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We introduce the spectrum bifurcation renormalization group (SBRG) as an improved application
of the excited-state real space renormalization group (RSRG-X) for a class of qubit models. Starting
from a disordered many-body Hamiltonian in the full many-body localized (MBL) phase, SBRG
flows to the MBL fixed-point Hamiltonian, and generates the local integrals of motion and the matrix
product state representations for all eigenstates. The method is applicable to many interacting spin
and fermion models in the full MBL phase. As a Hilbert-space preserving RG, SBRG also generates
an entanglement holographic mapping, which duals the MBL state to a fragmented holographic
space.
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I. INTRODUCTION

The phenomenon of many-body localization (MBL)1–5

has attracted much research interest recently.6–36 It is
the generalization of the Anderson localization37 to inter-
acting systems, and can be described as the Fock space
localization38,39 of finite energy density states in the pres-
ence of strong disorder. An MBL system cannot serve as
its own heat bath, and thus violates the eigenstate ther-
malization hypothesis (ETH).40–42 From many aspects,
the MBL excited states are like ground states.13,14 For
example, the entanglement entropy (EE)43 follows the
area-law scaling44 in the MBL state,15,16 in contrast to
the volume-law scaling45–47 in the ETH state. In the full
MBL system,22 all energy eigenstates are localized and
have area-law entanglement entropy, which implies the
existence of matrix product state (MPS)48–50 represen-
tations for all eigenstates.

A natural question is whether there is an efficient
way to find (or approximately find) the MPS represen-
tation for every eigenstate in the full many-body spec-
trum of a MBL system? In fact, there have been
several nice approaches trying to answer this ques-
tion, either by matching the unitary circuit of exact
diagonalization,51 or by the spectral tensor network for
local integrals of motion,28,29 or by variational tensor net-
work optimization.52 Here we would like to tackle the
problem from a different angle using the renormalization
group (RG) approach. For example, the density matrix
renormalization group (DMRG)53,54 has been shown to
be a powerful and successful method to find the MPS
representations for ground states. For full MBL systems,
DMRG can be generalized to target highly-excited states
in the many-body spectrum as well, known as DMRG-
X.55–58 DMRG-X is a non-perturbative high-accuracy
approach to find the MPS representation for an individ-
ual excited state at a given energy-density. However it
is still quite expansive to obtain all the eigenstates using
DMRG-X. We would like to propose a less accurate but
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more efficient RG approach to resolve all eigenstates in
the MBL spectrum simultaneously. Obviously, we must
take advantage of the strong disorder nature of the MBL
system in order to target the full spectrum. The real-
space renormalization group (RSRG)59–64 (also known
as the strong disorder renormalization group) is such an
RG scheme that is designed to work with strong disor-
der. The original proposal of RSRG is ground state tar-
geting, and it was recently extended to target all excited
states as RSRG-X.17–20,65 RSRG-X finds all eigenstates
by transversing the spectrum branching tree explicitly.
However for a specific class of qubit models (such as quan-
tum Ising models), where the spectrum branches at each
RG step to two subspaces with identical dimensions, it is
then possible to implicitly encode the spectrum branch-
ing by an emergent qubit degree of freedom, and formu-
late the RG as a flow of the entire many-body Hamilto-
nian without branching to any specific energy subspaces.

The idea of formulating RSRG-X as a Hamiltonian flow
has appeared in several recent works Ref. 16–18. In this
work, we will introduce a systematic RG scheme along
this line of thought, as outlined in the following. First
we pick out the leading energy scale (highest frequency,
largest coupling) term H0 in the Hamiltonian H, and
rotate the Hamiltonian H to the diagonal basis of H0

by a local unitary transformation. Next we eliminate
the terms that anti-commute with the leading term H0

by second order perturbation, and obtain a new Hamil-
tonian. Then we turn to the next leading energy scale
term in the new Hamiltonian and repeat the above RG
procedure, until all degrees of freedom in the system are
accounted for. Finally, we collect the unitary transforma-
tions that have been performed along the RG flow, and
arrange them into a tensor network, then the MPS rep-
resentations for all eigenstates are found and encoded in
the tensor network. Because each RG step bifurcates the
spectrum until the Hamiltonian is eventually diagonal-
ized, we decided to name the RG scheme as the spectrum
bifurcation renormalization group (SBRG).

SBRG is a Hilbert space-preserving RG scheme, keep-
ing track of the flow of the whole many-body Hamilto-
nian without truncating the Hilbert space to any specific
branch of the spectrum. It can be considered as an im-
provement of RSRG-X, in the sense that SBRG allows
generation of new terms under the Hamiltonian flow, and
also the history dependence of the spectrum branching
is not explicitly realized but implicitly encoded in the
ultraviolet-infrared (UV-IR) mixing terms in the Hamil-
tonian. Therefore SBRG can be applied to strong inter-
acting models beyond the limitation of a closed-form RG.
Like RSRG-X, SBRG also targets the full many-body
spectrum rather than just the ground state, and focuses
on small frequency (small energy difference) rather than
the low absolute energy. However, SBRG also suffers
from the same limitation as RSRG that it is a basis de-
pendent approach, which means local unitary rotations of
the Pauli basis will affect the RG flow.112 This limitation
may be overcome by resolving the local basis rotation be-

fore identifying the leading energy scale, however we will
leave the possible improvements for future study.

Another motivation comes from the recent research
effort to interpret the RG transformation as a realiza-
tion of the holographic duality,66–70 examples include the
multiscale entanglement renormalization ansatz (MERA)
network71–74, cMERA75–79, ab initio holography80 ect.
In particular, Ref. 81,82 proposed the entanglement113

holographic mapping (EHM) as a unitary mapping be-
tween boundary (physical) degrees of freedom and bulk
(emergent) degrees of freedom for every Hilbert space-
preserving RG. Here we apply the same idea to SBRG
for the MBL system, and it turns out that the emer-
gent degrees of freedom are just the emergent conserved
quantities21–23 in the MBL fixed-point Hamiltonian.

The emergent conserved quantities are identified by
SBRG progressively as the leading energy scale. The
spectrum bifurcation at each RG step is controlled by
the emergent conserved quantities (like controlled-gates
in the quantum circuit). In the end of the RG flow, the
MBL fixed-point Hamiltonian will emerge. By collecting
the unitary transformations that have been performed
to the Hamiltonian during the RG flow as matrix prod-
uct operators (MPO),83 one can reconstruct the approx-
imate tensor network representation of the full many-
body spectrum, which encodes the approximate MPS
representation of each MBL eigenstate. An important
observation of this work is that the EHM circuit of SBRG
can be approximated by a Clifford circuit84,85 which en-
ables efficient calculation of many physical properties of
the MBL system.

The paper is organized as follows. In Section II, we
start by introducing SBRG algorithm under generic set-
tings, and discuss the limitations and strengths of the
method. In Section III, we apply SBRG to the disor-
dered quantum Ising model, and benchmark the energy
spectrum and eigenstates obtained by SBRG. We will
demonstrate that SBRG flows towards the strong disor-
der limit in the MBL phase. The RG flow also generates
a Clifford circuit which encodes the (approximate) MPS
representations of all eigenstates. In Section IV, we in-
terpret the Clifford circuit as an EHM tensor network.
We investigate the properties of the emergent conserved
quantities and confirm the area-law entanglement in the
MBL phase. Finally we will discuss the locality in the
holographic bulk, and the collapse of SBRG near ther-
malization.

II. SPECTRUM BIFURCATION
RENORMALIZATION GROUP

A. SBRG Algorithm

The basic idea of SBRG is to progressively identify
emergent conserved quantities by block-diagonalization
of the leading energy scale, and eliminate the block-off-
diagonal terms in the Hamiltonian by second order per-
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turbation. The most general setting is to start from the
following qubit model Hamiltonian

H =
∑
[µ]

h[µ]σ
[µ] =

∑
[µ]

h[µ] ⊗
i
σµi , (1)

where σµi (µi = 0, 1, 2, 3) denotes the Pauli matrix acting
on the ith qubit. σ[µ] ≡ σµ1µ2µ3··· ≡ σµ1⊗σµ2⊗σµ3⊗· · ·
is a short-handed notation for the direct product of Pauli
matrices, or called Pauli operators. The Hamiltonian is
simply a sum of the Pauli operators σ[µ] with real coeffi-
cients h[µ] over all Pauli indices [µ], which are randomly
drawn from independent distributions. Here we have as-
sumed the Hilbert space dimension is a power of two as
2N , such that any Hamiltonian in the Hilbert space can
be written as a linear combination of the Pauli opera-
tors σ[µ]. The qubit model is quite general. It allows
multi-qubit non-local interactions on a generic lattice,
and can describe a large class of spin and fermion sys-
tems in all dimensions (fermion models can be mapped
to qubit models by Jordan-Wigner transformation114).

Starting from the qubit model Eq. (1), SBRG algo-
rithm goes as follows. First, we pick out the leading
energy scale term in the Hamiltonian, which amounts to
selecting the term h[µ]σ

[µ] with the maximal coefficient
|h[µ]| (in its absolute value) among all terms in the Hamil-
tonian H, and denote it as

H0 = h3σ
[µ]max , (2)

where |h3| ≡ |h[µ]max
| = max[µ] |h[µ]| represents the lead-

ing coefficient (the meaning of the subscript 3 will be
evident later). Because each Pauli operator σ[µ] has nor-
malized eigenvalues ±1, the energy scale of each term
is only determined by the coefficient h[µ] in the front.
At this point, we need to assume that there is only one
unique term with the leading energy scale, and all the
other terms have energy scales sufficiently less than the
leading one. This assumption can be justified in the
strong disorder limit, but will break down for uniform
(translational invariant) systems.

Then we block-diagonalize the leading term σ[µ]max by
a Clifford group rotation R such that

σ[µ]max → R†σ[µ]maxR = σ3[0··· ], (3)

and at the same time transform all the other terms in
the Hamiltonian by the same rotation, such that H →
R†HR. Here σ3[0··· ] denotes σ3 times the rest of the
identity matrices. As a technical note, although we write
the diagonal form as σ3[0··· ] for theoretical formulation
of the RG scheme, in practice the σ3 operator does not
need to be swap to the first qubit literally. Its action can
remain in the local support of the original Pauli operator
σ[µ]max , such that R is a local unitary transformation (see
Fig. 3 later for an explicit illustration, and also Appendix
A 1 for implementation details). The key observation is
that R is not a generic unitary transformation, but an
element in the Clifford group which rotates one Pauli op-
erator to another. So R can be easily found for any given

σ[µ]max (see Appendix A 1 for the algorithm), and can be
applied to the Hamiltonian efficiently. This is related to
the Gottesman-Knill theorem85 that Clifford circuits can
be simulated efficiently on a classical computer.

As we block-diagonalize the leading energy scale, H0

becomes H0 = h3σ
3[0··· ], and the many-body spectrum

bifurcates to the high-energy E ' |h3| and the low-energy
E ' −|h3| sectors (blocks). We must reduce other terms
in the Hamiltonian into either the higher or the lower
energy sectors. Thus we classify the terms by their com-
mutativity with H0 as

H = H0 + ∆ + Σ, (4)

where ∆ are terms that commute with H0, i.e. ∆H0 =
H0∆; and Σ are terms that anti-commute with H0, i.e.
ΣH0 = −H0Σ. All terms must fall into these two classes,
because H0 contains only one single term of a Pauli oper-
ator (not the sum of several terms). GivenH0 = h3σ

3[0··· ]

in the R-rotated basis, one can see that ∆ rests in the
diagonal block as a combination of σ0[··· ] and σ3[··· ] ,
and Σ rests in the off-diagonal block as a combination of
σ1[··· ] and σ2[··· ]. The diagonal terms ∆ is left untouched,
and are passed down with the Hamiltonian to the next
step of SBRG. The off-diagonal terms Σ must be renor-
malized by 2nd order perturbation, which corresponds
to the unitary transformation H → S†HS (known as the
Schrieffer-Wolff transformation86) with

S = exp
(
− 1

2h2
3

H0Σ
)
, (5)

carried out to the 2nd order of h−1
3 (see Appendix A 2 for

derivation). The resulting effective Hamiltonian within
the diagonal blocks reads

H = H0 + ∆− 1

2
ΣH−1

0 Σ

= H0 + ∆ +
1

2h2
3

H0Σ2.
(6)

Under the Schrieffer-Wolff transformation S, the Hamil-
tonian is block-diagonalized (to the 2nd order), as one
can check that H0Σ2 now commutes with H0. Since new
terms are generated under the 2nd order perturbation,
the number of terms in the Hamiltonian will presumably
grow in this step. In practice, small terms can be trun-
cated to control the growth rate (see Appendix A 2 for
the truncation scheme).

So finally, the new Hamiltonian takes the form of

H = h3σ
3[0··· ] +

∑
λ,[µ]

hλ[µ]σ
λ[µ], (7)

where the first qubit is acted by σλ with λ = 0 or 3 only,
and the remaining qubits are acted by the generic σµ with
µ = 0, 1, 2, 3. The leading term h3σ

3[0··· ] is singled out115

and is then ascribed to the effective Hamiltonian (which
will not be touched in the later RG steps). The oper-
ator σ3[0··· ] is also identified as an emergent conserved
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quantity, because its energy scale is so high (compared
to its local neighbors) that it is unlikely to flip as we
zoom in the spectrum towards the low frequency limit.
The remaining terms Hres =

∑
λ[µ] hλ[µ]σ

λ[µ] have the

same form as the qubit model Eq. (1) that we started
with. They will enter the next SBRG step. In the next
step, we continue to pick out the leading energy scale
term in Hres, diagonalize it by a Clifford group rota-
tion to the second qubit as σ03[0··· ], and reduce the off-
diagonal terms by the 2nd order perturbation. Because
Hres commutes with σ3[0··· ], it can be diagonalized by the
σ3[0··· ]-preserving unitary transformations, meaning that
the previously identified conserved quantity σ3[0··· ] will
not be affected by the later RG transformations.

As we keep running SBRG procedure, the Hamiltonian
will flow to the following generic form, which splits into
two parts (where λ = 0, 3 and µ = 0, 1, 2, 3)

H = Heff +Hres,

Heff =
∑
[λ]

h[λ]σ
[λ][0··· ],

Hres =
∑

[λ],[µ]

h[λ][µ]σ
[λ][µ].

(8)

The effective Hamiltonian Heff contains all the terms
that have been fully diagonalized in previous RG steps,
and the residual Hamiltonian Hres contains the remain-
ing terms to be diagonalized in future RG steps. The
Hilbert space is also naturally partitioned into the emer-
gent Hilbert space acted by σ[λ] (λ = 0, 3), and the
physical Hilbert space acted by σ[µ] (µ = 0, 1, 2, 3). In
each RG step, the emergent Hilbert space grows by one
qubit, while the physical Hilbert space shrinks by one
qubit. Correspondingly the terms in Hres are progres-
sively renormalized to Heff. Each emergent qubit is an
emergent conserved quantity identified at a particular en-
ergy scale, which controls the branching of the spectrum
of that energy scale. Since the Hilbert space is not trun-
cated, the information of spectrum bifurcation is kept
in the [λ] dependence of the σ[λ][µ] = σ[λ] ⊗ σ[µ] terms
in Hres. If we specify an Ising configuration |τ〉 for the
emergent qubits, 〈τ |σ[λ]|τ〉 will acquire definite expecta-

tion values ±1, and the coefficient h̃[µ] in front of the

remaining σ[µ] term will be determined for this specific
branch of the spectrum given by the Ising configuration
|τ〉:

〈τ |Hres|τ〉 =
∑
[µ]

h̃[µ]σ
[µ],

h̃[µ] =
∑
[λ]

h[λ][µ]〈τ |σ[λ]|τ〉.
(9)

In this way, a specific branching choice can be made.
However, we will not make such an explicit branching
choice in SBRG flow. This is in contrast to RSRG-X
approach, in which one either visits each branch of the

spectrum by Monte-Carlo sampling20 or thermally aver-
ages over all branches65. In SBRG, we keep the spec-
trum bifurcation structure implicitly in the Hamiltonian
on the operator level, and keep track of the flow of the
whole Hamiltonian in the full Hilbert space.

�� �� �� �� �� ��…� ����

FIG. 1: Flow of the many-body Hamiltonian under SBRG.
Each RG step consists of a Clifford group rotation Rk followed
by a Schrieffer-Wolff transformation Sk, which block diagonal-
izes the Hamiltonian and identifies an emergent qubit. In the
end, the Hamiltonian will flow to the diagonal form Heff.

SBRG ends after the last qubit in the physical Hilbert
space has been renormalized to the emergent Hilbert
space. Then we are left with the effective Hamiltonian in
terms of the emergent conserved quantities only

Heff =
∑

[λ=0,3]

h[λ]σ
[λ], (10)

which is fully diagonalized. So SBRG can be consid-
ered as an approximate approach to diagonalize a ran-
dom many-body Hamiltonian in the strong disorder limit,
as illustrated in Fig. 1. The MBL fixed point Hamilto-
nian proposed in Ref. 21–23 also takes the same form as
Eq. (10), and the key point there was that the emergent
conserved quantities are localized in terms of the original
physical qubits, which can be verified in our numerics
later.

B. Limitations and Strengths of SBRG

SBRG is a generalized and improved application of
RSRG-X for a class of qubit models whose spectrum bi-
furcates at each RG step. We should admit that SBRG is
not a generic solver of disordered many-body Hamiltoni-
ans. The method has several limitations: (i) SBRG only
works for Ising/Majorana-like qubit models which have
the bifurcating spectral structure. (ii) Within the scope
of qubit models, SBRG still suffers from the problem of
Pauli-basis dependency. (iii) Even under a nice choice
of the basis, SBRG only works in the strong disorder
regime, and breaks down near the thermalization tran-
sition. Limitations (ii) and (iii) are shared by RSRG-X,
where (ii) can be overcome by DMRG-X55–58 and other
MPO-based RG87. We will explain these limitations in
details as follows.

The current scheme of SBRG is designed to work with
the qubit model Eq. (1), and crucially relies on the as-
sumption that there is only one non-degenerate leading
energy scale in each RG step. It will not work, for ex-
ample, with the models built from three-state quantum
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rotors, or with SU(2) symmetric spin models which have
more than one terms of the same leading energy scale and
singlet-triplet spectrum branching (which is not bifurcat-
ing). To run SBRG, we must assume the many-body
spectrum to follow certain bifurcation structures in a 2N

dimensional Hilbert space, such that the RG can follow
the bifurcation tree and discover the full spectrum pro-
gressively. That is why this RG scheme is called “spec-
trum bifurcation”. Of course, further improvements can
be made to generalize the current RG scheme to work
with non-bifurcating spectrums, however we will leave
this direction for future research.

SBRG is not a basis independent RG scheme. It re-
quires an fine-tuned Hamiltonian where the leading en-
ergy scale term at each RG step must be given by a sin-
gle Pauli operator. A local change of basis could spoil
this requirement. For example if hσ33 turns out to be
a leading energy scale term. Under an arbitrary two-

qubit basis rotation, say eiθσ31/2, it could be transformed
to h cos θσ33 + h sin θσ02, then each of the terms is not
the true leading energy scale anymore. Thus local ba-
sis transformation could affect SBRG flow, although the
physics should not be affected. So the Hamiltonian must
be written in a nice basis such that the leading energy
scale term is always represented as a single Pauli oper-
ator (or at least approximately). In general, local basis
rotations will introduce complicated correlations among
the coefficients h[µ] in the qubit model Eq. (1). So if we
assume the coefficients h[µ] are all independent (uncor-
related), then in the strong disorder limit, nearby Pauli
operators will have very different energy scales. In this
case, the strongest Pauli operator will be a good approx-
imation of the true leading energy scale term locally.

As a kind of strong disorder RG, SBRG only works
in the MBL phase and breaks down near the MBL-ETH
transition (see Fig. 2). Two things could happen when
we approach the thermalization transition from the MBL
side. (i) Uncontrolled number of terms could be gen-
erated by the 2nd order perturbation in Eq. (6), such
that the terms in the Hamiltonian could grow exponen-
tially (or even faster), which would crash SBRG program.
(ii) The off-diagonal terms Σ become close in energy scale
to the leading term H0, such that the perturbative treat-
ment is no longer valid. However if we keep away from the
ETH phase, SBRG should work well in the MBL phase
and on the marginal MBL boundary88 (also known as the
quantum critical glass65) between two MBL phases (see
Fig. 2). Although delocalization happens at the marginal
MBL criticality (i.e. the MBL-MBL transition19,20), yet
the growth rate of the Hamiltonian terms is still con-
trolled by the MBL phases from both sides. Thus SBRG
is still applicable to the marginal MBL system.

Despite of the above limitations, SBRG inherited the
high efficiency of RSRG. It is fast compared to DMRG-
X, and can handle relatively large system size (typical
system sizes used in this work is of 128 to 512 qubits).
Of course, the efficiency is gained at the cost of losing
the accuracy. However if our goal is to study the over-

�
��
�
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�
�
�
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�
�
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FIG. 2: Schematic phase diagrams containing two different
kinds of transitions: the MBL-ETH transition (in red) and
the MBL-MBL transition (marginal MBL, in black). At weak
disorder, eigenstates in a many-body system typically ther-
malized. However as the disorder gets strong enough, they
can be many-body localized. The MBL phase can be further
divided into different quantum phases by various quantum
orders. Different MBL phases are separated by the marginal
MBL critical line. Whether the marginal MBL to ETH tran-
sition happens at a finite disorder strength is still an open
question. SBRG fails in and near the ETH phase, but works
well at the MBL-MBL transition and in the MBL phase.

all structure of the MBL spectrum other than individual
states, SBRG turns out to be an efficient method. To im-
prove the accuracy, it is possible to pass the MPS states
generated by SBRG as the initial states to DMRG-X for
further improvement.

The major improvement of SBRG compared to the
generic RSRG-X is to encode the spectrum branching
history implicitly in the Hamiltonian flow. This allows
SBRG to obtain the MBL fixed-point Hamiltonian in one
run. Many physical properties of the fixed-point Hamil-
tonian can be therefore investigated, including the scaling
and distribution of the energy coefficients and the emer-
gent conserved quantities (to be elaborated in the follow-
ing sections). SBRG can also generate an unitary MPO
that approximately diagonalizes the MBL Hamiltonian.
It turns out that the MPO can be approximately express
as a Clifford circuit which has a high computational effi-
ciency. With the efficient MPO, a controlled holographic
mapping of the entire many-body Hilbert space becomes
possible, which provides us some geometric interpreta-
tions of the entanglement structures in the MBL states.
Finally as a numerical approach, SBRG allows new terms
to be generated with the RG flow, which overcomes the
limitation of closed-form RG (as RSRG-X was originally
proposed), and enables us to study strongly interacting
and higher dimensional MBL systems.

III. APPLICATION TO QUANTUM ISING
MODEL

A. Beyond the Closed-Form RG

To illustrate and to benchmark the SBRG scheme, we
will take the disordered quantum Ising model (transverse
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field Ising model plus interaction) as an example. The
model is defined on a 1D spin chain, with both XX and
ZZ coupling and the external field Z,

H = −
∑
i

Jiσ
1
i σ

1
i+1 +Kiσ

3
i σ

3
i+1 + hiσ

3
i . (11)

The model can also be interpreted as the interacting Ma-
jorana fermion chain under the Jordan-Wigner transfor-
mation,

H = −
∑
i

Ji
4

(c†i ci+1 − cici+1 + h.c.)

+
Ki

4

(
ni −

1

2

)(
ni+1 −

1

2

)
− hi

2

(
ni −

1

2

)
.

(12)

The coefficients Ji, Ki and hi are random variables in-
dependently drawn from uncorrelated distributions. In
the following, we will switch between the spin and the
fermion interpretations whenever which one is more con-
venient.

σ� σ���

σ� σ��� σ� σ���

σ� σ���

σ���

σ���

σ� σ� σ���

σ� σ� σ���

σ� σ���

σ� σ���

σ���

σ� σ� σ�
�� ��

�� σ� σ���

σ� σ���

� �

FIG. 3: Illustration of a single RG step, with the leading
energy scale term H0 in red, the block-diagonal terms ∆ in
green, and the block-off-diagonal terms Σ in blue. The Hamil-
tonian is first transformed to the diagonal basis of H0 by a
Clifford rotation R. At this step, one qubit (marked in red)
is identified as the emergent conserve quantity. Then the
block-off-diagonal terms J1 and J3 are treated as perturba-
tions, which generate effective couplings among the rest of the
qubits via a Schrieffer-Wolff transformation S.

In the original proposal20 of RSRG-X, the bond term
Jiσ

1
i σ

1
i+1 and the site term hiσ

3
i are considered as leading

energy scales, and the “interaction” term Kiσ
3
i σ

3
i+1 is

treated as perturbation. Now in SBRG, all terms are
allowed to be the leading energy scale. For example,
suppose K2 is the leading energy scale in the following
4-site problem, one step of SBRG goes as:

H = −K2σ
0330 − J1σ

1100 − J3σ
0011

− J2σ
0110 − h2σ

0300 − · · ·
R−→ −K2σ

0300 − J1σ
1130 − J3σ

0221

− J2σ
0310 − h2σ

0330 − · · ·
S−→ −

(
K2 +

J2
1 + J2

3

2K2

)
σ0300 − J1J3

K2
σ1011

− J2σ
0310 − h2σ

0330 − · · · ,

(13)

which consists of a Clifford rotation R followed by
a Schrieffer-Wolff transformation S (as illustrated in

Fig. 3). The leading energy scale term σ0300 is identified
as a new emergent conserved quantity, and is ascribed
to the effective Hamiltonian. The spectrum is also bifur-
cated to high- and low-energy subspaces, depending on
whether the emergent qubit operator σ3 takes +1 or −1
eigenvalues. The remaining terms are passed down to the
next RG step. The difference with the non-interacting
case is that the residual Hamiltonian in the physical
Hilbert space no longer keeps the form of Eq. (11), new
terms are generated: including the interaction among
more qubits like (J1J3/K2)σ1011 and the Zeeman field
in other directions like J2σ

0310. Some of the terms may
contain the operator σ3 on the emergent qubit, which
encodes the dependence of the spectrum branching. So
in general, it is no longer possible to preserve the RG
transformation in a closed form in terms of a few deci-
mation rules. Therefore SBRG is in principle a numerical
method, which can be used to explore the full MBL phase
diagram of Eq. (11) in the strong interaction regime.

However before running the numerics, let us mention
several limits of the disordered quantum Ising model in
Eq. (11) which are well understood. (i) In the Ki = 0
limit, the model simply goes back to the transverse field
Ising model, and corresponds to a free Majorana chain.
When ln J > lnh, the model is in a spin glass (SG) phase
of the Ising chain (or as a topologically nontrivial phase
of the Majorana chain). When ln J < lnh, the model is
in a paramagnetic (PM) phase of the Ising chain (or as a
topologically trivial phase of the Majorana chain). Both
of them are MBL phases, and they are separated by a
marginal MBL critical point at ln J = lnh, which is also
known as the infinite randomness critical point. (ii) In
the hi = 0 limit, one can make a basis rotation to rewrite
Eq. (11) as

H = −
∑
i

Jiσ
1
i σ

1
i+1 +Kiσ

2
i σ

2
i+1, (14)

which can then be converted to two independent copies of
free Majorana chains via the Jordan-Wigner transforma-
tion as illustrated in Fig. 4. Therefore although Ki 6= 0,
the model Eq. (14) is still a free fermion model, and have
a marginal MBL criticality at ln J = lnK, which can be
considered as the doubled version of the ln J = lnh crit-
icality. (iii) In the Ji = 0 limit, the model becomes a

�
�

�

�
χ��

χ��

FIG. 4: Illustration of the model Eq. (14) in terms of Majo-
rana fermions. After the Jordan-Wigner transform, the com-
plex fermion ci on each site (yellow block) can be split into
two Majorana fermions (white circles) as ci = χi1+iχi2. Then
the model becomes two decoupled free Majorana chains.
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classical Ising model with random Zeeman field,

H = −
∑
i

Kiσ
3
i σ

3
i+1 + hiσ

3
i , (15)

which is already solved in the Ising basis. However this
model can not be mapped to a free fermion model, so the
interaction effect still remains (although rather trivial).
The model Eq. (15) has only one phase (the PM phase),
where the strong-K and the strong-h limits are smoothly
connected without phase transition.

B. Characterization of the RG Flow

As an example, we will take the quantum Ising model
in Eq. (11) (or equivalently the interacting fermion model
in Eq. (12)), and consider the following initial distribu-
tions of the coefficients Ji, Ki and hi,

P (J)dJ =
1

Γ0J

(
J

J0

)1/Γ0

dJ for J ∈ [0, J0],

P (K)dK =
1

Γ0K

(
K

K0

)1/Γ0

dK for K ∈ [0,K0],

P (h)dh =
1

Γ0h

(
h

h0

)1/Γ0

dh for h ∈ [0, h0].

(16)

The disorder strength is controlled by a single parameter
Γ0. Larger Γ0 corresponds to stronger disorder. These
initial distributions of the coefficients are expected to flow
under SBRG.

The first question to ask is whether the distributions
flows towards the strong disorder limit? The answer how-
ever depends on the phase of the Hamiltonian. If the
Hamiltonian is in the MBL phase, SBRG will flow to-
wards strong disorder. On the other hand, if the Hamil-
tonian is in the ETH phase, SBRG will flow away from
the strong disorder limit.

To quantify the RG flow, we investigate the many-
body Thouless parameter introduced in Ref. 89–91. The
Thouless parameter can be viewed as a many-body gen-
eralization of the Thouless conductance92 in the single-
particle Anderson problem, which is the ratio of the off-
diagonal resonance energy Vmn to the diagonal level spac-
ing, as g = |Vmn|/|Em − En|, where Vmn denotes the
matrix element of a local perturbation represented in
the many-body eigen basis. To give a crude estimate
of the Thouless parameter in the SBRG implementa-
tion, we take out the Hamiltonian Eq. (4) at each RG
step: H = H0 + ∆ + Σ, which contains the leading en-
ergy scale term H0 and many block-off-diagonal terms
Σ = Σ1 + Σ2 + · · · . For each block-off-diagonal term, we
collect the ratio of its energy scale to the leading energy
scale, and define the ratio as the Thouless parameter

g =
‖Σi‖
‖H0‖

. (17)

This ratio lies between zero and one, and is the small pa-
rameter to control the perturbative treatment in the RG
scheme. In the strong disorder limit, the leading energy
scale is expected to be much larger than all the other
terms in the Hamiltonian, and g tends to zero. Physi-
cally this ratio also resembles the ratio of the resonance
energy scale over the many-body level spacing. At each
RG step, the spectrum bifurcates. The leading energy
scale ‖H0‖ is the amount of spectrum splitting at the
current RG step, which also controls the level spacing.
The block-off-diagonal terms Σi flips the emergent qubit
at the current RG step, which can be used to characterize
the resonance energy scale.

-�� -�� -� �

-�

-�

-�

-�

�

� = �� �
��
�
(�

)

�=���
�=���
�=��
�=��

�
�

(�)

-�� -� -� -� -� �
-�

-�

-�

-�

�

� = �� �

��
�
(�

)

�=���
�=���
�=��
�=��

�
�

(�)

��������

∼����������

(�)

� � � � � � � �
-�

-�

-�

-�

�

ℓ = ���� (�� /�)

�
=
��
�

FIG. 5: Distribution of the logarithmic Thouless parame-
ter G (plotted in logarithmic scale) for disordered quantum
Ising model at (a) (J0,K0, h0) = (1, 1, 1) and Γ0 = 1, (b)
(J0,K0, h0) = (2, 1, 1) and Γ0 = 1. The calculation is per-
formed on a 512-site lattice over sufficient amount of random
realizations. G is collected when the RG runs to the steps
that the number of physical qubits is reduced to N . (c) Flow
of the typical G under RG. (N0/N) characterizes the length
scale. Smaller N corresponds to longer length scale.

It will be more convenient to study the logarith-
mic Thouless parameter, denoted as G ≡ ln g =
ln(‖Σi‖/‖H0‖). We collect the parameter G with the
RG flow for various disorder realizations, from which we
can study how the probability distribution P (G)dG flows
under RG. Fig. 5(a) shows the case that the system is in
the MBL phase. The distribution P (G) ∼ eG/Γ has an
exponential tail in the large negative G limit (G→ −∞).
The tail keeps broadening with the RG flow (correspond-
ing to Γ flowing towards +∞). Therefore the average G
will flow to −∞, or the typical value of the Thouless pa-
rameter g will flow to zero, as shown in Fig. 5(c). This
demonstrates that SBRG flows towards the strong dis-
order limit in the MBL phase, and become progressively
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accurate. In contrast, Fig. 5(b) shows the case that the
system is close to the ETH phase (or weakly thermal-
ized). In this case, the distribution of G almost does not
flow under RG, and even shifts (to the right) towards
G→ 0 near the end of the RG flow. Correspondingly av-
erage G does not flow towards (or even flows away from)
the strong disorder limit, as shown in Fig. 5(c). So the
RG will eventually break down in the ETH phase, and
the signature of thermalization can be indicated from the
trend of the RG flow.

In conclusion, SBRG only works for MBL systems,
and can not approach the thermalization transition or
enter the ETH phase. Whether SBRG applies to the
marginal MBL system is more subtle. Marginal MBL
states are more delocalized than MBL states, and hence
easier to thermalize if the disorder strength is weaken. It
is still an open question whether marginal MBL states
are stable against thermalization in the presence of in-
teraction. However even if the marginal MBL state is
unstable against thermalization, the thermalization ef-
fect is expected to be weak in the strong disorder regime.
So it is still valid to talk about marginal MBL states as
the short-range physics (or for finite-sized system). In
this sense, SBRG is applicable to the marginal MBL sys-
tem as well. Various universal scaling properties of the
marginal MBL state can be studied by SBRG, as will be
shown in later sections.

C. Benchmarking the Many-Body Spectrum

At the end of the RG flow, we will obtain the full en-
ergy spectrum, encoded in the effective Hamiltonian

Heff =
∑
i

εiτi+
∑
i<j

εijτiτj+
∑
i<j<k

εijkτiτjτk+ · · · , (18)

where τi = ±1 is the emergent conserved quantities iden-
tified in SBRG flow. By iterating over all configurations
of τi, all the eigen energies can be obtained from Eq. (18)
approximately.

Γ� = �
Γ� = �
Γ� = �
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FIG. 6: Benchmark the many-body spectrum obtained by
SBRG with ED. Calculation performed on a 8-site lattice,
with Ji, Ki, hi independently drawn from the distribution in
Eq. (16) with J0 = K0 = h0 = 1 for Γ0 = 1, 2, 5.

The many-body energy spectrum estimated by SBRG
can be benchmarked with ED on small-sized system (on
which ED can be performed). In Fig. 6, we show such
a comparison of the many-body spectrum in an 8-qubit
system (256 eigen energies) for various shapes of the ini-
tial distributions of h[µ] (controlled by Γ0 = 1, 2, 5, where
the larger Γ0 the stronger disorder). In general, all points
almost line up straightly along the diagonal line, showing
good agreement between SBRG estimation and the ex-
act spectrum from ED. Also as the disorder gets stronger
(yellow points Γ0 = 5), the agreement becomes better,
showing that the accuracy of SBRG is systematically im-
proved towards the strong disorder limit.

D. Statistics of Energy Coefficients

Having obtained the effective Hamiltonian in Eq. (18)
from SBRG, we can look at the statistics of the energy
coefficients εi, εij , εijk ect. Let us denote the n-body
coefficient εi1i2···in as ε(n), and study its probability dis-
tribution P (ε(n))dε(n). The numerical results are shown
in Fig. 7.
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FIG. 7: Probability distribution of the n-body energy coef-
ficients ε(n) in the effective Hamiltonian. The statistics is
collected from 200 random realizations on a 128-site lattice
for each case. Different columns correspond to different set-
tings of the initial scales (J0,K0, h0), and different rows cor-
respond to different randomness of the initial distributions.
For (J0,K0, h0) = (1, 1, 0), the many-body interaction terms
ε(n) (n = 2, 3, 4, · · · ) are not generated, and hence their statis-
tics are not shown. Γ0 = 1 corresponds to the uniform initial
distribution, and larger Γ0 corresponds to stronger disorder.

First let us look at the (J0,K0, h0) = (1, 1, 0) free
fermion critical point, mentioned in Eq. (14), as shown
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in the left column of Fig. 7. In this case, the many-
body terms ε(n) (n = 2, 3, 4, · · · ) are not generated un-
der the RG flow, showing that SBRG has automatically
found the single particle basis to diagonalize the Hamil-
tonian. The distributions of the single particle levels ε(1)

exhibit the Dyson singularity93,94 at low energy (or low
frequency), i.e.P (ε(1)) ∼ ε−1

(1)(ln(W/ε(1)))
−3 where W is

the typical band width.
The middle column of Fig. 7 shows the cases of

(J0,K0, h0) = (1, 1, 1), which is in the PM (or SPT triv-
ial) MBL phase according to phase diagram Fig. 17 (to
be discussed later). For the weak disorder case Γ0 = 1,
the single-particle DOS (the distribution of ε(1)) drops
to zero at the low frequency limit (ε(1) → 0), which is in
reminiscence of the fermion single-particle band gap in
the clean limit. As the disorder gets stronger (Γ0 = 2, 5),
the band gap is gradually filled up by the in-gap local-
ized states. The right column of Fig. 7 shows the cases
of (J0,K0, h0) = (2, 1, 1), which sits right at the inter-
acting marginal MBL critical line. The single-particle
DOS remains gapless in these cases, which is consistent
with the fact that the single-particle gap must close at
the transition between the topological (ν = 1) and the
trivial (ν = 0) 1D fermion SPT phases,95–97 even in the
presence of disorder and interaction.

Now let us turn to the many-body terms ε(n) (n =
2, 3, 4 · · · ). Away from the free fermion limit, the many-
body terms will appear under the RG flow, and the ef-
fective Hamiltonian Heff becomes an interacting one, as
shown in the middle and right columns of Fig. 7. In
the strong disorder limit Γ0 = 5, the distributions look
similar to the free fermion case, and little interaction
is generated among the emergent conserved quantities.
As the disorder gets weaker, the interaction becomes
stronger (as the distribution shifts towards higher energy
scale) and involves more emergent conserved quantities.
Many of the interaction terms are UV-IR mixing terms,
which describe how the spectrum branching in the (high-
frequency) UV limit could shift and rearrange the energy
levels in (low-frequency) IR limit.

The many-body energy coefficients ε(n) also set the en-
ergy scale of many-body resonances in the MBL system.
To quantify the n-body resonance energy scale, we stud-
ied the norm of the n-body terms ‖ε(n)‖, defined as

‖ε(n)‖ =

√∫
ε2(n)P (ε(n))dε(n). (19)

We found that the n-body resonance energy scale decays
with n exponentially,

‖ε(n)‖ ∼We−n/ζ , (20)

as shown in Fig. 8. This observation justifies the same
proposal in Ref. 98. From the exponential decay of the n-
body resonance energy scale, it was further argued98 that
the conductivity should follow a power-law of frequency
σ(ω) ∼ ω2−φ in the deep MBL phase. From Fig. 8, one

can also observe that as the disorder gets weaker (smaller
Γ0), ‖ε(n)‖ decays slower with n, meaning that the many-
body interaction/resonance will become more important
for weaker disorder.
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FIG. 8: The energy scale ‖ε(n)‖ of n-body terms decays with
n exponentially in the MBL phase. The decay rate depends
on the initial randomness Γ0.

In the strong disorder and weak interaction limit,
where the many-body terms are suppressed, the effective
Hamiltonian Heff =

∑
i εiτi is expected to produce the

Poisson level statistics due to the lack of level repulsion,
which is consistent with the MBL physics. Away from
that limit, the many-body terms can reshuffle the en-
ergy levels at low-frequency, which may change the level
statistics drastically. However, it is not clear to us if the
level statistics imposes any constraint on the distribu-
tions P (ε(n)) of the energy coefficients, or if it is possible
to determine the level statistics from P (ε(n)). The dis-
cussion along this line may go beyond the scope of this
work, and we will leave these interesting questions for
future study.

E. RG Transform as Clifford Circuit

SBRG is a Hilbert space preserving RG. The RG trans-
formation contains no isometry, but only unitary trans-
forms. So by collecting the unitary transforms that have
been performed in each RG step, we can obtain a uni-
tary mapping which maps the physical Hilbert space to
the emergent Hilbert space, and consequently maps the
initial Hamiltonian H to the effective Hamiltonian Heff

(approximately). In each RG step, the Hamiltonian is
conjugated by two unitary transforms: a Clifford group
rotation Rk followed by a Schrieffer-Wolff transformation
Sk (here k = 1, 2, · · · labels the kth RG step). Therefore
the whole RG transformation is a product of them as

URG = R1S1R2S2 · · · =
∏
k

RkSk, (21)

which approximately diagonalize the many-body Hamil-

tonian H → Heff ' U†RGHURG. Note that in SBRG
algorithm, the Schrieffer-Wolff transformation Sk is not
performed exactly, but only carried out to the 2nd order
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in the perturbative expansion, where all the higher order
terms are truncated. So the truncation error can build
up in the Hamiltonian under the RG flow, and hence
the resulting RG transform URG is only an approximate
unitary transform to diagonalize the Hamiltonian. Nev-
ertheless the approximation is expected to be good if the
disorder is strong (such as in the full MBL phase).

Therefore the RG transform URG actually encodes all
the many-body eigenstates of H to some approximation.
To retrieve the eigenstates from URG, we just need to take
the eigenstates of the effective Hamiltonian Heff, which
are direct product states |{τi}〉 = |τ1〉 ⊗ |τ2〉 ⊗ · · · of
the emergent qubits τi = ±1, and transform them back
to the original basis by reversing the RG transformation
|Ψ{τi}〉 ' URG|{τi}〉. In this sense, URG can be viewed as

a quantum circuit99 which prepares the entangled eigen-
state from the disentangled product state. Different en-
ergy eigenstates |Ψ{τi}〉 in the MBL spectrum correspond
to different input product state |{τi}〉 of the emergent
qubits.

Although we have the Clifford rotation Rk and SW
transformation Sk matrices in hand, computing their
product explicitly as in Eq. (21) is still expensive in nu-
merics. So at this stage, we make further approximations
by dropping all the SW transformations Sk, and recon-
struct the eigenstates just from the Clifford rotations Rk,
because Sk are expected to be close to identity. With Rk
only, the remaining unitary transformation is a quantum
circuit of random Clifford gates, dubbed as the random
Clifford circuit, or the random stabilizer circuit34,84,85

UCl =
∏
k

Rk. (22)

Each Clifford gate Rk here is a controlled gate in gen-
eral, which transforms one physical qubit to one emergent
qubit under the control of the previously identified emer-
gent qubits, as illustrated in Fig. 9. The emergent qubits
will not be further rotated by the later gates, but may
serve as the control qubits for the later gates. The Clif-
ford circuit is a further approximation of the RG trans-
formation, which gives cruder estimate of the eigenstate

|Ψ{τi}〉 ' UCl|{τi}〉. (23)

The accuracy is traded for efficiency. Since UCl|{τi}〉 is
a stabilizer state, many physical properties can be effi-
ciently calculated using the stabilizer formalism.

It worth mention that dropping the Schrieffer-Wolff
transformations Sk only affects the accuracy of the esti-
mated eigenstates, but not the SBRG flow, because the
RG flow is purely guided by the flow of the Hamilto-
nian without referring to Sk. In particular, the 2nd or-
der perturbation can be performed on the Hamiltonian
level according to Eq. (6) without explicitly calculating
the Schrieffer-Wolff transformation S in Eq. (5). So we
can first determine the Hamiltonian flow under SBRG,
and then reconstruct the Clifford circuit UCl indepen-
dently after the RG flow.
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FIG. 9: The random Clifford circuit UCl. Each Clifford ro-
tation Rk is viewed as a (controlled) quantum gate, where
the black dots mark the control qubits and the yellow squares
are generic unitary gates. Under the action of each gate, one
physical qubit (in blue) will be transformed to one emergent
qubit (in red). Only the emergent qubit serves as the control.

The Clifford circuit actually provides the MPS rep-
resentation for all eigenstates. Because each Clifford
gate can be represented as a matrix product operator
(MPO)83 with fixed bond dimension 2. Then the entire
Clifford circuit is a large MPO with total bound dimen-
sion bounded by the circuit depth. As a RG transforma-
tion, the circuit depth is typically at most logarithmic
in system size. The logarithmic depth is only saturated
for the marginal MBL system. For systems deep in the
MBL phase, the RG will terminate at finite depth, and
the resulting MPO actually has a (smaller) bound di-
mension independent of the system size.51 Inputting a
direct product state from the emergent qubit side corre-
sponds to fixing the emergent legs of the MPO (red legs in
Fig. 9), which turns the MPO to an MPS representation
of the MBL eigenstate. Thus once the random Clifford
circuit is generated from the SBRG flow, we have also ob-
tained the (approximate) MPS representation for every
energy eigenstate in the whole spectrum. Because the
bipartite entanglement entropy is bounded by the bound
dimension, the entanglement entropy can scale logarith-
mically at marginal MBL, and follows area-law in the
MBL phase.15,16

F. Benchmarking the Many-Body States

To check how good is the approximation of the ran-
dom Clifford circuit, we can benchmark the circuit with
the exact diagonalization (ED) unitary transformation.
We take the quantum Ising model in Eq. (11) on a 8-
site lattice. First we run SBRG and collect the Clifford
rotations Rk (k = 1, · · · , 8). Then we assemble the Clif-

ford circuit UCl =
∏8
k=1Rk and retrieve the eigenstates

from Eq. (23). As we enumerate over all configurations of
the emergent conserved quantities {τi}, we can obtain all
the approximate eigenstates |Ψ{τi}〉. Finally we overlap
these states with the exact energy eigenstates obtained
by ED. Typically one can order the eigenstates by their
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eigen energies. But since the energy spectrum estimated
by SBRG also contains small error, a few eigenstates
might be reshuffled. Therefore we match the correspond-
ing eigenstates by the maximal overlap (implemented by
the maximal bipartite matching algorithm100), and cal-
culate the fidelity f{τi} = |〈ΨED

n |Ψ{τi}〉|, where |ΨED
n 〉

is the ED eigenstate that matches. The fidelity of each
RG-generated eigenstate is plotted against its energy in
Fig. 10. For moderate randomness Γ0 = 1, the fidelity
is typically around 0.5, and improves systematically as
the randomness gets stronger (see the Γ0 = 5 data). It
is fair to say the result is acceptable for the wave func-
tion overlap in the 256-dimensional many-body Hilbert
space. The fidelity level of SBRG is also comparable
to that of RSRG-X (as benchmarked in Ref. 20), show-
ing that SBRG has a similar performance as RSRG-X.
Admittedly, SBRG is a fast but less accurate method.
Other approaches such as DMRG-X55–58 or tensor net-
work optimization51,52 can achieve much higher eigen-
state fidelity. If high-quality eigenstates are desired, the
eigenstate estimated by SBRG can be passed as the initial
MPS state to DMRG-X for further refinement. We also
observe from Fig. 10 that the fidelity is typically higher
for the ground state and top state in the spectrum, and
lower for the states in the middle of the spectrum. This is
because the middle state has a stronger tendency to ther-
malize, and we know that SBRG and the Clifford circuit
will become inaccurate towards thermalization. In con-
clusion, as long as we are in the MBL (or marginal MBL)
phase, the Clifford circuit can provide reasonable approx-
imation for the many-body eigenstates in the whole spec-
trum.
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FIG. 10: Many-body fidelity of the energy eigenstates ob-
tained by the Clifford circuit benchmarked with ED. Cal-
culation performed on a 8-site lattice, with Ji, Ki, hi in-
dependently drawn from the distribution in Eq. (16) with
J0 = K0 = h0 = 1 for Γ0 = 1, 2, 5.

For larger-sized system where the full-spectrum ED is
no longer available, we can check the accuracy of the
Clifford circuit by the energy variance, as proposed in
Ref. 52. We define the energy variance averaged over the

approximate eigenstates as

δE2 =
1

2N

∑
{τi}

〈Ψ{τi}|H
2|Ψ{τi}〉 − 〈Ψ{τi}|H|Ψ{τi}〉

2,

(24)
where H is the initial model Hamiltonian. If |Ψ{τi}〉 were

exact eigenstates, the mean energy variance δE2 should
vanish. So the non-vanishing δE2 indicates how far the
Clifford circuit deviates from the exact diagonalization.
However, δE2 grows with the system size because it has
the dimension of the total energy squared and the to-
tal energy is an extensive quantity that scales with the
system size. To get rid of the system size dependence,
we choose to normalize δE2 by the total variance of the
energy

E2 =
1

2N

∑
{τi}

〈Ψ{τi}|H
2|Ψ{τi}〉, (25)

and the result is shown in Fig. 11. For various model pa-
rameters (J0,K0, h0), the normalized mean energy vari-

ance δE2/E2 is controlled below ∼ 0.4,116 and decreases
all the way to zero towards the strong disorder limit
where the Clifford circuit becomes exact.
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FIG. 11: Normalized energy variance δE2/E2 v.s. the ran-
domness Γ0 of the initial distribution, for various parameters
(J0,K0, h0). The calculation is performed on a 64-site lattice
with 100 random realizations for each data point.

In conclusion, SBRG generates two important sets of
data: a fixed-point Hamiltonian Heff which gives the full
energy spectrum to the 2nd order perturbation, and a
Clifford circuit UCl which encodes all the eigenstates to
the 0th order perturbation. Admittedly, the Clifford cir-
cuit may be a crude approximation in terms of encoding
the many-body eigenstates, but it has nice properties to
enable highly efficient calculation of many physical quan-
tities, which will be discussed in the following section.

IV. ENTANGLEMENT HOLOGRAPHIC
MAPPING

A. SBRG and Holography

SBRG also provides a holographic interpretation of
the MBL system. This follows from the idea that every
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Hilbert-space-preserving RG can be interpreted as a holo-
graphic mapping, and the RG transformation is a unitary
mapping from the holographic boundary to holographic
bulk. The bulk qubits defined by this mapping can be
considered as local degrees of freedom in an emergent
bulk geometry, whose radial direction (or the holographic
extra dimension) corresponds to the energy (frequency)
scale, running from UV to IR, as illustrated in Fig. 12.
The close relation between RG and holography has been
actively studied in both condensed matter physics and
high energy physics communities.66–80,101–103 SBRG is
also a Hilbert-space-preserving RG, so it must also have
a holographic interpretation.

Here we will follow the construction of EHM proposed
by one of the authors in Ref. 81,82. The construction
was first applied to a free fermion system without disor-
der. The model describes spinless fermions hopping on a
1D lattice. At each RG step, two neighboring sites are
coarse grained to an effective site either in the low-energy
subspace or in the high-energy subspace, depending on
the state of the bulk fermion (either empty or occupied).
The coarse graining is implemented as unitary transfor-
mations of the fermion basis, represented as small yellow
disks in Fig. 12(a). In this way, a tensor network is gen-
erated under RG, which maps the boundary fermions to
the bulk.

Now for SBRG, RG steps are implemented by Clif-
ford gates (approximately), depicted as yellow blocks
in Fig. 12(b). Each Clifford gate identifies an emergent
qubit on one of its output leg. We pull out the emer-
gent qubits as bulk degrees of freedom, because they are
the ones who control the spectrum branching at each
RG step. The bulk qubits reside at the radius position
determined by their energy scales at which they are iden-
tified by SBRG. The energy scale can be easily read off
from the effective Hamiltonian Heff =

∑
i εiτi + · · · , such

that the energy scale associated to τi is simply εi, i.e.
the single-body energy coefficients in Heff. In this way,
the random Clifford circuit is interpreted as the EHM
network. Since we are dealing with disordered systems,
our EHM network is not a regular tensor network, and
the bulk geometry also inherits the randomness on the
boundary. The tensor network maps the MBL eigen-
states on the boundary to a direct product state in the
bulk, so it is also a disentangler network or a random
version of MERA,71 which progressively removes the en-
tanglements in the wave function.

An important feature of the SBRG-generated EHM
network is that the transformations performed in the IR
region are controlled by the states of the emergent qubits
in the UV region, as depicted in Fig. 12(b) by the gray
lines connecting the IR gates to the UV emergent qubits.
The emergent qubit state in the UV region determines
the large-scale spectrum branching and roughly locates
the system around certain energy density in the spec-
trum, therefore the IR transformations can be affected
by the choice of the qubit state that has been made in the
UV layer. Correspondingly, the spectrum branching de-

(�) (�)

FIG. 12: EHM network of (a) free fermion system without
disorder,81 and (b) MBL system. Both EHM networks map
the physical qubits (in blue) on the holographic boundary to
the emergent qubits (in red) in the holographic bulk. The
unitary transform in each RG step is represented by a yellow
block. Each RG step will identify a new bulk qubit.

pendence of the IR physics is reflected in the many-body
terms

∑
ij εijτiτj +

∑
ijk εijkτiτjτk + · · · in the effective

Hamiltonian as a UV-IR mixing effect.
The idea of holography is useful, because it provides

a geometric interpretation of the entanglement struc-
tures in the quantum many-body state. For exam-
ple, the entanglement entropy can be interpreted as
the minimal surface in the holographic bulk following
the Ryu-Takayanagi formula.104 The correlation func-
tion or mutual information is also related to the holo-
graphic geodesic distance. In general, a full-spectrum
holographic mapping for generic many-body system is
challenging. However the MBL systems are special, in
the sense that they are “quasi-solvable”, which allows
a Hilbert-space-preserving RG and a controlled holo-
graphic mapping of the entire many-body Hilbert space.
In the following we will discuss several physical proper-
ties of MBL systems, and the holographic geometry in
the bulk.

B. Stablizer Properties

Let us first look at the emergent conserved quantities
τi, also known as the localized bits22 or the local inte-
grals of motion21,52, which play important roles in the
phenomenology of MBL systems. On one hand, they la-
bel the emergent qubit states in the holographic bulk. On
the other hand, they are the stabilizers (commuting pro-
jectors) for the eigenstates on the holographic boundary.
The representation of the emergent conserved quantities
in the physical Hilbert space τ̂i can be approximately
found by inversely applying the Clifford circuit,

τ̂i = UCl σ
[3i] U†Cl, (26)

where [3i] denotes the set of Pauli indices of the form
[0 · · · ]3[0 · · · ] with 3 appears at the ith qubit position for
i = 1, 2, · · · , N . We use a hat to emphasize that the oper-
ator τ̂i is represented in the physical Hilbert space, acting
on the holographic boundary. From the effective Hamil-
tonian Heff in Eq. (18), we know that every eigenstate in
the physical Hilbert space is a stabilizer state (approx-
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imately), stabilized by τ̂i to the value of the emergent
conserved quantity τi = ±1

∀i : τ̂i|Ψ{τi}〉 = τi|Ψ{τi}〉. (27)

Each stabilizer τ̂i is also a Pauli operator, because the
Clifford circuit can only take the Pauli operator σ[λ]i to
another Pauli operator. To gain some intuition of the
stabilizers, let us plot them in Fig. 13. We start with
the quantum Ising model in Eq. (11) (or as the fermion
model in Eq. (12)), and take the random distribution
from Eq. (16) with the parameters (J0,K0, h0) = (1, 0, 1)
for Fig. 13(a) and (J0,K0, h0) = (1, 1, 1) for Fig. 13(b).
The stabilizers are collected along SBRG flow, and re-
stored to the physical Hilbert space by Eq. (26).
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FIG. 13: Snapshots of the stabilizers τ̂i arranged vertically by
their energy scales εi from UV (bottom) to IR (top), for (a)
(J0,K0, h0) = (1, 0, 1) and (b) (J0,K0, h0) = (1, 1, 1). Hor-
izontal axis is the real-space position in a 32-site subsystem
taken from the 256-site lattice. Each stabilizer is represented
as a product of Pauli matrices (grouped in gray shadows),
and each Pauli matrix is illustrated by a color dot (red= σ1,
green= σ2, yellow= σ3).

One important question is the locality of these sta-
bilizers. As we can see from Fig. 13, most of them are
quite well localized. Fig. 13(a) shows the scenario at the
marginal MBL criticality (at the critical point of free Ma-
jorana/Ising chain). In the UV regime (i.e. − ln |εi| ∼ 0),
many stabilizers are of the form σ[0··· ]11[0··· ] (two red
dots) or σ[0··· ]3[0··· ] (a single yellow dot), corresponding
to the strong bond or the strong site operators respec-
tively. As the RG flows towards the IR limit (larger
− ln |εi|, lower frequency), longer stabilizers are found,
corresponding to the longer-range coupling of the Majo-
rana fermions. The fermion Jordan-Wigner string can
also be observed as σ[3...] (a line of yellow dots between
the red/green dots). These long-range couplings are quite
rare and have very low energy scale, which follow the uni-
versal scaling behavior − ln |εi| ∼

√
li with li being the

length of the stabilizer.63 We can tune the system away

from the criticality to the MBL phase by the fermion
interaction Ki(ni − 1

2 )(ni+1 − 1
2 ). Because on the mean-

field level, the interaction effectively enhances the ran-
domness of the site field as hi → hi + Ki(ni+1 − 1

2 ),
and therefore tips the balance between the bond Ji
and the site hi terms.20 As shown in Fig. 13(b), with
(J0,K0, h0) = (1, 1, 1), all the stabilizers become short-
range and concentrated near the UV regime. We see that
SBRG stops flowing within a few orders of the energy
scale in the MBL phase.
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FIG. 14: Probability distribution P (l) of the stabilizer length
l, shown as (a) log-linear plot and as (b) log-log plot. The
statistics is collected from 1500 random realizations on a 128-
site lattice for each parameter (J0,K0, h0) as marked out in
the phase diagram Fig. 17 accordingly, with Γ0 = 1. In (b),
the lines are shifted vertically from each other (by 4 vertical
units) for clarity.

Having the above picture in mind, we now check the
stabilizer locality quantitatively. First, we collect the
stabilizers obtained by SBRG, and count the number of
stabilizers of each length l. The length of the stabilizer
is defined as the real-space separation from the left-most
qubit to the right-most qubit that are acted by the sta-
bilizer in the physical Hilbert space. For each initial
scales (J0,K0, h0) of the couplings, we repeat the cal-
culation for many random realizations to obtain reliable
statistics. The statistical frequency is then normalized
to the probability distribution P (l)dl of the stabilizer
length l. Fig. 14(a) shows the probability distribution
P (l) v.s. l in the log-linear plot. According to the phase
diagram Fig. 17 to be shown latter, D(4, 1, 1) belongs to
the SG MBL phase, and F (1, 1, 1) belongs to the PM
MBL phase. We can see, in both MBL phases, the prob-
ability distribution decays exponentially P (l) ∼ e−l/ξ,
meaning that the stabilizers are exponentially localized
in the MBL phases. Our result can be viewed as an sup-
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portive evidence for Ref. 21,22 and also agrees with the
analysis in Ref. 28.

However at the marginal MBL critical point, the sta-
bilizers are no longer short-ranged, but become quasi-
long-ranged with the power law distribution P (l) ∼ l−α.
According to the phase diagram in Fig. 17, A(1, 0, 1),
B(1, 1, 0) and E(2, 1, 1) are on (or very close to) the
marginal MBL critical line. Then in Fig. 14(a), their
probability distributions P (l) indeed deviate from the
exponential decay, and develop long tails for large l.
To confirm the power law behavior, we switch to the
log-log plot in Fig. 14(b), and find that the data fol-
low straight lines nicely. For the free fermion chains
A(1, 0, 1) and B(1, 1, 0), the universal exponent α = 2
is expected, because according to RSRG fixed point
solution,63 the length scale l is related to the logarith-
mic energy scale Γ = − ln ε as l ∼ Γ2, so the number
of stabilizers identified at that energy scale should fol-
low P (l)dl = (N0/l)(dΓ/Γ) ∼ l−2dl where N0 is the ini-
tial number of sites (qubits). We confirm the exponent
α = 2 in Fig. 14(b) (see the lines A and B). For the
interacting fermion chain E(2, 1, 1) at criticality, the RG
fix-point theory is not known to us. Our numerical result
seems to imply roughly the same exponent α ' 2.1 as the
line E in Fig. 14(b). The numerical calculation obtains a
slightly larger exponent, because it is difficult to exactly
locate the critical line, thus the point E(2, 1, 1) may be
a little off-critical, therefore P (l) is subject to a weak
exponential decay, which could result in a seemly larger
exponent from the power-law fitting. In Tab. I, we col-
lect the exponents α calculated on a few points along (or
near) the marginal MBL critical line. We do not observe
systematic or significant deviation from α = 2. So our
result implies that the lengths of the stabilizers are likely
to follow the same universal scaling behavior P (l) ∼ l−2

along the whole critical line.

TABLE I: The scaling exponent α obtained by the power-law
fitting along (or near) the phase boundary.

(J0,K0, h0) α (J0,K0, h0) α

(1, 0, 1) 2.03± 0.09 (5, 3, 2) 2.13± 0.03

(8, 1, 7) 2.03± 0.09 (6, 4, 1) 2.12± 0.06

(4, 1, 3) 1.98± 0.09 (7, 5, 1) 2.06± 0.06

(2, 1, 1) 2.11± 0.07 (1, 1, 0) 1.99± 0.06

Another important question is the dynamical scaling at
the marginal MBL criticality. The absence of diffusion
in the MBL system is characterized by the infinite dy-
namical exponent z →∞ in l ∼ t1/z. Or more precisely,
this implies the logarithmic dynamical scaling l ∼ (ln t)η

at the marginal MBL critical point, where η = 2 is ex-
pected from the previous RSRG study on the transverse
field Ising model.63 We can check the dynamical scal-
ing by studying the energy scale v.s. the length scale of
the stabilizers τ̂i identified by SBRG. For every τ̂i, we
read off its energy scale εi from the effective Hamilto-
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FIG. 15: Universal dynamical scaling. Different colors repre-
sent the different settings of the initial scales (J0,K0, h0) as
marked out in the phase diagram Fig. 17 accordingly. The cal-
culation is performed on a 128-site lattice with 1000 random
realizations.

nian H =
∑
i εiτi + · · · , and measure its length li in the

physical space. We collect the pair (εi, li) for all stabi-
lizers in the system, and repeat the calculation for many
random realizations to obtain sufficient amount of sam-
ples. Fig. 15 shows that the data points roughly follow
the − ln ε ∼

√
l behavior, and hence the dynamical scal-

ing l ∼ (− ln ε)2 ∼ (ln t)2 is justified. Our data imply
that the universal dynamical scaling not only applies to
the free fermion chains A(1, 0, 1), B(1, 1, 0), but also ap-
plies to interacting fermion chain E(2, 1, 1). Thus we
conclude that for the quantum Ising model, the whole
marginal MBL critical line is characterized by the same
universal dynamical scaling with z →∞.

C. Entanglement Entropy

In the Clifford circuit formalism, every energy eigen-
state in the physical Hilbert space is approximated by a
stabilizer state |Ψ{τi}〉 as in Eq. (27) that corresponds to
the direct product state |{τi}〉 in the holographic bulk. In
this case, all the entanglement structure of the stabilizer
state is given by the Clifford circuit, and the bulk qubits
will make no contribution because they are completely
disentangled. However, we know the Clifford circuit only
provides the 0th order approximation of the eigenstates.
If we fix the Clifford circuit, and map the exact physical
eigenstate from the holographic boundary into the bulk,
then the corresponding bulk state will actually has some
entanglement. The entangled bulk qubits will provide an
additional layer of entanglement on top of the entangle-
ment given by the Clifford circuit. Therefore the EE SE
of an energy eigenstate is given by the background en-
tropy SCl based on the Clifford circuit plus the correction
Sbulk due to the bulk qubit entanglement (which can be
negative),

SE = SCl + Sbulk. (28)

A nice property of the Clifford gates Rk is that they are
all of the same MPO bond dimension DR = 2. So the
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MPO bond dimension of the Clifford circuit is simply
D = Dd

R = 2d with d being the circuit depth. This im-
poses an upper bound on the EE of the Clifford circuit:
SCl ≤ lnD = d ln 2. In the MBL phase, the depth of
the Clifford circuit is finite, and SCl follows the area-law
scaling. At the marginal MBL criticality, the depth of
the Clifford circuit grows with the system size logarith-
mically, so SCl ∼ lnL also follows the logarithmic scal-
ing. Typically the Clifford circuit generated by SBRG
can not provide a volume law entanglement scaling, be-
cause for an N -qubit system, there are only N stabilizers,
and most of them are localized. Therefore the volume law
entanglement (if any) can only come from the holographic
bulk as Sbulk ∼ L. But in that case, SCl is overwhelmed
by Sbulk so that the Clifford circuit is no longer a good
starting point to encode the volume-law state.

In the strong disorder limit, the bulk contribution Sbulk

can be neglected, and the EE can be estimated from the
Clifford circuit alone, i.e. SE ' SCl. It turns out that
the bipartite EE can be calculated efficiently for stabi-
lizer states,105 and the method is reviewed in Appendix
B. For each Clifford circuit generated by SBRG, we can
choose a subsystem of the length L and calculate the EE
associated to its reduced density matrix using the stabi-
lizer formalism. Then we repeat the calculation with the
entanglement cuts translated through out the system to
average over the disorder configuration. We also repeat
for many random realizations of the system to get more
reliable statistics.
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FIG. 16: Scaling of EE SE for various initial (J0,K0, h0) with
Γ0 = 1. L is the length of the subsystem for the EE measure-
ment. The points are marked out in the phase diagram Fig. 17
correspondingly. The shading denotes the confidence interval
of one standard deviation. The calculation is performed on a
256-site lattice with 50 random realizations. The small devi-
ation in the end is a finite size effect when the subsystem size
L approaching to the half-system size, i.e. log2 128 = 7.

Fig. 16 shows our numerical result for the quantum
Ising model in Eq. (11) with coupling coefficients drawn
from uniform initial distributions (at Γ0 = 1). At the
marginal MBL criticality (A, B and E), the EE follows
the logarithmic scaling:

SE(L) =
c′

3
lnL. (29)

where c′ is the effective central charge at the strong dis-
order fixed-point, which is related to the central charge
c of the same system in the clean limit by c′ = c ln 2.106

The point A(1, 0, 1) corresponds to a free Majorana chain
with c = 1/2. The point B(1, 1, 0) corresponds to two
free Majorana chains with c = 1. The point E(2, 1, 1)
is in between A and B, and corresponds to an inter-
acting Majorana chain with c = 1/2, because hi is a
relevant perturbation which always drives the two Majo-
rana chains into one. The corresponding effective central
charges c′ in all these cases agree with our numerical re-
sults as shown in Fig. 16.

In the MBL phase (C, F and G), the EE saturates
to the area law (which is a constant for the 1D system).
The point C(1, 0, 0) is deep in the SG phase, so its EE is
exactly 1bit (SE = ln 2) as expected for the Greenberger-
Horne-Zeilinger (GHZ)107 state of the large block spin (or
from the Majorana zero modes at the entanglement cuts).
The point G(0, 1, 1) is deep in the PM phase, so its EE
must vanish (SE = 0) because all the eigenstates are on-
site (atomic) direct product states. The point F (1, 1, 1) is
a generic point of the interacting Majorana chain, whose
EE will initially grow a little with L and quickly saturate
to the area law at a non-universal value. We can see that
all these cases can be handled by SBRG nicely.

� � � ���
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FIG. 17: Phase diagram of the quantum Ising model Eq. (11)

in ternary graph of (J̃0, K̃0, h̃0) ≡ (J0,K0, h0)1/Γ0 . The color
plot shows the half-system-size EE SE . The black curve traces
out the SG-PM phase boundary following the local maxi-
mal of SE . The colored points are labeled by their coordi-
nates (J0,K0, h0) as A(1, 0, 1), B(1, 1, 0), C(1, 0, 0), D(4, 1, 1),
E(2, 1, 1), F (1, 1, 1), G(0, 1, 1). The calculation is performed
on a 256-site lattice.

Because the EE diverges logarithmically along the
phase boundary between the two MBL phases, it can
be used to map out the phase diagram. We calculate
the half-system-size EE on a sufficiently large system
(256-site), and the result is shown in Fig. 17. The phase
boundary is traced out along the local maximum of the
EE in the phase diagram. It was also proposed in Ref. 26
to detect the phase boundary by the divergent EE fluc-
tuation. We also tried that method as well and obtained
basically the same phase diagram (not shown).
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D. Locality of the Effective Hamiltonian

At the end of SBRG flow, we arrived at the effective
Hamiltonian Heff of the emergent qubits τi in the holo-
graphic bulk.

Heff =
∑
i

εiτi+
∑
i<j

εijτiτj+
∑
i<j<k

εijkτiτjτk+ · · · , (30)

which can be considered as the RG transform of the ini-
tial physical Hamiltonian H to the 2nd order precision,

as Heff ' U†RGHURG. So how does Heff look like in the
holographic bulk? Is is still a local Hamiltonian? To an-
swer these questions, we must first assign the position to
each emergent qubit in the holographic bulk.

The position of each emergent qubit τi can be labeled
by (xi, εi), where xi is the real-space coordinate of the
qubit in the Clifford circuit in Fig. 9,117 and εi is the
energy scale associated to τi which is taken from the
single-body terms in Heff. It is reasonable to use the
qubit position in the Clifford circuit directly as the real-
space coordinate, because the Clifford circuit preserves
the real-space locality from the holographic boundary, as
it only contains at most ∼ lnL layers of local Clifford
gates. If one wishes to be more precise about the real-
space coordinate, one can map the emergent qubit back
to the stabilizer τ̂i on the holographic boundary, and use
certain center-of-mass coordinate of the stabilizer τ̂i as
the real-space coordinate for the emergent qubit. How-
ever center-of-mass method gives roughly the same co-
ordinate, because the qubit position method already en-
sures xi to fall in the real-space support of τ̂i and we
have demonstrated that τ̂i has nice locality in the MBL
system (in Fig. 14).
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FIG. 18: Effective Hamiltonian Heff in the holographic bulk
for (a) (J0,K0, h0) = (1, 1, 1) and (b) (J0,K0, h0) = (2, 1, 1)
on a 32-site lattice with periodic boundary condition. Each
black dot denotes an emergent qubit τi placed in the holo-
graphic bulk according to its energy scale εi. The 2-body
(3-body) terms in the effective Hamiltonian are represented
by the links (triangles) between the emergent qubits. The
darker object corresponds to the stronger interaction term in
Heff.

As we have pinned down the positions of the emergent

qubits τi, we can draw pictures of the effective Hamilto-
nian Heff in the holographic bulk. Two typical examples
are shown in Fig. 18, where the 2-body and 3-body terms
are shown respectively as the links and triangles among
τi. Fig. 18(a) shows an example in the MBL phase, which
demonstrates nice real-space locality: the links and tri-
angles are typically small, and there is no long object
stretching through out the system. Fig. 18(b) is an ex-
ample at the marginal MBL criticality, where the en-
ergy scale is extended much deeper into the IR limit, and
longer links/triangles are also observed, which is consis-
tent with the delocalization at the criticality. In both
pictures, we can see the strong links and strong triangles
tend to appear together in the same region, which im-
plies that there should be some correlation of the 2-body
terms with the 3-body and higher many-body terms in
Heff, as pointed out in Ref. 80 in a different context.
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FIG. 19: Norm of the 2-body energy coefficients εij as a func-
tion of the distance xij between the emergent qubits for (a)
(J0,K0, h0) = (1, 1, 1) in log-linear plot and (b) (J0,K0, h0) =
(2, 1, 1) in log-log plot. The calculation is performed on a 32-
site lattice with 1000 random realizations.

Now we will focus on the 2-body energy coefficients εij ,
and study their locality quantitatively. We classify the
εijτiτj terms in the effective Hamiltonian Heff by their
real-space distances |xi − xj |, and calculate their Frobe-
nius norm as a function of the distance,

‖εij‖(xij) =

√ ∑
|xi−xj |=xij

ε2ij . (31)

It is verified that the norm decays exponentially

‖εij‖ ∼ e−xij/ξ (32)

with the real-space distance xij in the MBL phase as
shown in Fig. 19(a), which was also proposed in Ref. 21–
23. The real-space decay of ‖εij‖ is related to the loga-
rithmic growth of EE after a global quench in the MBL
system,11,22 as S(t) = s∞ξ ln(J0t), which is an MBL in-
trinsic phenomenon that is not present in the Anderson
localization. At the marginal MBL criticality, the norm
follows a power-law behavior ‖εij‖ ∼ x−αij as is shown in

Fig. 19(b).
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E. Holographic Hamiltonian

To further study the entanglement structure among
the emergent qubits, we map the initial physical Hamil-
tonian from the holographic boundary into the bulk by
the Clifford circuit, and define the bulk Hamiltonian as
the holographic Hamiltonian Hhol,

Hhol = U†ClHUCl. (33)

The holographic Hamiltonian Hhol acts on the emergent
qubits in the holographic bulk. Because the unitary
transform UCl can be carried out exactly, Hhol has ex-
actly the same spectrum as H, and its energy eigenstates
are the corresponding exact eigenstates of H mapped into
the holographic bulk by the Clifford circuit UCl.

Because UCl does not exactly diagonalize the Hamilto-
nian H, Hhol contains off-diagonal terms, which give rise
to the entanglement among the emergent qubits in the
bulk eigenstates of Hhol. The portion of the off-diagonal
terms in the holographic Hamiltonian Hhol can be mea-
sured from the following ratio:

Tr(Hhol − diagHhol)
2

TrH2
hol

=
δE2

E2
, (34)

where diagHhol ≡
∑
{τi} |{τi}〉〈{τi}|Hhol|{τi}〉〈{τi}| de-

notes the diagonal part of Hhol, and on the right-hand-
side, δE2 and E2 are respectively the same as Eq. (24)

and Eq. (25). We have checked this ratio δE2/E2 in
Fig. 11, and verified that the off-diagonal term does not
dominate the holographic Hamiltonian Hhol for MBL sys-
tems.

To discover the geometry in the holographic bulk, one
can in principle diagonalize Hhol and study the mutual
information Iij between two emergent qubits τi and τj
on the eigenstate,

Iij = Si + Sj − Sij , (35)

where Si (Sj) is the EE of each single qubit, and Sij is the
EE for both qubits. Then the distance dij between two
qubits can be defined following the proposal in Ref. 81,82,

dij = −ξ ln
Iij
I0
, (36)

where I0 = 2 ln 2 is the maximal mutual information
between two qubits. In the strong disorder limit, the
holographic Hamiltonian Hhol becomes diagonal, and its
diagonal terms also coincide with the effective Hamilto-
nian Heff. In this limit, the emergent qubits are disen-
tangled from each other, so they are infinitely far from
each other, and the bulk space is fragmented into isolated
points.80 Away form the strong disorder limit, the off-
diagonal terms in Hhol start to grow (see Fig. 11), which
leads to the resonance between the emergent conserved
quantities and the entanglement among the bulk qubits.
From the geometry perspective, the emergent qubits are
getting closer to each other, as if the space is contracting.
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FIG. 20: Pictures of the off-diagonal terms in the holo-
graphic Hamiltonian Hhol for (a) (J0,K0, h0) = (1, 1, 1) and
(b) (J0,K0, h0) = (2, 1, 1) on a 32-site lattice with periodic
boundary condition. Each black dot denotes an emergent
qubit τi in the holographic bulk. The off-diagonal terms of
2-qubit (3-qubit) resonances are represented by the links (tri-
angles) between the emergent qubits. The darker object cor-
responds to the stronger off-diagonal term in Hhol.

To gain more intuition, we draw the off-diagonal terms
of Hhol in the holographic bulk for both the MBL
Fig. 20(a) and the marginal MBL Fig. 20(b) systems. The
off-diagonal terms create the spacial connectivity in the
holographic bulk and drives the emergent qubits closer
to each other. In Fig. 20(b) one can also observe a darker
resonant cluster90 around xi ∼ 16, in which the qubits
are connected by more and stronger off-diagonal terms.
We suspect that such regions are closer to thermalization.
It is conceivable that if Hhol is dominated by the off-
diagonal terms in a local region of the holographic bulk,
the Hamiltonian in that region will look like a random
matrix, and the corresponding eigenstates will look like
random states,45 therefore the region is locally thermal-
ized. In the thermalized region, the geometry becomes
non-local as every qubit is almost maximally entangled
with the rest of the qubits in the region. Therefore the
thermalized region can also be viewed as a small black-
hole in the holographic bulk.108,109 In the MBL-ETH
transition, small blackholes will first emerge from the UV
region, and then merge into larger blackholes. When a
large blackhole covers the IR region, the whole system
will be thermalized, since the low-frequency physics is
then dominated by the ETH phase.110 The above bulk
scenario is dual to ergodic puddle percolation on the holo-
graphic boundary, which was proposed in Ref. 34,89,90.

SBRG approach will break down in the local ther-
malized region, where the holographic Hamiltonian Hhol

is dominated by strong off-diagonal resonances among
the emergent qubits. One key assumption of SBRG is
that there exists a set of local quasi-conserved quantities
in the MBL system which will not resonate with each
other due to their different energy scales, so that the
off-diagonal terms can be treated by non-degenerate per-
turbation. Thus if we found that the off-diagonal terms
actually dominate Hhol after SBRG calculation, it would
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imply that the assumption fails and the RG result is
not reliable. In that case, the emergent qubits found
by SBRG in the local thermalized region are no longer
quasi-conserved quantities.

Towards thermalization, SBRG becomes not only in-
accurate, but also inefficient. Consider a local thermal-
ized region, in which the Hamiltonian H is dominated
by the off-diagonal terms, the 2nd order perturbation
H0 + Σ→ H0 − 1

2ΣH−1
0 Σ in Eq. (6) will roughly square

the number of terms in H at each RG step. As a result,
the number of Hamiltonian terms in the local thermal-
ized region will grow super-exponentially with the RG
flow. The computation complexity of each SBRG step is
proportional to the number of Hamiltonian terms, so the
RG will quickly get stuck at the boundary of the local
thermalized region (also the horizon of the small black-
hole) due to the fast growth of the complexity. Although
SBRG can not approach the ETH phase, we can still
observe indications of local thermalizations in the MBL
phase from the increasing off-diagonal resonances in Hhol

or from the growth of the Hamiltonian terms along the
RG flow.

V. SUMMARY AND DISCUSSION

In summary, we have demonstrated that SBRG is
an efficient numerical method to study the MBL (or
marginal MBL) systems. The full energy spectrum and
all the many-body eigenstates of an MBL system can be
approximately found with an algorithm complexity that
scales linearly with the system size, which is much more
efficient than the ED method which has an exponential
complexity. Although we have only explored 1D mod-
els in this work as examples, the general formalism of
SBRG is readily applicable to higher dimensional mod-
els on any lattice. The accuracy of SBRG is controlled
by the randomness of the system. We have shown that,
deep in the MBL phase, SBRG flows to the strong disor-
der limit and becomes asymptotically exact. However, as
we tune the system towards the ETH phase, SBRG will
be more and more inaccurate and inefficient. Although
SBRG fails to approach the ETH phase and the ther-
malization transition, we can still use it to identify small
locally thermalized regions in the MBL phase. Neverthe-
less, the MBL-ETH transition can be described by other
RG schemes beyond SBRG, such as the phenomenologi-
cal RSRG89,90 based on merging the locally thermalized
regions. Ref. 34 further points out that both the MBL
and the ETH states can be modeled on the classical level
by Clifford circuits. It is interesting to note that the
Clifford circuit is naturally generated by SBRG as the
classical approximation of the EHM circuit to describe
the MBL states. Whether it is possible to design the RG
scheme that generates the ergodic Clifford circuit for the
ETH state is another interesting problem to explore.

As a Hilbert-space-preserving RG scheme, SBRG can
also be interpreted as a realization of the holographic

duality. More precisely, an Clifford circuit can be con-
structed from SBRG flow, which maps the MBL system
from the holographic boundary to the bulk. It turns
out that the holographic bulk degrees of freedom are
the emergent conserved quantities τi of the MBL system
which are (approximately) governed by the MBL fixed-
point Hamiltonian Heff =

∑
i εiτi +

∑
ij εijτiτj + · · · . In

the strong disorder limit, the degrees of freedoms in the
holographic bulk are disentangled, and the spacial geom-
etry is fragmented. Away from the strong disorder limit,
we can show that the locally-thermalized regions emerge
in the MBL state, which may be interpreted as the small
blackhole formation in the holographic bulk. However,
under the present SBRG scheme, the emergent locality
along the energy scale can not be observed, and very
strong UV-IR mixing prevails in the holographic bulk.
We think it is because that each bulk qubit is renormal-
ized independently and abruptly in one RG step, such
that the entanglement between the UV and the IR qubits
can not be efficiently removed. It will be desirable to im-
prove the RG scheme such that all qubits are renormal-
ized jointly and the Hamiltonian is diagonalized gradu-
ally by small unitary transforms.

Note: During the completion of this manuscript, we
become aware of a similar work111 by L. Rademaker,
which introduces a different RG scheme that also finds
the emergent conserved quantities of the MBL systems by
consecutive unitary transforms of the Hamiltonian. The
difference is that we keep all orders of interaction terms
but treat the off-diagonal resonance perturbatively, while
there the resonance is solved exactly but the higher order
interactions are truncated.
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Appendix A: Technical Details of SBRG

1. Clifford Group Rotations

For our purpose, we generate the Clifford group by the
C4 rotation RC4 (like π

4 phase gate) and the swap gate

RSWAP. The C4 rotation is defined by its generator σ[µ]

as

RC4(σ
[µ]) ≡ exp

( iπ

4
σ[µ]

)
=

1√
2

(1 + iσ[µ]). (A1)

Its adjoint action on a matrix σ[ν] is given by

σ[ν] →R†C4(σ
[µ])σ[ν]RC4(σ

[µ])

=

{
σ[ν] if σ[µ], σ[ν] commute,

iσ[ν]σ[µ] if σ[µ], σ[ν] anti-commute.

(A2)

The swap gate is specified by i↔ j, where i and j label
the two qubits to be exchanged. For example, on the
two-qubit level

RSWAP(1↔ 2) =
1

2
(σ00 + σ11 + σ22 + σ33), (A3)

which can be generalized to any pair of qubits straightfor-
wardly. The adjoint action of the swap gate RSWAP(i ↔
j) on a matrix σ[µ] is simply exchanging the indices
µi ↔ µj in [µ]. One can see that both the C4 rotation
and the swap gate can be implemented efficiently on the
algebraic level by manipulating the Pauli indices of the
matrices. In SBRG algorithm, the Hamiltonian is never
spelt out as a matrix (not even as a sparse matrix), all we
kept is a table of coefficients h[µ] (the coefficient in front

of the matrix σ[µ]). The Clifford group rotations is im-
plemented on the index [µ] (with a possible sign change
of h[µ] when needed).

According to Eq. (A2), if we want to bring a matrix
σ[ν] to another matrix σ[µ] which anti-commutes with
the original one, we just need to perform one C4 rotation
RC4(iσ

[µ]σ[ν]):

σ[ν] RC4(iσ
[µ]σ[ν])−−−−−−−−−→ σ[µ] (A4)

However, if we want to bring a matrix σ[ν] to a com-
muting matrix σ[µ], we can find an intermediate matrix
σ[α] which anti-commutes with both σ[ν] and σ[µ], and
perform two consecutive C4 rotations, which we called a
double-C4 rotation,

σ[ν] RC4(iσ
[α]σ[ν])−−−−−−−−−→ σ[α] RC4(iσ

[µ]σ[α])−−−−−−−−−→ σ[µ]. (A5)

Finally if the certain Pauli indices of a matrix do not
appear at the position that we want, we can use the swap
gate to permute the indices to the intended position.

With these, we come up with the following protocol
to rotate σ[λ][µ] (λ = 0, 3 and µ = 0, 1, 2, 3) to the block
diagonal form σ[0··· ]3[0··· ]:

• If [µ] contains the index 1 or 2, such as σ[λ]1[ν] or
σ[λ]2[ν] (ν = 0, 1, 2, 3): rotate that index to 3 while
eliminating other index to 0 by a C4 rotation as

σ[λ]1[ν] RC4(−σ[λ]2[ν])−−−−−−−−−→ σ[0··· ]3[0··· ],

σ[λ]2[ν] RC4(σ
[λ]1[ν])−−−−−−−−→ σ[0··· ]3[0··· ],

(A6)

then move this index 3 to the intent qubit position
by a swap gate if necessary.

• Else if [µ] has no index of 1 or 2, but the index 3
exists:

– If there are multiple indices of 3 in [λ][µ]: we
need to perform the double-C4 rotation:

∗ If there is an index 3 right at the intent
qubit position, such as σ[λ]3[κ] (κ = 0, 3):
the double-C4 rotation goes as

σ[λ]3[κ] RC4(σ
[λ]2[κ])−−−−−−−−→ σ[0··· ]1[0··· ]

RC4(−σ[0··· ]2[0··· ])−−−−−−−−−−−−→ σ[0··· ]3[0··· ].

(A7)

∗ Else the intent qubit position must host
the index 0: then find the last qubit po-
sition of index 3, and perform the above
double-C4 rotation at that position, and
finally use a swap gate to bring that qubit
to the intent position.

– Else there is only one index 3 in [µ]: just use
a swap gate to bring that qubit to the intent
position.

• Else [µ] is [0 · · · ]: no Clifford group rotation needed.
In fact, such matrix σ[λ][0··· ] should have already
been ascribed to the effective Hamiltonian and
should not actually appear in the residual Hamil-
tonian.

At the end of SBRG flow, the Hamiltonian is diag-
onalized, and all the emergent conserved quantities are
identified as the emergent qubits in the holographic bulk.
Each emergent qubit τi is positioned by both its real-
space coordinate xi and its energy scale εi. Following the
above protocol, the emergent qubits τi will be arranged
(roughly) by their energy scales εi, i.e. ε1 & ε2 & · · · .
This has the advantage of improving the algorithm ef-
ficiency, because the physical and the emergent Hilbert
spaces can be easily separated. However the real-space
locality is lost, as the real-space coordinates xi are scram-
bled by the swap gates. For many physical applications,
it is more desired to reorder the emergent qubits τi by
their real-space coordinates xi. To restore the real-space
locality, we simply need to push all the swap gates out
of the Clifford circuit, and apply them to the emergent
qubits to bring the qubits back to the real-space ordering.
When the swap gate passes through a C4 gate, the Pauli
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indices of the C4 generator should be swapped accord-
ingly. In this paper, we always assume that the real-space
locality is restored after SBRG flow, and τi are ordered
by their real-space coordinates xi = i. Under this imple-
mentation, the Clifford circuit will only contain the C4

rotations and no swap gate.

2. Schrieffer-Wolff Transformations

Consider the Hamiltonian H = H0 + ∆ + Σ, where
H0 = h3σ

3[0··· ] is the leading energy scale in the block-
diagonal form, ∆ is the rest of the diagonal block

∆ =
∑
λ=0,3

∑
[µ]

hλ[µ]σ
λ[µ], (A8)

and Σ is the off-diagonal block

Σ =
∑
ν=1,2

∑
[µ]

hν[µ]σ
ν[µ]. (A9)

The matrices H0, ∆ and Σ are all Hermitian, and satisfy

H2
0 = h2

3, H0∆ = ∆H0, H0Σ = −ΣH0. (A10)

We can eliminate the off-diagonal block to the 2nd order
in hν[µ]/h3 by the Schrieffer-Wolff transformation H →
S†HS, where

S = exp
(
− 1

2h2
3

H0Σ
)

= 1− 1

2h2
3

H0Σ− 1

8h2
3

Σ2 + · · · .
(A11)

Using the properties in Eq. (A10), it is straightforward
to verify that to the 2nd order perturbation we have

H → S†HS

' H0 + ∆ +
1

2h2
3

H0Σ2 +
1

2h2
3

H0[Σ,∆].
(A12)

The first three terms are block-diagonal, and the last
term is block-off-diagonal, which can be checked by ex-
aming their commutation relations with H0. We simply
project out the block-off-diagonal part H0[Σ,∆]/(2h2

3).
Although it is a 2nd order term, but if we further ro-
tate it to the diagonal block, it will only produce a 4th
order correction to the diagonal block, which is negligi-
ble. Therefore we end up with the 2nd order effective
Hamiltonian in Eq. (6) after the Schrieffer-Wolff trans-
formation.

Since the 2nd order perturbation H0Σ2/(2h2
3) will gen-

erate many terms and cause the Hamiltonian to grow.
So in order to prevent the uncontrolled growth of the
Hamiltonian that may crash SBRG program on the com-
puter, we need to control the growth rate by truncating
the small terms generated in the 2nd order perturbation.
In practice, we first set a maximum growth rate r (say

r = 2). In each RG step, we count the number of terms in
Σ and denote it asNΣ, then we only keep the leading rNΣ

terms in H0Σ2/(2h2
3) and discard the rest of the smaller

terms. In this way, the Hamiltonian will not grow too
fast, and the complexity of the algorithm is controlled.
The truncated terms can be collected for the error esti-
mation afterward. We found that deep in the MBL phase
very few terms are truncated, but around the marginal
MBL critically more terms will be truncated. One can
also adjust the maximum growth rate r to see if SBRG
result converges in the r → ∞ limit. We found that
in most of the cases, r = 2 is already good enough to
converge the Clifford circuit generated by SBRG.

Appendix B: Entanglement Entropy of Stabilizer
States

Let S = {τ̂i} be the set of emergent conserved quanti-
ties represented in the original physical Hilbert space (as
Pauli operators). Then every energy eigenstate in the
MBL spectrum can be approximated by a state |Ψ{τi}〉
stabilized by S as ∀i : τ̂i|Ψ{τi}〉 = τi|Ψ{τi}〉. In the
quantum information terminology, S is a complete set of
stabilizers, and |Ψ{τi}〉 is a stabilizer state.

The bipartite EE of a stabilizer state can be calcu-
lated by the highly efficient method developed in Ref. 105,
which will be briefly reviewed here. Suppose we are in-
terested in the EE SA in a subsystem A of the state
|Ψ{τi}〉:43

SA = −Tr ρA log2 ρA,

ρA = TrĀ |Ψ{τi}〉〈Ψ{τi}|,
(B1)

where Ā denotes the complement of A. We can first clas-
sify the stabilizers τ̂i into three sets: the stabilizers only
supported in A as SA = TrĀS, the stabilizers only sup-
ported in Ā as SĀ = TrAS, and the rest of the stabilizers
supported in both A and Ā as SAĀ = S−SA −SĀ.

The EE is fully determined by SAĀ. Because SAĀ

contains all the stabilizers that would be broken by the
entanglement cut, and thus can not be used to stabilize
the state in A (or in Ā), which gives rise to the entropy
as the state in the subsystem can not be fully deter-
mined. Naively the EE would just be proportional to
the number of stabilizers in SAĀ, however this idea must
be refined, because some stabilizers in SAĀ are actually
hidden stabilizers which can be localized to either A or
Ā by multiplication with other stabilizers, and hence not
contributing to the EE.

To reveal the hidden stabilizers in SAĀ, we can rewrite

each stabilizer τ̂i ∈ SAĀ as a direct product τ̂i = τ̂Ai ⊗ τ̂ Āi
explicitly, where τ̂

A(Ā)
i is the part of the Pauli operator

τ̂i that is supported only in A (Ā). Then τ̂Ai may not be
commuting with each other, and the statement is that
the hidden stabilizers are in one-to-one correspondence
to the center of the Pauli group generated by τ̂Ai .
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To reveal the center, we can first construct the matrix
M of anti-commutativity among the operators {τ̂Ai },

∀τ̂i, τ̂j ∈ SAĀ :

Mij =

{
1 if τ̂Ai τ̂

A
j = −τ̂Aj τ̂Ai ,

0 otherwise.

(B2)

It can be shown that the center corresponds to the null
space (the kernel) of the integer matrix M modulo 2.
Because the null space basis are hidden stabilizers that

will not contribute to the EE, so the nullity must be
subtracted, and the EE (in unit of bit) is given by the
Z2-rank of M

SA =
1

2
rankM (over Z2). (B3)

The Z2-rank of a matrix can be found using Gaussian
elimination, and the EE can be simply calculated from
the algebraic structure of the stabilizers.
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