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The universal bimodal distribution of transmission eigenvalues in lossless diffusive systems un-
derpins such celebrated phenomena as universal conductance fluctuations, quantum shot noise in
condensed matter physics and enhanced transmission in optics and acoustics. Here, we show that
in the presence of absorption, density of the transmission eigenvalues depends on the confinement
geometry of scattering media. Furthermore, in an asymmetric waveguide, densities of the reflection
and absorption eigenvalues also depend of the side from which the waves are incident. With increas-
ing absorption, the density of absorption eigenvalues transforms from single-peak to double-peak
function. Our findings open a new avenue for coherent control of wave transmission, reflection and
absorption in random media.
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Mesoscopic electronic transport through a disordered
conductor can be described by a N×N transmission ma-
trix t̂ which relates the amplitudes ofN incoming and out-
going transverse modes [1]. Dimensionless conductance
is g = 〈Tr

(

t̂† t̂
)

〉 =
∑

n〈τn〉, where τn are the eigenvalues

of the matrix t̂† t̂ [2] and 〈...〉 denotes ensemble average.
Therefore, electron transport in a metallic wire can be
viewed as parallel transmission over N orthogonal eigen-
channels with individual transmissions of τn. Due to the
mesoscopic correlations [3, 4], density of the transmission
eigenvalues D(τ) has a bimodal functional form [5–11]
with peaks at τ → 0 and τ → 1 [12, 13]. This leads to
e.g. universal conductance fluctuations [14, 15] and quan-
tum shot noise [16, 17]. In Ref. [18], bimodal distribution
was proven to be applicable to an arbitrary geometry of
the conductor as long as the transport remains diffusive
and free of dissipation.

The bimodal distribution obtained in the context of
mesoscopic physics is also applicable to transport of clas-
sical waves in scattering media [19]. In optics, rapid de-
velopment of wavefront shaping techniques has enabled
experimental access to transmission eigenchannels [20]
that allows control of total transmission [21–23] as well as
focusing through turbid media [24–31]. Absorption, com-
mon in optics, breaks energy conservation and makes the
density of transmission eigenvalues [32] as well as reflec-
tion [33–35] eigenvalues to depend on its strength. How-
ever, the questions of whether the geometry of the system
could affect the eigenvalue density in dissipative systems
and if so, how it would affect it, have not been addressed.

In this work we demonstrate that, unlike passive sys-
tems, the density of the transmission eigenvalues in ab-
sorbing disordered waveguides is geometry dependent,
that is beyond predictions of the existing theory [32].
This opens possibility of tuning the functional form of the
eigenvalue density by choosing the shape of the bound-
ary. Furthermore, we show that dissipation makes a pro-

found impact on the densities of reflection eigenvalues ρ
and absorption eigenavlues α, that can even depend on
which side of the waveguide is being illuminated in the
case of asymmetric waveguide shape. This is attributed
to the fact that reflection matrices for illumination from
different sides are no longer related in the presence of
dissipation. Above a certain absorption threshold, the
density of absorption eigenvalues exhibits a qualitative
transformation from a single-peak to a double-peak func-
tion. The additional peak at α ≃ 1 enables a nearly
complete absorption at any frequency with an appropri-
ate input wavefront.

Transmission eigenvalues. We consider a variable
width waveguide, schematically depicted in the inset
of Fig. 1a, formed by reflecting boundaries at y(z) =
±W (z)/2, where W (z) is a smooth function of z. The
leads on the left/right support NL/NR propagating
modes. The transport through the disordered region
0 ≤ z ≤ L is described by a complex NR × NL matrix
t̂. For passive random media, density of the eigenval-
ues of matrix t̂†t̂ is D(τ) = (gp/2)τ

−1(1 − τ)−1/2. In
[36], we reproduce this result using the circuit theory of
Ref. [18] with the dimensionless conductance given by

gp[W (z)] = (kℓ/2)[
∫ L

0 W−1(z)dz]−1, where k = 2π/λ is
the wavenumber, ℓ is the transport mean free path, and
subscript p stands for “passive”. For a waveguide with
constant W = N (λ/2) width we recover the well-known
expression gp = (π/2)Nℓ/L [37].

Figure 1a schematically depicts D(τ) with three contri-
butions from open, closed and evanescent eigenchannels.
Open channels correspond to eigenvalues close to unity
(τO < τ < 1) and closed channels correspond low trans-

mission (τC < τ < τO). Defining
∫ 1

τO
P (τ)dτ = gp [12]

gives τO ≡ [2e/(e2 + 1)]2 ≃ 0.42. Together, open and
closed channels are described by the bimodal distribu-
tion. The cutoff τC at the level of ballistic transmis-
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sion [5, 37] is obtained by normalizing
∫ 1

τC
D(τ)dτ to the

number of propagating channels Nmin = Wmin/(λ/2),
see Fig. 1a. In a waveguide with a constriction, there are
min(NL, NR) transmission eigenchannels, among which
NE = min(NL, NR) − Nmin are evanescent channels
with intensity decaying on the scale of the wavelength
inside the narrow portion of the waveguide and, there-
fore, τ ≪ τC for these channels [36]. This boundary
separating evanescent and closed channels is exaggerated
for illustration in Fig. 1a, as in practice τC ≃ 0.
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FIG. 1. (Color online) (a) Schematic illustration of density
of the transmission eigenvalues D(τ ) in a passive disordered
waveguide of varying width W (z) drawn in the inset. It is
made up of open (τO < τ ≤ 1), closed (τC < τ < τO) and
evanescent (τ < τC) eigenchannels. (b) Normalized density of
the transmission eigenvalues D(τ )/gp computed numerically
for four passive waveguides shown. All data points fall onto
the dashed line – the bimodal distribution. Two insets show
that the bimodal distribution correctly describes both τ → 0
(closed channels) and τ → 1 (open channels) limits, regardless
of the waveguide shape.

Applicability of the bimodal distribution for open
and closed channels is confirmed in Fig. 1b. It shows
D(τ)/gp computed numerically using Kwant simulation
package [38] (see [36] for details) for four waveguides of
different shape (drawn in the inset): rectangular waveg-
uide of width W = 273 × (λ/2); horn waveguide of
width linearly decreasing from WL = 400 × (λ/2) to
WR = 200 × (λ/2); lantern waveguide of width lin-
early tapered from WM = 400 × (λ/2) in the middle
to WL = WR = 200× (λ/2) at the two ends; and bowtie
of width tapered from WL = WR = 400 × (λ/2) at the
ends to WM = 200 × (λ/2) in the middle. The con-
ductance in the four systems is gp = 13.9, 14.2, 13.5

and 13.9 respectively. The other system parameters are
L/ℓ ≃ 31, kℓ ≃ 60, L/λ ≃ 300. We accumulate ensem-
bles of ∼ 5 × 105 eigenvalues so that their densities are
free of noise over at least five decades of magnitude.
Fig. 1b clearly shows that the bimodal distribution,

including the asymptotes for τ → 0, 1 in insets of
Fig. 1b, describes open and closed eigenchannels in
waveguides of different shapes without any fitting param-
eters. The nonuniversal contribution of evanescent chan-
nels to D(τ ≃ 0) cannot be clearly distinguished from
the peak of closed channels in the numerical data be-
cause τC ∼ exp(−L/ℓ) ∼ exp(−31) cannot be resolved.
Nevertheless, the evanescent channels can make up a sub-
stantial fraction of the total channels, e.g., in the bowtie
waveguide, one half of the transmission eigenchannels are
evanescent and have the vanishingly small values of τ .
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FIG. 2. (Color online) Density of the transmission eigenvalues
D(τ )/gp in absorbing diffusive waveguides depends not only
on the absorption strength but also on the confinement geom-
etry. Four colored curves correspond to four waveguides with
matched color in Fig. 1b. Absorption strength is L/ξa = 0.9
– (a), 1.8 – (b), and 3.6 – (c). The universal bimodal distribu-
tion of passive waveguides (solid line) is shown for reference.
Inset of (c): normalized deviation of maximum transmission

eigenvalue ∆τ1 = 〈τ1〉 − 〈τ
(c)
1 〉 in four waveguides of differ-

ent shape from that in the rectangular waveguide 〈τ
(c)
1 〉, as a

function of absorption L/ξa.

Absorption breaks flux conservation and time-reversal
symmetry, leaving optical reciprocity the only constraint
on the scattering matrix Ŝ of the system [39]. In [36] we
show that it relates (in each realization of disorder) the
transmission matrices for waves incident from the left
t̂ and right t̂′ as t̂T = t̂′, where superscript T denotes
matrix transpose. This relationship signifies that even in
the presence of absorption, t̂† t̂ and t̂′† t̂′ have the same set
of non-zero eigenvalues.
Figures 2a-c show density of the transmission eigenval-

ues for waveguides of different shape with three values
of absorption: L/ξa = 0.9, 1.8, and 3.6. ξa = [ℓℓa/2]

1/2
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is the diffusive absorption length and ℓa is the ballistic
absorption length. Common to all geometries, τ ≃ 1
eigenvalues are attenuated so that the density no longer
reaches unity. Instead, the maximum eigenvalue 〈τ1〉 < 1.
Open channels are redistributed throughout τC < τ <
max(τ1) interval so that the eigenvalue density is con-
sistently higher than that in passive systems. However,
unlike the bimodal distribution for the passive systems,
see Fig. 1b, D(τ) is no longer universal and exhibits

a clear shape dependence. The maximum transmission
eigenvalue is lowest for the lantern geometry. Such be-
havior can be understood as the narrower openings and
slanted walls of the lantern waveguide reduce the escape
probability and increase the effective absorption, leading
to smaller 〈τ1〉. In contrast, the situation is reversed
in the bowtie waveguide, see Fig. 2. This structure has
wider openings and, therefore, waves are more likely to es-
cape without being strongly attenuated. The normalized
deviation of the largest eigenvalue 〈τ1〉 in waveguides of
different shapes from that in the rectangular waveguide,

〈τ
(c)
1 〉, is plotted in the inset of Fig. 2c. The deviation

increases with absorption strength and can be either neg-
ative (horn, lantern) or positive (bowtie). However, at
the largest value of absorption of L/ξa ≃ 7.3, the devi-
ation is reduced in the bowtie waveguide, which can be
understood as follows. For strong absorption L ≫ ξa,
short propagation paths dominate transport [29], so we
expect the deviation to decrease in this limit because all
geometries have the same length L. Such ballistic-like
propagation is more favored due to the constriction in
the bowtie waveguide, where this transition occurs first.
Reflection eigenvalues. In a passive system, the en-

ergy conservation and symmetry requirements make all
non-zero eigenvalues of t̂†t̂, Î − r̂†r̂, t̂′†t̂′, Î − r̂′†r̂′ iden-
tical, where r̂ (r̂′) represents the reflection matrix for
waves incident from left (right) end of the waveguide [36].
This leads to the bimodal distribution of the density of
1− ρ for both left and right reflection eigenvalues ρ and
regardless of the shape of the waveguide. In an asymmet-
ric waveguide with NL 6= NR (we will assume NL > NR

without loss of generality), the NL ×NL matrix r̂†r̂ also
has NL−NR eigenvalues with ρ = 1, giving the perfectly
reflecting eigenchannels for light incident from the left
(wider opening). Meanwhile, for waves incident from the
right (narrower opening), there are no perfectly reflecting
eigenchannels because NR×NR matrix r̂′†r̂′ has only NR

eigenvalues, all of which have corresponding transmission
eigenvalues that are non-zero. The results of the numer-
ical simulations in passive waveguides of different shape,
c.f. Fig. 3, confirm that the density of both left/right re-
flection eigenvalues D(1−ρ) follows the universal bimodal
distribution, which still holds in asymmetric waveguides
as the perfectly reflecting eigenchannels only have a sin-
gular contribution at ρ = 1.
Due to absence of flux conservation in systems with ab-

sorption, the links between reflection and transmission
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FIG. 3. (Color online) Density D(1 − ρ)/gp of the reflec-
tion eigenvalues ρ in diffusive waveguides of different shape
with absorption (L/ξa = 3.6) and without absorption. Pan-
els (a,b) show the power scaling behaviors at (1 − ρ) → 0
and 1 respectively. Without absorption all eigenvalue den-
sities, regardless of the waveguide shape or input direction,
fall onto the bimodal distribution – solid curve. In absorb-
ing systems, D(1 − ρ)/gp obtained for waves incident from
the left/right are shown with open/filled symbols. For all
symmetric waveguides (rectangular, lantern, bowtie) with ab-
sorption, NL = NR, filled and open symbols coincide. For
the asymmetric horn waveguide (NL 6= NR), a large disparity
between left/right illumination is highlighted by shaded area.

matrices and between left/right reflection matrices are
severed [36]. Consequently, in each disorder realization,
the eigenvalues of r̂†r̂ and r̂′†r̂′ are not necessarily iden-
tical and they are no longer related to the transmission
eigenvalues. Our numerical simulations confirm that the
perfect reflecting channels are removed by absorption as
all reflection eigenvalues become less than unity. Further-
more, in asymmetric waveguides (NL 6= NR), the densi-
ties of reflection eigenvalues differ for waves incident from
left/right side of the waveguide, as shown in Figs. 3a,b
for the horn geometry. Even for symmetric waveguides
(NL = NR), D(ρ) is still clearly shape-dependent, as seen
in Figs. 3a,b for the rectangular, lantern and bow-tie ge-
ometries: D(1− ρ) are distinctly different in (1− ρ) → 0
limit while in the limit (1−ρ) → 1 the difference is greatly
reduced. The attenuation of reflection by absorption de-
pends on how strong light is coupled into the absorbing
waveguide, which can be controlled by the waveguide ge-
ometry. For example, the narrower opening and slanted
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sidewall of a lantern waveguide reduces the coupling of
incident light, as compared to the bow-tie waveguide.

Figs. 3b shows that power exponent in D(1 − ρ) ∝
ρ−1 for (1 − ρ) → 1 is independent of the waveguide
shape/input direction and it is the same as in a passive
system. For (1−ρ) → (1−ρmax), we find that the power
exponent in D(1 − ρ) ∝ (1 − ρ)−1.35 has a weak shape
dependence. The value 1.35 is smaller than 3/2 found in
Refs. [33, 34] for a = Nℓ/ℓa ≫ 1 in rectangular waveg-
uides. We attribute the discrepancy to insufficiently large
value of a = 1.9 for the case shown in Fig. 3a.
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FIG. 4. (Color online) Density D(α) of absorption eigenvalues
α in disordered waveguides of different shape, under on-sided
illumination, evolves from one peak function at weak absorp-
tion (the ensemble-averaged maximum absorption eigenvalue
〈α1〉 ≪ 1) to double peak function at intermediate absorption
( 〈α1〉 . 1) in panel a, and the second peak moves to α ≃ 1
at strong absorption (〈α1〉 ≃ 1) in panel b. Symbol notations
are the same as in Fig. 3. In all cases the normalized den-
sity of absorption eigenvalues exhibits strong dependence on
the shape of the waveguide, and for asymmetric (horn) waveg-
uide also on the input direction. The inset in panel (b) plots
the ensemble-averaged maximum absorption eigenvalue 〈α1〉
vs. the absorption strength L/ξa. For comparison, the maxi-
mum absorption eigenvalue 〈αS,1〉 for two-sided illumination
are also shown.

Absorption eigenvalues. In a dissipative system, the
non-unitary part of the scattering matrix Î − Ŝ†Ŝ ≡ ÂS

accounts for absorption [40] and its largest eigenvalue
αS,1 tells the maximum absorption that can be achieved
by shaping the input wavefront [30]. This requires con-
trolling all modes incident onto both sides of the waveg-
uide. However, more common in experiments is only one
side of the system illuminated. In such case the matrix
Â = Î − r̂†r̂ − t̂†t̂ describes the absorption of input light.
Its largest eigenvalue α1 determines the maximum ab-

sorption in a given system when only one side is accessi-
ble. Similar to density of the reflection eigenvalues, D(α)
depends on the shape of the waveguide and the input di-
rection, c.f. Fig. 4a,b. Common to all geometries, the
functional form of D(α) undergoes a qualitative change
with an increase of absorption strength. At weak ab-
sorption, the eigenvalue density monotonously decreases
toward zero with an increase of α, c.f. Fig. 4a. At the in-
creased absorption, the density develops the second maxi-
mum at α ≃ 1. Even in this regime, there exists an upper
bound, which approaches unity exponentially, c.f. inset
of 4b. A coherent perfect absorber proposed in Ref. [41]
achieves 100% absorption but requires full control of in-
cident wavefront and a specific amount of absorption. In
contrast, we show that at any frequency and with any ab-
sorption (above a certain threshold) the maximum achiev-
able absorption with one-sided excitation α1 can be close
to unity. Moreover, with the left end of the waveguide
being illuminated, for example, we can achieve nearly per-
fect absorption by controlling a fraction NL/(NL +NR)
of all input channels, that can be small in e.g. a horn
waveguide with NL < NR.

We note that absorption dependence of the maximum
eigenvalue 〈α1〉 for one-sided illumination is qualitatively
different from 〈αS,1〉 for two-sided illumination, c.f. in-
set in Fig. 4b. The former approaches unity exponen-
tially, 1 − 〈α1〉 ∝ exp[−L/ξa]. In contrast, excitation
from both sides results in a sharp transition at L/ξa ∼ 3,
above which strong enhancement of absorption [30] with
〈αS,1〉 ≃ 1 becomes possible. The critical value of ab-
sorption can be estimated by comparing the diffusion
time without absorption L2/Dπ2 to the absorption time
ta = ξ2a/D, where D is the diffusion coefficient. Equating
these two characteristic time scales results in L/ξa = π
which agrees with Fig. 4b. This offers an absorption anal-
ogy with diffusive random laser [42–44] where exactly the
same amount of gain corresponds to the lasing threshold,
giving output to all sides.

Conclusions. We believe our results will have profound
implications for coherent control of wave transmission, re-
flection and absorption in random media [20, 45]. The
ability to modify the eigenvalue densities will greatly
enhance the capability of coherent control, with ap-
plications to imaging through opaque media and tar-
geted deposition of energy inside turbid media. Further-
more, nanophotonic waveguides with various geometries
can be readily made with current nanofabrication tech-
niques [46], and the control of light transmission or reflec-
tion by shaping the incident wavefront will enable novel
functionalities for photonic applications.
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