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We present a scaling law for the energy and speed of transition waves in dissipative and diffusive
media. By considering uniform discrete lattices and continuous solids, we show that – for arbitrary
highly-nonlinear many-body interactions and multi-stable on-site potentials – the kinetic energy per
density transported by a planar transition wave front always exhibits linear scaling with wave speed
and the ratio of energy difference to interface mobility between the two phases. We confirm that
the resulting linear superposition applies to highly-nonlinear examples from particle to continuum
mechanics.

I. INTRODUCTION

Phase or domain boundaries are common in physical
systems whose non-convex potential energy admits more
than one stable equilibrium state. Under external loads,
those interfaces move, thereby producing a kink tran-
sition wave whose propagation gradually switches the
system locally from one stable configuration into an-
other. This process is observed in a myriad of physi-
cal systems spanning length and time scales from atom-
istics to macroscopic structures. Based on the nature
of the physical process, such systems are characterized
as non- or weakly-dissipative, dissipative, or diffusive.
Non- or weakly-dissipative models have been used to ex-
plain phenomena such as dislocation motion1, ferromag-
netic domain wall motion2, proton mobility in hydrogen-
bonded chains3, rotation of DNA bases4, chains of rotat-
ing pendula5, dynamics of CNT foams6,7 or lattices of
bistable buckled, elastic structures8. By contrast, diffu-
sive or dissipative kinetics play an essential role in de-
scribing the physics of, e.g., ferroelectric domain switch-
ing9, magnetic flux propagation in Josephson junctions
with tunneling losses10, pulse propagation in cardiophys-
iology11 and neurophysiology12, sliding friction13, chem-
ical surface adsorption14, under-damped commensurate
phase transitions15, or defect conductivity in super-ionic
conductors16. Although numerous theoretical studies
have been devoted to characterizing the motion of phase
boundaries particularly in 1D periodic physical, chemical
or biological systems, see e.g.17–24 and references therein,
the lessons learned almost exclusively apply to special
cases only, owing to the variety of nonlinear interaction
potentials and non-convex on-site potentials. Here, we
present a surprisingly simple universal energy law that
applies to diffusive and dissipative systems and uniquely
links the speed and profile of transition waves to the en-
ergetics and kinetics of the periodic system.

All of the above examples of diffusive and dissipative
systems, including continuous and discrete systems, es-
sentially reduce to the same type of governing equation
that describes the nonlinear wave motion. For the dis-
crete case, this may be interpreted as the equations of
motion of a periodic 1D array of N elements whose dis-

placements un(t) at time t satisfy (for n = 1, . . . , N)

mun,tt + αun,t + φ′(un)

−
Nb∑
j=1

[
V ′j

(
un+j − un

ja

)
− V ′j

(
un − un−j

ja

)]
= 0,

(1)

where m is the mass of each element, V denotes a nonlin-
ear interaction potential (assuming long-range pairwise
interactions), Nb represents the number of neighbor in-
teractions, φ is the (multi-stable, i.e., non-convex) on-
site potential and a introduces the equilibrium spacing
between masses with primes and variables in indices de-
noting partial derivatives.

The analogous continuous governing equation, as we
will show, is obtained by taking the continuum limit
of (1) as a → 0. Replacing discrete variables un by the
continuous field u(x, t) such that un(t) = u(na, t) leads
to the continuous governing equation

ρ u,tt + γ u,t + ψ′(u)−
Nb∑
j=1

j u,xxV
′′
j (u,x) = 0, (2)

with mass density ρ and rescaled damping parameter γ
and non-convex potential ψ. The aforementioned phys-
ical, chemical, or biological systems reduce to either (1)
or (2).

As in most of the examples, we consider velocity-
proportional damping characterized by the dissipation
parameter α > 0 for the discrete case or γ > 0 for the
continuum. For a non- or weakly-dissipative system,
the damping term is negligible compared to the iner-
tial term (|mun,tt| � |αun,t| or |ρu,tt| � |γu,t|). The en-
ergy transport in such systems is described well by its
Hamiltonian which remains approximately constant as
the wave propagates. However, energy transport in
dissipative (|mun,tt| ∼ |αun,t| or |ρu,tt| ∼ |γu,t|)) or dif-
fusive lattices (|mun,tt| � |αun,t| or |ρu,tt| � |γu,t|)) is
not well understood at present. Therefore, in this paper,
we focus on the dynamics of diffusive and dissipative sys-
tems and derive an explicit energy transport law for such
systems. We show that the law holds for both discrete
and continuous systems.
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II. THEORETICAL ANALYSIS

Transition waves, i.e., the motion of phase boundaries
in multi-stable lattices, is commonly characterized by
a steady-state wave form that propagates through the
medium with kinetic energy concentrated in the moving
wave front. That is, away from the moving phase bound-
ary, the system attains an equilibrium in one of the stable
energy wells of φ. Let us begin by studying the propaga-
tion of transition waves in discrete lattice systems with
governing equations of the form (1). Next, we will de-
rive the continuum limit (2) from (1) and show that the
kinetic energy transport in both types of systems is gov-
erned by the same energy scaling law.

A. Energy transport in discrete lattices

We begin by assuming a traveling wave solution of the
form un(t) = u(na− vt) = u(ξ) so that (1) becomes

mv2u,ξξ − vαu,ξ + φ′(u)

−
Nb∑
j=1

[
V ′j

(
u(ξ+ja)−u(ξ)

ja

)
− V ′j

(
u(ξ)−u(ξ−ja)

ja

)]
= 0.

(3)

Multiplying by u,ξ and integrating over the real axis gives∫ ∞
−∞

[
mv2u,ξξ − vαu,ξ + φ′(u)

]
u,ξ dξ

=

Nb∑
j=1

∫ ∞
−∞

[
V ′j

(
u(ξ+ja)−u(ξ)

ja

)
− V ′j

(
u(ξ)−u(ξ−ja)

ja

)]
u,ξ dξ.

(4)

Let us first examine an individual integral on the right-
hand side. Define η = ξ − ja and redefine the integral
with respect to η in the second term, thereby transform-
ing the right-hand side terms into

Fj =

∫ ∞
−∞

[
V ′j

(
u(ξ+ja)−u(ξ)

ja

)
− V ′j

(
u(ξ)−u(ξ−ja)

ja

)]
u,ξ dξ

=

∫ ∞
−∞

V ′j

(
u(ξ+ja)−u(ξ)

ja

)
u,ξ(ξ)dξ

−
∫ ∞
−∞

V ′j

(
u(η+ja)−u(η)

ja

)
u,ξ(η + ja)dη.

(5)

By changing the dummy variable η back to ξ, and defin-

ing z = u(ξ+ja)−u(ξ)
ja with dz =

u,ξ(ξ+ja)−u,ξ(ξ)
ja dξ, (5)

reduces to

Fj = −ja
∫ z(ξ→∞)

z(ξ→−∞)

V ′j (z)dz. (6)

Now, since the system is dissipative or dispersive, we
assume that the wave profile reaches a steady state and,

in particular, as t → ∞ (or ξ → −∞) we have u(ξ +
ja) − u(ξ) → 0 and z(ξ) → 0. Analogously, since the
system is initially at rest, we know u(ξ + ja) − u(ξ) →
0 and z(ξ) → 0 as t → −∞ (or ξ → ∞). Thus, the
system is in equilibrium and unstretched far from the
wave front, in the sense that both particle velocity and
relative displacement vanish in the remote fields, ahead
of and behind the kink. Therefore, we must have Fj = 0.

By a similar argument, the integral of the inertial term
on the left-hand side of (4) goes to zero.

If the transition wave switches the state variable from
the initial value ui = limξ→∞ u(ξ) to the final value
uf = limξ→−∞ u(ξ), then the on-site potential contri-
bution becomes∫ ∞

−∞
φ′(u)u,ξ dξ = φ(ui)− φ(uf ) = ∆φ. (7)

Therefore (4) becomes

v

∫ ∞
−∞

u2
,ξ dξ =

∆φ

α
=

∆ψ

γ
. (8)

where we introduced ψ = φ/a and γ = α/a as the on-site
potential per length and linear damping per length, re-
spectively. As we will show in the continuous case below,
γ, ψ = O(1) as a → 0. For large wave widths w � a,
the total transported kinetic energy per mass density
ρ = m/a of the discrete lattice is given by

Ed =
∑
i

1

2
u2
i,t a = v2

∑
i

1

2
u2
i,ξ a ≈

v2

2

∫ ∞
−∞

u2
,ξ dξ . (9)

Combining (8) and (9) gives a simple result for the trans-
ported energy as

Ed
v
' ∆ψ

2γ
. (10)

Therefore, for a diffusive or dissipative lattice the ratio
of the transported kinetic energy per density to the wave
speed depends only and linearly upon the ratio of the
change in the on-site potential energy to the dissipation
parameter.

B. Energy transport in continuous systems

Let us first derive the continuum limit (2) of the dis-
crete equation (1). We consider a lattice made up of N
nodes with constant spacing a. Therefore, the macro-
scopic total length is L = (N − 1)a. In the continuum
limit, we let N → ∞ while keeping the macroscopic
length L fixed. Therefore a→ 0 and, as N � 1, L ' Na.
In the continuum limit of a→ 0, we first introduce Taylor
expansions for un+j for each interaction potential term,
which gives

V ′j

(
un+j − un

ja

)
= V ′j (u,x) +

ja

2
u,xxV

′′
j (u,x) +O(a2).
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Insertion into (1) and division by a results in

ρv2u,ξξ −
Nb∑
j=1

j V ′′j (u,ξ)u,ξξ +O(a)− vα
a
u,ξ +

1

a
φ′(u) = 0,

where ρ = m/a is the mass density. When transitioning
from a discrete lattice to a continuum, certain macro-
scopic quantities should remain finite or of O(1) for phys-
ical reasons (otherwise, the continuum limit is physically
nonsensical). As L is kept fixed and independent of a,
we have L = O(1). This results in the following scalings:

(i) The total (macroscopic) mass M must remain finite
and constant:

M = mN ∼ O(1) ⇒ ρ = m/a = M/L ∼ O(1). (11)

Hence, the mass density remains finite and constant.
(ii) The macroscopic energy density of the on-site po-

tential well must remain finite:

N∑
i=1

φ(ui) = 1
a

∫ L

0

φ(u) dx ∼ O(1) ⇒ φ(u)/a ∼ O(1),

(12)

which directly leads to the conclusion that the forcing
function should vary such that ψ′(u) = φ′(u)/a ∼ O(1).

(iii) The macroscopic dissipation potential must re-
main finite:

N∑
i=1

1

2
αu2

i,t =
α

a

∫ L

0

1

2
u2
,t dx ∼ O(1) ⇒ α/a ∼ O(1).

(13)
Hence, we define γ = α/a ∼ O(1) which must remain
finite in the continuum limit.

Overall, we thus obtain the continuum balance equa-
tion (2):

ρu,tt −
Nb∑
j=1

j V ′′j (u,x)u,xx + γu,t + ψ′(u) = 0. (14)

Now, assuming a traveling wave solution of the form
u(x, t) = u(x − vt) = u(ξ) and substituting in (14), we
obtain

ρv2u,ξξ −
Nb∑
j=1

j V ′′j (u,ξ)u,ξξ − vγu,ξ + ψ′(u) = 0. (15)

Multiplying by u,ξ and integrating over the real axis gives

∫ ∞
−∞

ρv2 −
Nb∑
j=1

jV ′′j (u,ξ)

u,ξu,ξξ dξ

+

∫ ∞
−∞

ψ′(u)u,ξ dξ = vγ

∫ ∞
−∞

u2
,ξ dξ.

(16)

Without loss of generality, we assume that v > 0 (the
wave travels in the positive direction) and the system is

diffusive or dissipative. Like in the discrete case, we as-
sume that the wave profile reaches a steady state, and the
particle velocity and strain vanish in the remote fields,
ahead of and behind the kink, leading, again, to the con-
clusion that u,ξ → 0 as ξ → ±∞. Consequently, we see
that ∫ ∞

−∞

ρv2 −
Nb∑
j=1

jV ′′j (u,ξ)

u,ξ
du,ξ
dξ

dξ = 0. (17)

If the transition wave switches the state variable from
the initial value ui = limξ→∞ u(ξ) to the final value
uf = limξ→−∞ u(ξ), then the on-site potential contri-
bution becomes∫ ∞

−∞
ψ′(u)u,ξ dξ = ψ(ui)− ψ(uf ) = ∆ψ (18)

and (16) reduces to the simple relation

∆ψ = vγ

∫ ∞
−∞

u2
,ξ dξ, (19)

which can be linked to the total kinetic energy per density
ρ transported by the transition wave, viz.

E =

∫ ∞
−∞

1

2
u2
,tdx =

1

2
v2

∫ ∞
−∞

u2
,ξ dξ. (20)

By combining (19) and (20), we arrive at the universal
scaling law

E

v
=

∆ψ

2γ
, (21)

which agrees with (10) for large wave widths (Ed ≈ E).

C. Results

As shown above, the energy transport in diffusive or
dissipative continua in discrete lattices and continuous
media obey the same scaling law, viz. that the ratio of
the transported kinetic energy per density to the wave
speed is linearly proportional to the ratio of the change in
the on-site potential energy to the dissipation parameter.
We note that even in the limit ρ → 0 the kinetic energy
per unit density, E (or Ed in the discrete case), remains
a finite quantity, so the law (21) applies, as long as the
system response remains a traveling kink. Quantity E
(or Ed) can be obtained experimentally from the particle
velocities (or two snapshots from subsequent time steps).

Some of the remarkable features of this scaling law
are: (i) The inter-particle forcing does not affect the ra-
tio, i.e., the above law holds for any nonlinear interaction
potential V . (ii) The law is independent of the number
of interacting neighbors, Nb. (iii) It is independent of
the topology of the on-site potential φ but depends only
on the difference ∆ψ between the initial and final energy
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of a bi-stable transition. (iv) For E > 0, we must have
∆ψ > 0; i.e., stable mobile transition waves can only
occur when switching from higher to lower potential en-
ergy. (v) The scaling law is linear despite the governing
equations being highly nonlinear. This suggests that in
the case of multi-well transitions, the transported energy
must follow from linear superposition of the individual
two-well transitions. The law can also be interpreted as
follows. The ratio of kinetic energy per unit density to
the velocity is also the ratio of energy to momentum den-
sity. Therefore, the transition wave can be thought of as
a localized quasi-particle with its energy scaling to its
momentum density according to (21).

Finally, note that we assumed linear damping and the
existence of a traveling wave solution. Both assumptions
may have to be relaxed depending on the specific features
of the system of interest (see the discussion in subsequent
sections).

III. NUMERICAL SIMULATIONS

For numerical purposes, dimensionless forms are ob-
tained by normalization using the characteristic length
(φ0/k0)1/2, time α/k0, and force (φ0k0)1/2, where we
defined φ0 = ∆φ/2 and the initial stiffness of particle
interactions, k0 = φ′′(0)/2. By dividing (1) by the char-
acteristic force and normalizing all variables, we arrive
at

m̄ ūn,t̄t̄ + ᾱ ūn,t̄ + φ̄′(ūn)

−
Nb∑
j=1

[
V̄ ′j

(
ūn+j − ūn

jā

)
− V̄ ′j

(
ūn − ūn−j

jā

)]
= 0,

(22)

where the overbars represent normalized quantities and
m̄ = mk0/α

2, ᾱ = 1. The choice of the normalization
parameters implies that ∆φ̄ = ∆φ/φ0 = 2 and thus
∆ψ̄/γ̄ = 2. Therefore, the energy law reduces to

Ē/v̄ = 1. (23)

For convenience, we omit the overbars in the subsequent
numerical examples.

To verify the theoretical predictions, simulations were
performed on a periodic chain of 600 particles which are
governed by a variety of interaction potentials V and
multi-stable on-site potentials ψ. The lattice is initially
unstretched and at rest and loaded by displacing the left-
most particle until it transitions from one stable potential
well into another. The right-most particle is held fixed.
The lattice response is computed by Newmark-β implicit
time integration. After assuming a steady state, the ve-
locity and energy of the wave remain constant over time,
as shown in the example of Fig. 1.

In particular, we simulated diffusive and dissipative
chains of particles exposed to the same fourth-order
polynomial bistable on-site potential of Fig. 1(a) with
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FIG. 1. Example of a moving transition wave: (a) bistable
topology of the on-site potential ψ with minima at u = 0 and
u = 2; (b) resulting transition wave profile (displacement vs.
position); (c) evolution of the kinetic energy per density vs.
time (the kinetic energy stabilizes at a constant value once
the kink assumes a steady waveform); (d) contour plot of the
wave propagation in x-t-form. The phase boundary moves at
a constant velocity once it assumes a steady kink waveform.

the following interaction potentials motivated by the
introductory examples: (a) linear elastic springs as
in the classical Frenkel-Kontorova model of dislocation
motion1: V ′(u) = F0u/a (with F0 = 100 and a = 1),
(b) Coulombic interactions between charged particles25:
V ′(u) = F0(u/a+ 1)−2 (with F0 = 0.0015625 and a =
8), (c) dipole-dipole interactions in a chain of mag-
nets: V ′(u) = F0(u/a + 1)−4 with (F0 = 0.016 and
a = 5), (d) nonlinear Toda interactions describing,
among others, charge density waves26: V ′(u) = F0(1 −
e−βu/a) (with F0 = 100, a = 6 and β = 6), (e) hy-
perelastic rubber connectors (1D incompressible Neo-
Hookean solid27): V ′(u) = F0

(
1 + u

a − (u/a+ 1)−2
)

(with F0 = 1 and a = 6), and (f) Lennard-Jones (LJ)
atomic interactions with varying cut-off radius: V ′(u) =
F0

[
(1 + u/a)−7 − (1 + u/a)−13

]
(with F0 = 137.17 and

a = 3). Due to the short-range nature of LJ, we also
computed results for long-range linear-spring interactions
with up to Nb = 4 neighbors. The summary of results
in Fig. 2 confirms that the scaling law is indeed indepen-
dent of the interaction potential and of the number of
neighboring interactions.

Surprisingly, the scaling law is independent of the
topology of the non-convex potential ψ. For verification,
simulations were carried out on lattices with the three
bistable interaction potentials shown in Fig. 3; all are
fourth-order polynomials with the same value of ∆ψ = 2.
In analogy to Fig. 2, Fig. 3(b) shows the linear relation



5

0 10 20 30
0

10

20

30

wave speed v

en
er

gy
 p

er
 d

en
si

ty
 E

 

 

linear (dissipative)

hyperelastic (diffusive)

Toda (dissipative)

Toda (diffusive)

theory

Coulombic
(dissipative)

magnetic
(diffusive)

(a)

0 5 10 15 20 25
0

5

10

15

20

25

wave speed v

en
er

gy
 p

er
 d

en
si

ty
 E

 

 

linear (1st neigbor)

linear (2nd neigbor)

linear (4th neigbor)

linear
(3rd neigbor)

LJ (1st 
neighbor)

LJ (2nd neighbor)

(b)

FIG. 2. Plots of the kinetic energy E of the traveling wave
vs. kink propagation speed v for (a) various examples of in-
teraction potentials and (b) varying numbers of interacting
neighbors. All examples use the bistable energy of Fig. 1(a)
with m = 1 for dissipative and m = 0.0001 for weakly inertial
or diffusive cases, and a = 1. All results lie almost perfectly
on the predicted lines with slopes E/v = ∆ψ/2γ = 1.
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FIG. 3. (a) Three different topologies of the on-site potential
ψ with different equilibrium distances but with the same en-
ergy jump ∆ψ; (b) resulting energy per density E vs. wave
speed v for the different topologies and interaction potentials
(all other parameters as in Fig. 2). Again, all computed values
fall onto the predicted line with slope E/v = ∆ψ/2γ = 1.

between the computed kinetic energy of the traveling
wave and the wave speed for all three bistable potentials,
which confirms the energy transport law.

Since the energy law is linear, superposition can be ex-
pected in case of multi-well transitions despite the highly-
nonlinear scenario. This suggests that a multi-well tran-
sition can be broken down into individual bi-stable tran-
sitions and analyzed separately to determine the total
energy transported. To test this hypothesis, numerical
experiments were performed for transitions occurring in
a triple-well energy landscape as shown in Fig. 4. Results
for three different interaction potentials are summarized
in Table I and show excellent agreement with deviations
of less than 1%, thus confirming that superposition ap-
plies indeed. However, as seen from Fig. 4(b), in the
special case ∆ψ1 < 0 and ∆ψ1 + ∆ψ2 > 0, the second
transition drags the first along, causing both transitions
to move at the same speed. Therefore, for multiple tran-
sitions, to preserve single-valuedness of the solution, we
conclude that vk ≥ vk+1, where vk is the velocity of the

Interaction ∆ψ1 ∆ψ2 v1 v2
∆ψ1v1+∆ψ2v2

2γ
E

Linear

0 2 4.5051 4.5051 4.5051 4.5029

0.5 1.5 5.6130 5.6130 5.6130 5.6146

1 1 7.2538 5.6741 6.4640 6.4114

1.5 0.5 8.1123 3.1141 6.8628 6.8637

2 0 8.5710 0.0307 8.5710 8.5760

Hyperelastic

0 2 1.4241 1.4240 1.4241 1.4231

0.5 1.5 1.7733 1.7732 1.7732 1.7697

1 1 2.2778 1.7762 2.0270 2.0089

1.5 0.5 2.5308 0.9760 2.2421 2.1424

2 0 2.6660 0.0132 2.6660 2.6670

Coulombic

0 2 0.9434 0.9434 0.9434 0.9429

0.5 1.5 1.1476 1.1476 1.1476 1.1480

1 1 1.4635 1.1492 1.3064 1.2964

1.5 0.5 1.6398 0.6307 1.3875 1.3877

2 0 1.7454 0.0000 1.7454 1.7464

TABLE I. Numerical results for the sixth-order tri-stable po-
tential energy with energy differences ∆ψ1 (first) and ∆ψ2

(second well). Wave speeds vi (identified from contour plots
by a linear regression fit) and total kinetic energies E are com-
pared to the superposed theoretical predictions of the linear
energy law (recall that travelling waves require ∆ψi > 0).

kth transition.

IV. DISCRETENESS EFFECTS

Discreteness effects become important in discrete sys-
tems when the width w of the transition wave is on the
order of the lattice spacing (i.e., w ∼ a). The continuum
limit (14) of the discrete lattice model holds if the wave
profile remains smooth. Smoothness is observed if dissi-
pative effects dominate over inertial effects of the lattice
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FIG. 4. (a) The three possible topologies of a triple-well po-
tential that generate propagating kinks: (I) ∆ψ1,∆ψ2 > 0,
(II) ∆ψ1 > 0, ∆ψ2 < 0, and (III) ∆ψ1 < 0 , ∆ψ1 + ∆ψ2 > 0.
(b) Resulting waveforms for the three cases: (I) two transi-
tion waves travel with different velocities, (II) only one par-
tial transition wave propagates (the other is stationary as
∆ψ2 < 0), and (III) one complete transition wave propagates
with a constant velocity (the second transition drags the first
along).
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FIG. 5. (a) Displacement profile and (b) kinetic energy
when discreteness effects dominate and the wave profile is not
smooth (m = 1000 with a hyperelastic interaction potential).

(α2 � mk0). However, in case of small dissipation and
significant inertia (mk0 � α2), the displacement pro-
file displays rapid oscillations (twinkling modes)18 in the
wake of the traveling kink and the kinetic energy of the
wave oscillates with a period T = a/v. An example of
a weakly-dissipative discrete system is shown in Fig. 5.
Here, the higher-order terms cannot be neglected when
taking the continuum limit and hence the approximation
in (9) fails to hold. In such cases, the energy law still
applies if the energy E is replaced by its time average

〈E〉 =
1

T

∫ t0+T

t0

E dt′ = v

∫ t0+T

t0

N∑
i=1

1

2
u2
i,t′ dt′, (24)

where, [t0, t0 +T ) represents one time period. The differ-
ence between the maximum energy level and the average
energy is a measure of the kinetic energy barrier which
is equivalent to the Peierls-Nabarro (PN) barrier that is
created due to the discreteness of a lattice28,29. As seen
from Fig. 5, the energy oscillates about an average value
as the wave travels through the lattice, and this average
indeed equals the energy computed from the transport
law (21).

V. GENERALIZATIONS

A. Nonlinear damping

In case of nonlinear velocity-dependent on-site damp-
ing, the governing equation (1) changes into

mun,tt + F (un,t) + φ′(un)

−
Nb∑
j=1

[
V ′j

(
un+j − un

ja

)
− V ′j

(
un − un−j

ja

)]
= 0,

(25)

where F (un,t) is a generalized drag force. Following a
similar procedure as that of Sec. II A shows that

v∆ψ = −1

a

∫ ∞
−∞

F (−vu,ξ)vu,ξ dξ '
N∑
n=1

F (un,t)un,t.

(26)
The right-hand side represents the total power dissipated
by the nonlinear damping and reduces to 2γE in case of
linear damping, i.e., for F (u,t) = αu,t. As the second law
forces the dissipation to constantly drain energy from the
system,

N∑
n=1

F (un,t)un,t ≥ 0 ⇒ v∆ψ ≥ 0. (27)

The above result is analogous to the entropy condition in
phase boundary propagation22, where ∆ψ is the driving
force on the phase front. Therefore, the above analysis
may be interpreted as a derivation of the entropy condi-
tion for phase boundary propagation, in a general case.
In the common case of linear damping, the power dissi-
pated is proportional to the kinetic energy transported
by the phase boundary. It is interesting to note that for
linear on-site damping the dissipation removes only the
contribution of the potential energy while preserving the
kinetic energy.

B. Higher dimensions

Even though formulated in 1D, the above concepts also
apply to general plane waves in higher dimensions.

Consider, e.g., the time evolution the polarization vec-
tor p, a diffusive phase-field variable, in ferroelectric ce-
ramics. The potential energy density is commonly writ-
ten as W = ψ(p)+ κ

2 |∇p|2 with non-convex ψ(p) and the
nonlocal term representing energy stored in ferroelectric
domain walls. One often derives the kinetics of domain
switching from the gradient flow assumption30,31 with a
drag coefficient γ, i.e.

γ ṗ = −δW
δp

= −∂ψ
∂p

+ κ∇2p. (28)

Ferroelectric switching is accommodated by the motion
of planar domain walls which can be expressed as a plane
wave p(x, t) = p(x ·k− vt) = p(ξ), so that (28) becomes

− κ |k|2pi,ξξ − v γ pi,ξ + ψ,i = 0, (29)

using indicial notation. Thus we recover the general form
of governing equation (2). Multiplying by pi,ξ and inte-
grating over time with pi,ξ = 0 as ξ → ±∞ yields

v γ

∫ ∞
−∞

pi,ξ pi,ξ dξ = ∆ψ, (30)

which leads to a restatement of the energy scaling
law (21). Here, we observe that the speed of domain
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walls is related linearly to drag coefficient γ, the en-
ergy difference between the domains, and the shape of
the domain wall (expressed by the above integral). This
derivation also holds true if domain switching in a fully-
electromechanically-coupled fashion is considered (with
polarization p, electric field e, and mechanical strain ε
all represented as moving transition waves).

As a second example, consider the complex Ginzburg-
Landau equation for Poiseuille flow or reaction-diffusion
systems32,

A,t = A+ (1 + iα)∇2A− (1 + iβ)|A|2A. (31)

Applied to plane waves A(x, t) = A(k · x − vt) = A(ξ),
this leads to the diffusive governing equation

(1 + iα)|k|2Aξξ − v Aξ + [A− (1 + iβ)|A|2A] = 0, (32)

which is again of the same type as (2) and can be treated
using the above procedures. In summary, even though
derived for discrete 1D systems, the applicability of the
energy scaling law is more general and applies to plane
waves in both discrete and continuous systems.

VI. CONCLUSIONS

We have derived an energy scaling law that applies to
general nonlinear dissipative and diffusive lattices as well
as to continuous systems, for arbitrary interaction poten-
tials and non-convex on-site potentials. As a unique fea-
ture, linear superposition applies for multiple transitions
even though the governing equations are highly nonlin-
ear. Besides its surprising simplicity, the energy law is
valuable to extract the speed, mobility, or transported
energy of a transition wave from experimental data when
only a subset of the latter is known.
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