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The Talbot effect, employing graphene as a grating and using electron matter-waves, is simulated
using Density Functional Theory and solving the Helmholtz equation. Talbot fractional images
and long wavelength images are calculated. The results show focusing effects that suggest possible
applications for wavepacket reshaping and interferometry.

I. INTRODUCTION

The Talbot effect, also known as self imaging,
was discovered in 1836 and many different applica-
tions have been developed ever since1. It is a near
field imaging phenomena that takes place by diffract-
ing waves from a periodic grating, with images form-
ing at multiples of the distance ZT , called the Tal-
bot distance. It has been observed with different
types of waves, including matter-waves such as atoms2,
large molecules3, and electrons4,5. A variety of ap-
plications have been developed for acoustics, electron
microscopy6, x-rays7 and photolithography8,9, as well as
for interferometry3–5,10–14.

The Talbot images can be obtained by employing grat-
ing structures that can be described by discrete spatial
frequencies which form concentric rings15. This is the
case for periodic 2D structures. Graphene has recently
been the subject of intense research for its optical, me-
chanical and electronic properties, and it is an ideal can-
didate for applications utilizing the Talbot effect. Due to
its characteristic lengths the imaging of graphene requires
short wavelengths, which can be obtained with x-rays or
electrons. Graphene-based Talbot effect could find appli-
cations in manipulation and control of electron beams, in
imaging, and in e-beam lithography or interferometry.

Before Talbot effect in graphene or similar 2D materi-
als can be considered, one has to investigate whether this
self interference phenomena is observable for nanometer
scale gratings. Experimental studies of electron Talbot
effects4,5 used 100 nm or larger gratings where electrons
scatter from edges rather than from smooth potential
energy surfaces of Angstroms resolution. For µm scale
gratings, the Talbot effect are nicely described by ana-
lytic near field diffraction models1. We will investigate
how well this diffraction model works at the atomistic
scale.

In this work we will use Density Functional The-
ory (DFT) simulations to study the Talbot imaging in
graphene by electron diffraction. We will show how the
Talbot effect can focus the electron density at different
points forming periodic patterns. The calculations also

show Talbot fractional images and long wavelength imag-
ing.

Predicting the Talbot pattern for electrons requires
knowledge of the amplitude and phase of the scattered
electron wavefunction which depends on the interaction
potential between the electron and the graphene. Elec-
tron microscopy images are often simulated by employing
atomic potentials and form factors, a thorough review
can be found in Ref.16. However such models could be
limited because bonds between atoms are neglected so a
more realistic potential is desirable. In the present work
we employ a DFT based approach to simulate Talbot im-
ages obtained by scattering electrons from graphene. We
have previously used an electron scattering calculation
based on DFT for the simulation of electron microscopy
images17, and other groups have also conducted similar
simulations18.

II. CALCULATION

The DFT approach is used to calculate the electron
density distribution and realistic electron-target interac-
tion and the Talbot images are obtained by solving the
Schrödinger equation for an electron scattering from the
self-consistent potential. During the electron scattering,
the wave functions of the electrons in the graphene are
frozen. In our previous work17 we have shown that this
is a very good approximation for the scattering of elec-
trons. Two energy ranges will be tested. High energies
(20 keV) are ideal for Talbot images, because the Fresnel
approximation14,15 is valid, and as we will show later,
one obtains a good resolution of spatial frequencies on
the graphene sample with this energy. We will also study
the low energy region (80 eV) to see whether or not the
Talbot effect can be observed for these less ideal wave-
lengths.

The calculations are set up in the following way. We
place the graphene parallel to the xy plane and use peri-
odic boundary conditions in the x and y directions, with
the electron propagating along the z axis. The space
is divided into two regions: the first is z ≤ 0, where
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the graphene located, and the second is z ≥ 0 which is
far enough from the graphene so the atomic potential is
negligible. This region corresponds to free space where
the Talbot effect takes place. The graphene is located
at a distance z0 from the origin (we have tested z0 in
the interval 5 − 7 Å with no effect on the results). For
z ≤ 0 we calculate the wavefunction by time-propagating
a wavepacket on a real space grid in the presence of the
graphene sheet. The wavepacket has a Gaussian profile
along the z direction and it is a plane wave on the xy
plane, with periodic boundary conditions,

Ψ(x, z, x, t = 0) =

(
2

πα

) 1
4

eikz−
(z−zs)2

α2 , (1)

where k is the wave vector, α is the width and zs < z0
is the center of the initial wave packet. The initial wave
packet is time propagated

Ψ(x, y, z, t+ ∆t) = exp(− iH∆t

~
)Φ(x, y, z, t), (2)

(the Taylor time propagation is used for the evolution op-
erator), until the wave packet completely passes through
the graphene sheet (for low energies (80 eV) there is some
reflection from the graphene, for high energy (20 keV)
the reflection is negligible, but most of the wave packet
transmits through the graphene in both cases). For high
energies the wave packet is very oscillatory, and this os-
cillation can only be approximated on an extremely fine
grid (grid spacing less than 0.01 a.u.) , which is computa-
tionally unfeasible. In the high energy case we have used
the method introduced in our previous work17 to remove
the oscillatory part and allow us to use a grid spacing
of ∆x = ∆y = ∆z = 0.1 a.u. For the low-energy case
one can propagate the wave packet without any prob-
lems with a grid spacing of ∆x = ∆y = 0.4,∆z = 0.2
a.u. The wave vector and the width of the wave packets
is k = 2.5, α = 5.7 and k = 38, α = 2.7 a.u. for low
energy and high energy, respectively. The actual value
of the width is not very important as long as the wave
packet can represent the desired energy region.

Once the evolution is complete, the wave function is
transformed from the time domain into energy space and
the energy resolved wave function with desired energy E,

ΨE(x, y, z) =
1

2π

∫
Ψ(x, y, z, t)eiEt/~dt, (3)

is obtained. In principle, one can use this equation to
get the wave function in the entire space, but this would
require a long time propagation. Instead, we note that for
z ≥ 0, where the potential is negligible, the Schrödinger
equation reduces to the Helmholtz equation and we use
this fact to speed up the calculations. After the wave
packet has passed beyond the target, we switch from the
Schrödinger to the Helmholtz equation. The Helmholtz
and the Schrödinger equation are matched by requiring
the continuity of the wave function ΨE(x, y, z) at z = 0,
and, in addition, ensuring that the solution remains finite

as z goes to infinity15. The Helmholtz equation is solved
by Fourier transformation on the xy plane15:

ψE(x, y, z) = F−1
{
F {ψE(x, y, 0)} eiκz

}
, (4)

with κ = 2π
√

1
λ2 − ξ2, where λ is the de Broglie wave-

length and ξ the spatial frequency on the xy plane. Solv-
ing the problem this way, that is by splitting space into
two regions, is computationally less expensive than time
propagating the wavepacket numerically in the entire
space.

By Fourier transforming ψE(x, y, 0) to frequency
space, one can visualize the Montgomery rings14. Fig-
ure 2 shows that the allowed spatial frequencies of
F {ψE(x, y, 0)} form concentric rings, which is a neces-
sary condition for self-imaging15, while the others have
negligible amplitudes. The radii of the rings in Fig.2 are
in good agreement with the values deduced from the re-
ciprocal lattice vectors of graphene19.

We have investigated the self-imaging in two limiting
cases, for high energy E = 20 keV and for low-energy
E = 80 eV. One advantage of using high energy is that
the Talbot distance (inversely proportional to the wave-
length) is larger which could make it easier to measure
experimentally. On the other hand imaging with low en-
ergy can have some bandwidth limitations15 and while
the Talbot distance is shorter it might be more sensitive
to the electron distribution in graphene.

Figure 3 shows the one dimensional electron density
profile on the z direction for E = 20 keV along lines that
pass through a carbon atom, carbon bond and the cen-
ter of a hexagon (see also in Fig.1). The figure shows
that the electron density is periodically repeated with a
Talbot distance of ZT = 104 Å, but the intensity distri-
bution depends on the x, y coordinates. The calculated
Talbot distance is in good agreement with the prediction
for hexagonal lattices19 (ZT = 3a2/2λ, with a = 2.46 Å).
The Talbot carpet, the density distribution on the xz
plane (see Fig.4), shows similar periodic density enhance-
ments.

The Talbot image, the electron density on the xy plane,
at Z = 0 (and z = ZT ), is shown in Fig. 5a. The density
is higher at points that match the positions of the car-
bon atoms, so the image resembles that of the graphene
sheet. The rings around the image of atomic positions
are broken into higher and lower intensity regions.

Next we show the fractional Talbot images at 1/2ZT ,
1/3ZT , 2/3ZT , and 1/6ZT . At z = ZT /2, shown in
Fig. 5b, the pattern resembles the original graphene
(darker spots) but has smaller concentric honeycombs
inside (lighter spots) with a higher intensity than the
original ones, at a distance of 1/2 the radius of the hon-
eycomb.
Different focusing effects can be obtained at z = ZT /3,
shown in Fig. 5c, where there is a high intensity pattern
around the original graphene honeycomb positions and
low intensity in the centers. For z = 2/3ZT , (Fig. 5d) ,
the situation is reversed since now the honeycomb centers
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have high intensity and the carbon atoms’ positions are
darker. The density has its intensity maximum (about
1.55, see Fig. 3) and highest localization (highest am-
plitudes concentrated in smaller regions) on this plane
(z = 2/3ZT ). This localization may have applications
in electron pulse reshaping and interferometry. Finally,
at z = 1/6ZT (Fig. 5e), spatial density oscillations are
obtained along the carbon bonds, with a period of half
a bond length. The hexagon centers correspond to the
darker regions in the figure, while the brighter areas cor-
respond instead to the midpoints of the carbon bonds.

In the low energy case, we have used E = 80 eV, which
has a wavelength λ = 1.37 Å. This allows a resolution of
spatial frequencies up to about ξ = 0.74 Å−1. This is only
sufficient to resolve the first Montgomery ring, shown in
Fig.2 ξ ≈ 0.47 Å−1, so only coarse details of the graphene
structure are included. The grid spacing is about 0.4 in
xy and 0.2 a.u. in z. Since the Fresnel approximation
is no longer valid the Talbot distance must be obtained

from ZT =
λ

1−
√

1− λ2ξ2
(derived from Ref.15) which

for the first ring of radius ξ gives ZT = 5.8 Å, in good
agreement with the calculated results shown in Fig. 6.
Note that in this case the simulation cell is small and
thus there is no need to use the Helmholtz equation to
reduce computational costs. Therefore the density can
be obtained directly from the solution of the Schrödinger
equation. Fig. 6 shows that the relative intensity for
passing through the center of the honeycomb is much
higher than that passing through the atoms’ positions.
The relative amplitude in this case goes up to about 6,
in contrast with our E = 20 keV case where it was only
around 1.6 at the most. Also, in this case the peaks for
the honeycomb center and the atoms are completely out
of phase. At the position of these peaks we obtained
focusing of the electron density towards the center of the
hexagons, shown in Fig.5f, which is a similar pattern to
the one obtained for E = 20 keV at z = 2ZT /3.

III. SUMMARY AND DISCUSSION

In summary, we have shown that graphene can be used
to focus electron wavepackets exploiting the Talbot self-
imaging effect, creating periodic images with various pat-
terns. While the Talbot effect has been well-known and
applied for many different waves, here we have shown
that electron Talbot self interference can be generated
even with Angstrom scale gratings of 2D materials. The
atomistic effects, presence of extended charge distribu-
tions and potentials, or screening do not hamper the self
interference. The Fresnel approximation with point like
scatterers19 gives a good approximation for the Talbot
distances, for a more quantitative picture, however, one
needs a simulation that incorporates the atomistic fea-
tures as well.

By choosing the proper wavelength, one can adjust the
Talbot distances and intensities, maximizing electron lo-

FIG. 1. Graphene reference points used: (A) Carbon atom ,
(B) Hexagon center (C) Bond. The electron propagates along
the z axis.

calization at certain points which could be useful for
wavepacket manipulation or e-beam lithography. Fur-
ther investigation is needed to study the effects of beam
characteristics in space and time, sample size, and per-
turbations to the graphene (e.g. the presence of defects
or wrinkles).

The question is how can be this effect observed exper-
imentally. The Talbot distance for 20 keV electrons is
small, about 10 nm. One can increase the Talbot dis-
tance (proportional to 1/λ) by increasing the energy, but
higher energies may damage the graphene.

Another possibility is to use an interferometer as it has
been suggested in4, where the Talbot effect is observed
with the help of a second grating (e.g. bilayer graphene).
One can also speculate about a possible use of graphene
for angular Talbot effect20, where point source illumina-
tion is used to produce far field angle dependent Talbot
interference images.
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FIG. 2. Montgomery rings for graphene, obtained using a
FFT on ψE at z = 0, with spatial frequency components ξx
and ξy in Å−1. (a) Amplitude (in dB) of the spatial frequen-
cies, normalized to the average amplitude of the first ring,
and (b) phase (degrees) of each spatial frequency component.
The zeroth ring has been removed from the graph, but not
from the calculations.
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FIG. 3. Electron density profiles in the z direction, corre-
sponding to 20keV, passing through the reference points spec-
ified in Fig.1. The amplitudes shown are normalized respect
to the free space transmitted density, obtained if the graphene
grating was absent in the simulation. The obtained Talbot
distance is about 104Å. The vertical lines correspond to the
planes where the density was studied, at fractional Talbot
distances, shown in subsequent figures.

FIG. 4. The density along a plane parallel to the xz plane is
shown. In this case the plane passes through a carbon atom
at x,z=0. Amplitudes are normalized respect to free space
transmission.
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FIG. 5. Density on the xy plane for different values of z, as
shown in Fig.3. Amplitudes are normalized respect to free
space transmission. The 20keV cases are depicted from (a)
to (e), while (f) corresponds to 80eV.
(a) z = 0 or z = ZT . The points with highest intensity
overlap with the centers of the carbon atoms, so this image
resembles the graphene to its original scale. The origin
coincides with point A marked in Fig.1.
(b) z = 1

2
ZT . Here we obtain smaller hexagons with length

1/2 the original ones. The darker spots correspond to the
original locations of the atoms. These points are now vertices
of smaller hexagons, delimited by the newly arised bright
spots located inside the honeycombs in the midpoint between
the bond and the center.
(c) z = 1

3
ZT .

(d) z = 2
3
ZT . The points with highest intensity overlap with

the centers of the graphene honeycombs.
(e) z = 1

6
ZT .

(f) Density for the 80eV case, at the points in z where the
density reaches its maximum value at the centers of the
honeycombs, as shown in Fig.6.
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R
e
la

ti
v
e
 a

m
p

li
tu

d
e

 

 

Atom

Hexagon center

BondZT = 5.8 Å

FIG. 6. Electron density profiles, corresponding to an energy
of 80eV, along parallel lines to the z axis, passing through
the reference points specified in Fig.1. The obtained Talbot
distance is about 5.8Å. In this case the graphene sheet is
placed at z=0.
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