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Partial nesting between two connected or disconnected regions of the Fermi surface leads to
fractional powers of the Coulomb scattering lifetime as a function of temperature. This result
is first demonstrated for a toy band structure where partial nesting occurs within a single band
and between different regions of the Brillouin zone. A comparison is then made to a multiband
scenario by studying the scattering rate of an effective two orbital model that was proposed in
the context of multi-orbital superconductors. In the process, various model independent features
affecting the temperature exponent, n, are identified. The logarithmically divergent contributions of
the lowest order vertex correction to the multi-orbital susceptibility, and the role played by nesting
in suppressing these divergences is analysed. The relevance of these results is discussed keeping the
recently observed anomalous resistivity in the Co doped Iron superconductor LiFeAs as a backdrop.

Introduction: While deviations from the standard
theory of metals arise typically from strong local corre-
lations, they also come into play anytime two pieces of
the Fermi surface coincide when shifted by a wave vector
~Q. This phenomenon of nesting, well documented in
magnetism, defined by ε~k = −ε~k+~Q, is relevant for many

classes of high Tc materials including the Cuprates1–5

and the Iron superconductors6–11. Given that most of
the proposals so far for the pairing mechanism in both
these classes of high Tc materials involve the distribution
of magnetic fluctuations in the Brillouin zone, and that
the topology of the Fermi surface plays a key role in
controlling the magnitude of the spin susceptibility, a
nested Fermi surface can give qualitatively different
results when compared to an unnested one. This was
first demonstrated by Virosztek and Ruvalds12,13 where
they showed that the inverse Coulomb scattering life
time in the presence of a perfectly nested Fermi surface
behaves linearly as a function of temperature. These
results were extended by Schlottmann14–16 to other
parallel cases away from nesting .

Recently Dai et.al17 performed a series of experi-
ments including ARPES, optical spectroscopy, NMR
and transport on a variety of Co doped concentrations
of LiFeAs. After studying the band structures, Fermi
surfaces, spin lattice relaxation rates and the Coulomb
scattering life times for all the Co concentrations, they
concluded that there was a Fermi liquid to non-Fermi
liquid to Fermi Liquid transition as a function of the Co
concentration. In the non-Fermi liquid regime, fractional
powers of the self energy vs temperature were measured.
These observations occur simultaneously as the hole
pockets at the Γ point start from being larger than the
electron pockets at the M point in the folded Brillouin
zone, then become smaller with electron doping while
going through a transition where they are close to
being perfectly nested. However, the Tc of the material
monotonically reduces with Co doping indicating no
correlation with the magnitude of spin fluctuations. As

a result, these experiments point to nesting playing a
crucial role in driving the Fermi liquid to non-Fermi
liquid transition.

Although other factors are undoubtedly present in
these materials, we explore in this paper the role nesting
can play in driving a Fermi liquid to non-Fermi liquid
transition in an effective two-band model of Iron super-
conductors. In the perturbative regime, we calculate
the electron self energy and scattering lifetime as a
function of temperature. In general, the temperature
dependence is of the power-law kind, Tn. Our findings
for the single orbital toy model show that the exponent
n decreases continuously from the Fermi Liquid value of
two to unity as the nesting condition improves. For the
effective two orbital model with a nesting wave vector
connecting two disconnected hole and electron pockets,
the exponent n goes through a minimum for a certain
doping value consistent with perfectly nested pockets.
In an attempt to understand the minimum value of the
exponent reached, we identify various model independent
features which affect the temperature exponent, n, in
a multi-orbital system. In particular, we find that the
presence of intra-band scattering, matrix element effects
and the invalidity of replacing the fully momentum de-
pendent susceptibility with that evaluated at the nesting
wave vector alone (nesting approximation12,13), pushes
the value of n to be larger than unity and above the
experimentally observed value of 1.35. By studying the
lowest order vertex corrections to the bare susceptibility
for the multi-orbital scenario, we numerically find a
logarithmic divergence at low temperatures which is
systematically suppressed as we move away from the
perfectly nested condition.

The following paragraphs are organized as follows:
we start by writing out the expressions for the self
energy in a generic multi-orbital Hamiltonian. We
then present our results for the toy model and those
for the effective two oribital model proposed in the
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context of the Iron superconductors. This is followed
by our analysis of the various features determining the
exponent, n. Finally, we derive expressions for the
lowest order multi-band vertex corrections and end with
our conclusions.

Theory: We begin by writing a many body Hamil-
tonian with inter- and intra- orbital hoppings and
electron-electron interactions given by

H =
∑
kαβσ

εαβ(~k)c†kασckβσ +H ′, (1)

where the interaction part H ′ takes the form

H ′ =
1

2

∑
kk′q
αβγδ
σ1..4

Uαβγδ c
†
k+qασ1

c†k′−qδσ2
ck′βσ3ckγσ4 . (2)

Here ckασ, c
†
kασ are the electron annihilation and cre-

ation operators in a state ~k with orbital quantum num-

ber α and spin σ, εαβ(~k) are the hopping matrix el-

ements, α, β, γ, δ are the orbital indices, and Uαβγδ are
the interaction matrix elements. At a graphical level,

Uαβγδ is the amplitude of the process involving the de-
struction of two electrons with orbital quantum num-

bers (β,~k′, σ3) and (γ,~k, σ4) and creating those with

(α,~k+ ~q, σ1) and (δ,~k′− ~q, σ2). Such a form of the quar-
tic interaction Hamiltonian above encompasses all the
different types interaction terms commonly used in Iron
superconductors18,19 viz intra- and inter- orbital Hub-
bard repulsions (U,U ′), Hund’s rule couplings (J) and
pair hoppings (J ′). The non-interacting Green function
in the orbital basis is given by

G
(0)
αβ(~k, iωn) =

∑
m

u∗mα(~k)umβ(~k)

iωn − Em(~k)
. (3)

Here, umα(~k) are the matrix elements connecting the
band and the orbital basis, iωn are the fermionic Mat-

subara frequencies, Em(~k) are the band energies labelled
by the band index m. With the knowledge of the non-
interacting Green function at hand and using standard
many -body perturbation approaches in the interaction
parameter, we write the interacting Green function as

Ĝ(~k, ikn) = Ĝ(0)(~k, ikn) + Ĝ(0)(~k, ikn)Σ̂(~k, ikn)Ĝ(~k, ikn),
(4)

which must be solved recursively to obtain Ĝ(~k, ikn).
The hat on top of the physical quantities signifies a
matrix character with the matrix elements denoted by
the orbital index. The above Dyson-like equation for

Ĝ(~k, ikn) defines the self energy Σ̂(~k, ikn). The imag-
inary part of the self energy with orbital indices γ, γ′,
under the Random Phase Approximation (RPA) reduces

FIG. 1. Diagrams contributing to the Coulomb self energy.
Left: full self energy contribution with a renormalized ver-
tex (shaded blob) and interaction parts (double dashed line).
Right: one of the contributing terms to the RPA self energy

ΣRPA(~k, ω) obtained by inserting a single fermion bubble into
the interaction line along with a bare vertex.

to19 (see Fig 1)

Σ′′γγ′(~k, ω) =
∑
αβµν
m~q

V αβγm(~k − ~q)V µνmγ′(~k − ~q) (5)

×χµν”0αβ

(
~q, ω − Em(~k − ~q)

)
×
(
nf (−Em(~k − ~q)) + nb(ω − Em(~k − ~q))

)
,

where nf (x) and nb(x) are the Fermi and Bose dis-
tributions. The lowest order pair bubble appearing

in the self energy, Σ′′γγ′(~k, ω), is shown in Fig 1 and

is denoted by the non-interacting susceptibility, χµνoαβ ,
whose imaginary part shows up in equation 5. In the
calculation performed in this paper, we used the singlet
spin configuration for the bare susceptibility. The spin
distribution in this configuration has the following orbital
combinations−(γ, σ), (δ, σ̄), (β, σ̄), (α, σ), (γ′, σ), (δ′, σ̄),
(µ, σ̄), (ν, σ), where σ̄ = −σ. Such a spin configuration
can be obtained (the reader can refer to19 for details
of other spin configurations) from either of the four
interactions − intra-, inter- orbital Hubbard repulsion,
pair hopping or Hund’s coupling terms. The effective
momentum dependent interactions in eq 5 are defined as

V αβγm(~q) =
∑
δ

Uαβγδ umδ(~q), (6)

with V αβmγ′(~q) having the summation and orbital in-
dex swapped along with a complex conjugate in the
matrix element. To evaluate the total self energy

in the band representation, we write Σ′′mm′(~k, ω) =∑
γγ′ umγ(~k)um′γ′(~k)Σ′′γγ′(~k, ω) and sum over all the di-

agonal band indices. In our following calculations of the
bare susceptibility, we have set α = β and ν = µ, and
the self energy (after relabelling indices in favor of α, β
intead of µ, ν and defining χββ”oαα ≡ χ”

oαβ , V ααγm ≡ V αγm)
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simplifies to

Σ′′γγ′(~k, ω) =
∑
αβ
m~q

V αγm(~k − ~q)V βmγ′(~k − ~q) (7)

×χ”
0αβ

(
~q, ω − Em(~k − ~q)

)
×
(
nf (−Em(~k − ~q)) + nb(ω − Em(~k − ~q))

)
.

Although the singlet spin configuration can be obtained
from all the four interaction types, for the purposes of
simplicity in our paper, we only stick to case where
Uααγδ = Ũ is a constant. Because of this, the condition

U ′ = U−2J and J = J ′19 is not necessarily satisfied, but
there should be no qualitative changes to our conclusions
even if this constraint is imposed. Substituting for the

momentum dependent interaction V αγm(~k) into the self
energy ( which is now independent of the orbital indices

because of the assumption Uααγδ = Ũ , and allows us to

define Σ′′γγ′(~k, ω) ≡ Σ′′(~k, ω) ) gives us

Σ′′(~k, ω) =
∑
m~q

Um(~k − ~q)χ′′0
(
~q, ω − Em(~k − ~q)

)
(8)

×
(
nf (−Em(~k − ~q)) + nb(ω − Em(~k − ~q))

)
,

with the following new definitions of the total suscepti-
bility and effective interactions respectively−

χ′′0(~q, ω) =
∑
αβ

χ′′0αβ(~q, ω), (9)

Um(~k) = Ũ2
∑
ηη′

u∗mη(~k)umη′(~k). (10)

This is the quantity that will be studied in the sections
to follow. In principle, it is possible to choose a more

complicated and realistic orbital structure for Uαβγδ .
However, the essential physics lies in the bare suscepti-
bility and not in the details of how the interactions looks
like (as can be seen in the one band scenarios detailed
in12,13 as well as the results to follow); therefore, these
assumptions on the orbital structure of the interactions
should not change the conclusions of our paper.

Results: We have obtained results for two rep-
resentative cases: (i) a single orbital model and
(ii) an effective two-orbital model for the Iron
based superconductors. For the one orbital
model we choose a band structure described by

ε(~k) = t1(coskx+cosky)+(t2−r)(coskxcosky)− (µ−2r)
with parameters (t1, t2, µ) = (1.0, 1.0, 2.0) eV. The value
of r is assumed to change with an external parameter
such as doping. The Fermi surface of such a band struc-

ture has a nesting wavevector of ~Q = (π, π) for values of

r close to unity, i.e, ε(~k) = −ε(~k + ~Q) when r = 1. As r
deviates from unity, the nesting slowly deteriorates. The
Fermi surface close to and far away from nesting is shown

FIG. 2. Temperature dependence of the imaginary part of
the Coulomb self energy with the nesting parameter (r) for
a one-orbital toy model: (top-left) Fermi surface (solid, red)
far away from nesting (r = 0.9). The contour shifted by
the nesting wave vector (π, π) is shown in dashed blue. (top-
right) Fermi surface close to the perfect nesting condition (r =
1). (bottom-left) Log-log plot of the imaginary part of the
Coulomb self energy as a function of temperature for different
values of the nesting parameter r. (bottom-right) Exponent
(n) of the temperature extracted from the previous plot as a

function of r. Ũ is fixed to be unity (in eV) throughout

in the top panels of Fig 2. The bottom left panel in Fig
2 shows a log-log plot of the imaginary part of the self
energy as a function of temperature and its simultaneous
variation with the nesting parameter r. For all the

plots we have chosen a value of ~k on the Fermi surface
close to the (π/2, π/2) point and an energy close to the
Fermi level with ω = 2 meV. Clearly, there is a strong
dependence of the slope of the straight lines as a function
of r. The slope of the straight line gives the exponent
n in the temperature variation of the imaginary part

of the self energy i.e. Σ′′(~k, ω) ∝ Tn. As a result, the
exponent n changes continuously from n = 2 (Fermi
liquid behavior)to n = 1 (non-Fermi liquid behavior) as
nesting becomes more and more perfect (r → 1). This
dramatic variation consisting of different intermediate
values of n is shown in the bottom right panel of Fig
2. The case of perfecting nesting was first discussed by
Virosztek and Ruvalds12 who show that in the presence
of nesting, the susceptibility bubble appearing in Fig 1
scales as a function of ω/T , while in the case of a Fermi
liquid, the susceptibility is linear in ω and is essentially
temperature independent. This qualitatively different
behavior of the susceptibility in case of perfect nesting
leads to an increased electron-electron interaction
induced scattering and, quantitatively, obtains a linear
temperature dependence of the self energy; in contrast,
a close to quadratic temperature dependent behavior
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is seen in a two-dimensional Fermi liquid in the limit
where h̄ω � kBT � Ef .

FIG. 3. (Left) Fermi surface of the model in ref20 away
from nesting when the hole pocket at the Γ point(red, solid)
has a smaller area than the electron pocket at the X point
(blue,solid). The dashed lines are the Fermi surfaces shifted
by the nesting vector (π, 0). (Right) Corresponding log-log
plots of the imaginary part of the Coulomb self energy vs
temperature for several dopings in this regime. µ = −0.273
eV is close to the perfect nesting of the electron and hole
pockets.

We consider next an effective two-orbital model relevant
to the Iron-based superconductors. We make a quick re-
cap of the S4 symmetric model described by the authors
in20. Our starting point is a band Hamiltonian, similar
to21, on a single subspace containing the x′z on the A
sublattice and y′z (x′ and y′ are along the diagonals to
the Fe-Fe bonds) on the B sublattice coupled to each
other through the As atoms. This is given by

H0 =
∑
~k,σ

ψ†~k,σ

(
ε+(~k)− µ)τ0 + ε−(~k)τ3 + εxy(~k)τ1

)
ψ~k,σ,

(11)

where τi are the Pauli matrices, ψ†~k,σ
= (c†1,k, c

†
2,k) with

c†1,k and c†2,k being the electron creation operators at the

sublattice sites A (x′z orbital) and B (y′z orbital) re-
spectively. The band parameters are

ε±(~k) =
εx(~k)± εy(~k)

2
(12)

εx(~k) = 4tscoskxcosky − 4tdsinkxsinky (13)

+2t3s(cos2kx + cos2ky)

+2t3d(cos2kx − cos2ky)

εy(~k) = 4tscoskxcosky + 4tdsinkxsinky

+2t3s(cos2kx + cos2ky) (14)

+2t3d(cos2kx − cos2ky)

εxy(~k) = 2t1(coskx + cosky) (15)

with t1 = 0.24, t2 = 0.52, t′2 = −0.1, ts,d =
(t2 ± t′2)/2, t3s = t3d ∼ 0, and µ = −0.273 for
perfect nesting (all units in eV). The matrix elements
and electron operators (d1,k and d2,k) for the other
copy with the y′z orbital on the A and x′z on the

B sublattice can be obtained by performing the S4

symmetry transformation as demonstrated in20.

Fig 3 (left) shows a contour plot of the Fermi

FIG. 4. (Left) Fermi surface of the model in ref20 away
from nesting when the hole pocket at the Γ point(red, solid)
has a larger area than the electron pocket at the X point
(blue,solid). The dashed lines are the Fermi surfaces shifted
by the nesting vector (π, 0). (Right) Corresponding log-log
plots of the imaginary part of the Coulomb self energy vs
temperature for several dopings in this regime. µ = −0.273
eV is close to perfect nesting of the electron and hole pockets.

surface for the model described above. The value of
µ is chosen to be larger than −0.273 and is electron
doped. At µ = −0.273 the hole and electron pockets fall
exactly on top of each other when the band structures

are shifted by ~Q = (π, 0) and correspond to perfect
nesting. When µ is increased to values above −0.273,
the hole pocket has a smaller area than the electron
pocket and results in a poor nesting condition between
these two pockets. Fig 3 (right) shows a log-log plot of
the imaginary part of the multiorbital self energy as a
function of temperature. The different curves correspond
to various values of µ from −0.273 to −0.15. The slope
of the straight lines (the exponent n) gradually increases
from n = 1.75 to n = 2 as we move from µ = −0.273 to
µ = −1.5 signalling a decreased scattering rate when the
nesting condition deteriorates.

Similar behavior is observed in the opposite case of
hole doping. Fig 4 illustrates this scenario where the hole
pockets become larger than the electron pockets (Fig 4
(left)). As the value of µ is decreased from −0.273 to
−0.473, the nesting effect between the hole pocket and
the electron pocket decreases resulting in a longer life
time due to reduced electron-electron scattering. Thus
an increased slope from n = 1.75 to n = 2 is obtained
when µ is decreased to −0.473 (Fig 4, Right). The be-
havior of the exponent n is more clearly shown in Fig 5
(right). The value of n starts out from being a Fermi liq-
uid value of two when hole doped and then decreases in
a continuous fashion to a mininum value (around 1.75)
when the hole pocket at the Γ point and the electron
pocket at the X point are well nested. Finally it in-
creases back to two when electron doped. The case of
perfectly nested Fermi surface is shown in Fig 5 (left). It
is important to note that, unlike the one-orbital scenario
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where the exponent reached a value of unity with perfect
nesting, the exponent in this model decreases no further
than 1.75. In the following paragraphs, we analyse differ-
ent features that come into play in setting this apparent
lower bound.

FIG. 5. (Right) Exponents (n) of the temperature extracted
from the log-log plots in figs 3 and 4 as a function of doping
µ. The minimum corresponds to close to perfect nesting of
the electron and hole pockets (left).

It is deceptively natural, at this point, to attribute the
larger than expected experimentally observed (and the
above numerically evaluated) value of n to details of the
band structure. Iron superconductors are multiorbital
systems with convoluted band structures and compet-
ing orders; therefore, it is possible to imagine that the
large value of n could stem from the fact that the hole
pockets are many times flatter than the electron pockets
near the Fermi surface, or that such a feature could re-
sult in improper nesting at the Fermi surface. Moreover,
one could be led to believe that the volume of the Fermi
surface being perfectly nested might play a role in deter-
mining the value of the exponent. However, none of these
factors have any affect. To see this one can extend the
same argument put forward originally for the one band
scenario in ref12. The imaginary part of the bare multi-
orbital non-interacting susceptibility (Lindhard function)
is given by

χ′′0αβ(~q, ω) = 2π
∑
mm′

∫
d2~k

(2π)2
L αβ
mm′(~k, ~q)

×
(
nf (εm(~k))− nf (εm′(~k + ~q))

)
×δ
(
ω + εm(~k)− εm′(~k + ~q)

)
, (16)

where L αβ
mm′(~k, ~q) are the band matrix elements and

εm(~k) are the band energies, with m,m′ and α, β de-
noting band and orbital indices respectively. To study
the effect of the difference in curvature between two per-

fectly nested bands at the nesting wave vector ~Q, we can

make the substitution εm′(~k+ ~Q) = −sεm(~k), where s is
a positive scalar number. Such a substitution preserves
the perfect nesting condition at the Fermi surface but
makes the curvature of the two bands dissimilar. For a
simple one band case, we can simplify by converting the

momentum integrals in the susceptibility in terms of in-
tegrals over energy and assuming a constant density of
states at the Fermi level N(0) (similar to the treatment
in12,13). The self energy then becomes

Σ′′(ω) = U2N(0)

∫
dω′

(
coth

(
ω′

2T

)
− tanh

(
ω′ − ω

2T

))
×χ′′0( ~Q, ω), (17)

where the bare susceptibility now takes the form,

χ′′0( ~Q, ω) = −πN(0)

(
nf (− ω

s+ 1
)− nf (

sω

s+ 1
)

)
. (18)

It can be numerically shown that the bare susceptibil-
ity above, modified by s, does not alter the linear T
dependence of the Coulomb scattering rate. Similarly,

FIG. 6. Three dimensional plot of the imaginary part of the
orbitally summed bare susceptibility close to the nesting wave
vector (π, 0) in the Brillouin Zone. (Left) When the chemical
potential µ = −0.273 eV close to perfect nesting and (Right)
when the chemical potential is far away from nesting. The
response frequency ω and temperature T are chosen as 2 meV
and 50 meV respectively.

changing the area of the nested Fermi surface while
maintaining the condition of perfect nesting does not af-
fect the scattering rate. This is because the condition

εm(~k) = −εm′(~k+ ~Q) is satisfied regardless of the area of
the Fermi surface nested. Finally, the ARPES measure-
ments in ref17 (within the experiment’s momentum and
energy resolution) make it clear that at a Co doping of
≈ 0.12, the hole and electron pockets are close to perfect
nesting ruling out any Fermi surface dissimilarities being
responsible for pushing the exponent n to be larger than
unity. It is, therefore, natural to ask what features really
control the value of n in our calculation. Here we point
out that it is possible to extract model-independent fea-
tures which affect the Coulomb scattering rate.
First, we note that the calculation in ref12,13 approxi-
mates the momentum dependent bare susceptibility to

be a constant at the nesting wave vector ~Q throughout
the Brillouin zone, presumably to maintain analytical
tractability. A consequence of this approximation can
be seen graphically in Fig 6, where we plot the imag-
inary part of the orbitally summed bare susceptibility
in the Brillouin zone close to the nesting wave vector
~Q = (0, π). The plot on the right of Fig 6 corresponds to
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the case of imperfect nesting where the imaginary part
of the susceptibility lacks a peak at the nesting wave vec-

tor ~Q. However, when nesting improves, the peak at the
nesting wave vector is enhanced (Fig 6 (left)). Therefore
we conclude that the nesting approximation, which as-
sumes the susceptibility to be a constant throughout the
Brillouin zone with a value determined at the nesting

wave vector ( i.e χ0(~q, ω) ≈ χ0( ~Q, ω)), highly overesti-
mates the Coulomb scattering rate. Thus the invalidity
of this approximation already makes it reasonable to ex-
pect a value of n to be strictly greater than unity. This is
confirmed in our numerical calculations of the Coulomb
self energy in Fig 7 (left) for the above two-band model.
Clearly, there is an increase in the exponent n to about
1.7 when the full momentum dependence of the suscepti-
bility is inserted back into the calculation. At this point,

FIG. 7. A log-log plot of imaginary part of the total self-
energy versus temperature at the chemical potential µ =
−0.273 eV (case of perfect nesting). (Left) Comparison of
the self energy for the effective model when the bare suscepti-
bility is approximated as a constant at the value of the nesting
wave vector Q = (0, π) to the case where the susceptibility has
full momentum dependence. (Right) The imaginary part of
the total self-energy versus temperature for different values of
the ratio γ which is the ratio of the strength of intra-orbital
to inter-orbital scattering. The quantity shown in the bracket
is the slope (m) representing the exponent n. The value of ω
is fixed at 2 meV.

it is important to understand that there is very little
model dependence that can creep into this conclusion;
the (0, π) peak in the susceptibility under consideration
is believed to be observed in most experiments and nu-
merical calculations22–25 (for a more recent review see22

and references therein) of higher orbital models in Iron
superconductors (including LiFeAs), even in the absence
of perfect nesting. As a result, there is hardly any reason
to doubt that this approximation fails when the Fermi
surfaces are perfectly nested.
Second, in a multi-orbital system such as the pnictides,
the contribution to the bare susceptibility in eq.16 comes
from both intra-band and inter-band terms and these
contributions cannot be disentangled. In the two-orbital
model we considered, perfect nesting occurs only between
two distinct bands− the hole pocket at the Γ point and
the electron pocket at the X point. Consequently, it is
only these terms which contribute to non-Fermi liquid be-
havior, while the intra-band terms give the usual Fermi
liquid physics. We can try to understand this in the sim-
plest, non-trivial manner by rearranging the expression

for the multiband self energy. As we are mainly inter-
ested in isolating the effects of the competition between
intra- and inter- band interactions, and not in the addi-
tional complications arising from matrix elements, we can
neglect any momentum dependence of the band matrix
elements in the self energy (the effects of matrix elements
is studied separately in the next paragraph). With this
additional approximation, and with the help of eq. 16,
we can rewrite the self energy by exchanging the band
and orbital summations while absorbing the interaction
parameters into the bare susceptibility. The self energy
then becomes

Σ′′(~k, ω) = 2π
∑
m~q

(
nf (−Em(~k − ~q)) + nb(ω − Em(~k − ~q))

)
×
∫

d2~k′

(2π)2

∑
m′m′′

Θm
m′m′′

×
(
nf (Em′(~k′))− nf (Em′′(~k′ + ~q))

)
(19)

×δ
(
ω′m(~k − ~q) + Em′(~k′)− Em′′(~k′ + ~q)

)
,

where ω′m(~k) = ω− Em(~k). The resulting momentum in-
dependent coefficients Θm

m′m′′ (which contain the residual

factors L αβ
m′m′′ and V α,β summed over orbital indices α, β

), now labelled by the band indices m,m′,m′′, act as ef-
fective interaction parameters. We define these numbers
to be Uintra and Uinter whenever m′ = m′′ and m′ 6= m′′

respectively. The imaginary part of the self energy ap-
pearing in eq 19 is plotted in fig 7(right) as a function
of temperature for different values of γ = Uintra/Uinter.
With increasing values of γ, the curves appear to become
closer to that of a normal Fermi-liquid and is character-
ized by a slope which steadily moves away from unity.
At this juncture, however, we quickly take note that the
curves appearing in Fig 7(right) for larger values of γ
are no longer straight lines unlike the previous graphs;
hence, their slopes are only approximate fits to numer-
ics. This is because as γ gets larger, both the T linear
and T 2 terms (arising from the inter and intra band con-
tributions) in the self energy become comparable and a
power law behavior ceases to exist. Thus a perfect power
law exponent n = 1 or n = 2 occurs only when γ takes
very small or very large values respectively. The fact that
such intra-orbital terms exist in all Iron superconductors
− independent of the number of orbitals taken under con-
sideration − again, means that these conclusions hold in
all models of LiFeAs.

Third, it is evident from Eq.16 that in a multi-orbital
system, the susceptibility is weighted by the orbital ma-

trix elements L αβ
mm′(~k, ~q). This is unlike a single orbital

model where the weight factor is unity. To study their
effect, we evaluate the matrix elements which are given
by

L αβ
mm′(~k, ~q) = u∗mα(~k + ~q)umβ(~k + ~q)u∗m′β(~k)um′α(~k),

(20)
where û is the matrix which diagonalizes the band Hamil-
tonian given in Eq.11, m,m′ are band indices and α, β
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FIG. 8. Effect of orbital matrix elements on the efficiency of
nesting. (Left) Orientation of the band angle θk throughout
the extended Brillouin zone. Nesting between two discon-
nected pieces of the Fermi surface is efficient when their band
angles differ by a value close to π/2 and minimal when they
are in the same direction. This is more clearly seen in the
right panel where the nesting probability is plotted in a color
scale. The bright (dark) color represents regions where the
probability is close to unity (zero). Therefore regions of the
Fermi surface close to the (π, 0) and (0, π) regions are effi-
ciently nested. This must be contrasted with the single band
case where the nesting probability is unity throughout the
Brillouin zone.

are orbital indices. As we are interested in the perfectly
nested case, we want m and m′ to be distinct correspond-
ing to the hole pocket and electron pockets, or vice versa.

In such a scenario, the matrix elements (L αβ
mm′(~k, ~q))

summed over the orbital indices and nesting vectors given
by P~k = 1

2

∑
~q={~Q} sin

2(θ~k+~q−θ~k), can be interpreted as

a nesting probability because it takes on a positive value
between zero and unity. Here the band angle θk is defined
as

tan2θk =
2εxy(~k)

εy(~k)− εx(~k)
, (21)

and { ~Q} = (±π, 0), (0,±π). Fig 8(left) shows a vector
plot of the band angle θk in the Brillouin zone defined
with respect to the horizontal axis. As only the differ-
ences in band angles matter, we have plotted the angles
shifted by π/4 to help visibility. From the above ex-
pression for the inter-orbital matrix element product, we
conclude that in the two orbital effective model, only
those nested regions of the Fermi surface whose band
angles differ by a value equal to π/2 contribute to nest-
ing with maximum probability. This argument can be
seen in a more straight forward manner in Fig 8(right)
which shows a color plot of the nesting probability in the
Brillouin zone. Although at µ = −0.273 both the hole
and electron pockets are perfectly nested, regions on the
Fermi surface along the diagonals contribute less to the

non-Fermi liquid-like behavior than regions along the kx
and ky axis. This is very unlike the single band case
where the nesting probability is equal to 1 for all regions
of the nested Fermi surfaces. In a more accurate multior-

FIG. 9. Feynman diagrams showing the lowest order vertex
corrections to the bare bubble susceptibility. The blob on the
left represents the full renormalized vertex and all the fermion
lines are treated as non-interacting. The dashed lines are the
Coulomb interaction.

bital description of LiFeAs, the matrix element product
− albeit has a very different form − still maintains a
modulus value between zero and 1, and hence preserves
the spirit of our conclusion. This shows that all the three
features discussed in the preceding paragraphs increase
the exponent n to a value greater than unity in a model
independent manner.
Beyond RPA- Vertex corrections: In this section we
study the effect of the lowest order vertex correction to
the RPA self energy in the presence of nesting. Fig.9
shows the total vertex corrected diagram as a sum of the
bare susceptibility along with the lowest and other higher
order corrections. The lowest order vertex correction to
the susceptibility is given by

χ(1)(~q, iqn) =
1

βV

∑
~p,ipn
µ,ν,µ′ν′

G
(0)
µ′ν′(~p, ipn)G

(0)
µ′ν′(~p+ ~q, ipn + iqn)

×Γµν(~p, ~q, ipn, iqn), (22)

where, Γµν(~p, ~q, ipn, iqn) is the orbital dependent correc-
tion to the vertex up to first order in the interaction, β is
the inverse temperature, (µ, ν, µ′, ν′) are orbital indices,
and the rest of the symbols have been previously defined.
The lowest-order vertex correction is given by

Γµν(~p, ~q, ipn, iqn) =
1

βV

∑
~q′,iqn

(−Ũ) (23)

×G(0)
µν (~p− ~q′ + ~q, ipn − iq′n + iqn)

×G(0)
µν (~p− ~q′, ipn − iq′n).

Substituting for the non-interaction Green functions from
Eq.3, we obtain
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Γµν(~p, ~q, ipn, iqn) =
1

βV

∑
~q′,iq′n
m,n

(−Ũ)
L µν
mn(~p− ~q′, ~q)

(ipn − iq′n + iqn − Em(~p− ~q′ + ~q)) (ipn − iq′n − En(~p− ~q′))
(24)

=
1

V

∑
~q′,m,n

(−Ũ)L µν
mn(~p− ~q′, ~q)

(
nf (En(~p− ~q′))− nf (Em(~p− ~q′ + ~q))

iqn + En(~p− ~q′)− Em(~p− ~q′ + ~q)

)
,

with the Matsubara sum over iq′n performed in the final step of the simplification. Substituting Γµν(~p, ~q, ipn, iqn) back
into the previous expression and performing the remaining Matsubara sum over ipn, we obtain the final expression of
the lowest order vertex correction to the multi-orbital susceptibility:

χ(1)(~q, ω) =
−Ũ
V 2

∑
~p,~q′

µνµ′ν′

mnm′n′

L µν
mn(~p− ~q′, ~q)L µ′ν′

m′n′(~p, ~q)

(
nf (En(~p− ~q′))− nf (Em(~p− ~q′ + ~q))

En(~p− ~q′)− Em(~p− ~q′ + ~q) + ω + iη

)(
nf (Em′(~p))− nf (En′(~p+ ~q))

Em′(~p)− En′(~p+ ~q) + ω + iη

)
.

(25)

The matrix elements L µν
mn(~p, ~q) have been defined pre-

viously with (m,n,m′, n′) as band indices and ω is the
probe frequency obtained after analytic continuation.
Fig 10(left) shows a numerical plot of the imaginary part
of the vertex correction as a function of temperature for
several ω for perfect inter-band nesting (µ = −0.273).
All the curves show a logarithmic divergence at small
values of T . The divergence is entirely due to the
inter-band nesting effect while the role of intra-band
terms to the vertex correction is negligible due to the
presence of this divergence. Hence, one can safely
neglect any intra-band terms unlike the zeroth order
multi-orbital susceptibility seen before. Fig 10(right)
shows the same plot for different values of µ for fixed
ω = 8meV. As µ moves away from the perfectly nested
value, the log divergence vanishes giving rise to a finite
value at small values of T .

To better understand this divergence at the nest-

FIG. 10. Imaginary part of the lowest order vertex correction
as a function of temperature: (left) plotted for the perfectly
nested case (µ = −0.273 eV) as a function of temperature for
different values of ω. A multi-orbital log divergence appears
at small temperatures because intra-band effects are negli-
gible. (Right) plotted for ω = 8meV for different chemical
potentials. The multi-orbital log divergence disappears as we
move away from perfect nesting.

ing vector, we evaluate the expression for χ(1)( ~Q, ω)
for the simple case of a single orbital model. After
converting the momentum sums into energy integrals,

this is given by

χ(1)( ~Q, ω) =
−N(0)2

(2π)4

∫
dεdε′g(ε, ω)g(ε′, ω) (26)

g(ε, ω) =

(
tanh(β ε2 )

2ε+ ω + iη

)
, (27)

with the range of the integrals from −B/2 to B/2 where
B is the bandwidth. Changing the integration variable
to x = βε/2, defining ν = βω, and taking the imaginary
part we obtain

χ(1)′′( ~Q, ω) = −4πN(0)2tanh
(ν

4

)∫
tanh(x)P

(
1

4x+ ν

)
dx,

(28)
where P denotes the principal part and the limits of the
integral are now from −βB/4 to βB/4. In the limit that
the band width tends to infinity compared to T and T �
ω, we can write the above expression as

χ(1)′′( ~Q, ω) ≈ −4πN(0)2tanh
(ν

4

)
Log (βB) + const,

(29)
giving rise to the logarithmic divergence at T → 0 plus
a constant independent of temperature.

To sum up, we have presented a study of how fractional
powers of the resistivity can be understood from partial
nesting between two disconnected pieces of the Fermi
surfaces in multi-orbital systems. Through an effective
two orbital model proposed for the Iron superconductors,
we identified various features affecting the exponent
n in a model independent manner. These features
included interband scattering, matrix element effects,
and invalidity of the nesting approximation. It is clear
from our analysis of these features that the exponent
cannot reach the experimentally observed value of 1.35
even in the case of perfect nesting, calling for the
presence of additional scattering mechanisms apart from
a purely nesting driven mechanism. One could argue
that such a conclusion is premature as a quantitative
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comparison could not be justified from just the study
of an effective model such as that presented above.
However, this discrepancy seems to be more serious
in the hole doped LiFeAs where the nesting between
the inner hole pockets at the Γ point and those of the
electrons pockets at the edge of the Brillouin zone gives
rise to a transport exponent that is very close to unity26.
Given then, from our above calculations, that in a
multiorbital system there are several features pushing
the value of n to be greater than unity, such a statement
would stand on a firm ground. Lastly, we calculated
the role of lowest order vertex correction contribution

to the susceptibility in the nested multi-orbital model
and showed it to possess a logarithmic divergence that
is strongly suppressed as the chemical doping weakens
the nesting condition.
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