individual tables
show results for two values of maximal convergence angle,
30 mrad or 50 mrad, and for two values of acceleration
voltage, 100 kV and 200 kV.

The optimization procedure and ranges of parameter
values are described in the text, Sec. IV E. As mentioned
in the main text, we remind the reader, that the results
presented in Tables II, IV, III and V originate from model
calculations, which neglect the deformation of the probe
due to elastic scattering on the lattice and, as such, they
should be valid for very thin specimen. With increas-
ing sample thickness it is expected that the probe phase
distribution will distort, which will most likely lead to a
reduction of the EMCD signal strength.

The primary optimization condition was for the drift-
limited dwell time, see Sec. IV E. Whenever the optimiza-
tion for dose-limited dwell time led to different results,
these are shown in parentheses.
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beeck, Ultramicroscopy 136, 81-85 (2014).

25 J. Rusz, S. Bhowmick, M. Eriksson, N. Karlsson, Phys.
Rev. B 89, 134428 (2014).

26 A. M. Blackburn, J. C. Loudon, Ultramicroscopy 136, 127-
143 (2013).
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