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We study collective amplitude modes of the superconducting order parameter in strongly-coupled
electron-phonon systems described by the Holstein model using the non-equilibrium dynamical
mean-field theory with the self-consistent Migdal approximation as an impurity solver. The fre-
quency of the Higgs amplitude mode is found to coincide with the superconducting gap even in the
strongly-coupled (beyond BCS) regime. Besides the Higgs mode, we find another collective mode in-
volving the dynamics of both the phonons and the superconducting order parameter. The frequency
of this mode, higher than twice the renormalized phonon frequency in the superconducting phase,
is shown to reflect a strong electron-mediated phonon-phonon interaction. Both types of collective
excitations contribute to time-resolved photoemission spectra after a strong laser pump as vertex
corrections to produce resonance peaks, which allows one to distinguish them from quasiparticle
excitations.

PACS numbers: 71.10.Fd, 74.40.Gh, 71.38.-k

I. INTRODUCTION

Theoretical and experimental investigations of coherent dynamics in superconductors out of equilibrium have a
long history.1–24 Renewed interests have been aroused by recent observations of the amplitude mode in conventional
phonon-mediated superconductors driven by a strong THz laser.15,16 When a continuous symmetry is broken, there
emerge phase modes and amplitude modes. In a superconductor (SC), where the carriers are subject to the long-
range Coulomb interaction, the gapless phase mode couples with the interaction and is lifted to the plasma frequency,
which is generally much higher than the SC energy scale. This mechanism of gaining mass through a coupling with a
gauge boson is the so-called Anderson-Higgs mechanism,25,26 and the unaffected amplitude mode is called the Higgs
amplitude mode in analogy with particle physics. Before this experiment,15 the amplitude Higgs mode had been
observed only in a special case, 2H-NbSe2, where SC coexists with a charge density wave.4–6,18,19 Theoretical studies
of the SC order parameter dynamics have so far primarily focused on the static mean-field dynamics.1–3,5–13,17,19,22–24

One important conclusion of these works is that the frequency of the Higgs amplitude mode (ωH) should coincide
with the SC gap (2∆SC) in the BCS regime,27 which is a threshold for quasiparticle excitations. This relation leads
to a suppression of the relaxation channel to Bogoliubov particles and a power-law decay of the Higgs oscillation.non-
equilibrium
The material used in the recent experiments,15,16 NbN, has a relatively large dimensionless electron-phonon coupling

λeff & 1, corresponding to the strong-coupling regime.28–31 Hence it is necessary to understand how strong electron-
phonon (el-ph) couplings can affect collective excitations in conventional superconductors. An important issue is the
relation between ωH and the SC gap in the strongly-coupled regime, which directly affects the lifetime of the amplitude
mode, and therefore its accessibility in experiments. In a broader context it is also important to understand effects
of the phonon dynamics on the amplitude mode and what type of collective excitations can exist in strongly-coupled
el-ph systems.
Previous studies on collective modes in strongly-coupled phonon-mediated SCs are limited to very recent works

without non-equilibrium phonon dynamics.20,21 In principle, the collective amplitude modes are represented by poles
of the dynamical pair susceptibility. This quantity can be obtained in the strongly-coupled regime by solving the
Bethe-Salpeter equation with a frequency-dependent irreducible vertex on the Matsubara axis and by subsequent
numerical analytic continuation for real-frequency information, which would be a bottleneck to this approach. In
this paper, instead of directly solving the Bethe-Salpeter equation, we explore the behavior of the collective modes
in strongly-coupled SCs by simulating the non-equilibrium response to weak perturbations using the non-equilibrium
dynamical mean-field theory (DMFT).32
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II. MODEL AND METHOD

The model for strongly coupled SCs that we consider here is the Holstein model, whose Hamiltonian is

H =− v
∑

〈i,j〉,σ
(c†i,σcj,σ + h.c.)− µ

∑

i

ni

+ ω0

∑

i

a†iai + g
∑

i

(a†i + ai)(ni − 1), (1)

where c†i creates an electron with spin σ at site i, v is the electron hopping, µ is the electron chemical potential,

ni = c†i,↑ci,↑ + c†i,↓ci,↓, ω0 is the bare phonon frequency, a†i creates a phonon, and g is the el-ph coupling.

In DMFT, the lattice model Eq. (1) is mapped onto a single-site impurity model, whose action in the Nambu
formalism reads

Simp = i

∫

C
dtdt′Ψ†(t) Ĝ−1

0,σ(t, t
′) Ψ(t′)

+ i

∫

C
dtdt′a†(t)(i∂t − ω0)a(t) (2)

− i

∫

C
dtg[a(t) + a†(t)]Ψ†(t)σ̂3Ψ(t),

where
∫

C denotes an integral on the Kadanoff-Baym (KB) contour, Ψ†(t) ≡ [c†↑(t), c↓(t)] a Nambu spinor, Ô a 2 × 2

matrix, and σ̂α a Pauli matrix. Ĝ−1
0,σ(t, t

′) is the Weiss Green’s function on the KB contour, which is determined self-

consistently so that the impurity Green’s function, Ĝimp(t, t
′) = −i〈TCΨ(t)Ψ†(t′)〉, and the impurity self-energy, Σ̂,

coincide with the local Green’s function for electrons, Ĝ(t, t′) = −i〈TCΨi(t)Ψ
†
i (t

′)〉, and the momentum-independent
self-energy in the original lattice problem.32 Here TC is the contour ordering operator. DMFT is justified in the limit
of infinite spatial dimensions. For el-ph systems, we introduce the phonon Green’s function defined as Dimp(t, t

′) =
−2i〈TCX(t)X(t′)〉 with X = (a†+ a)/

√
2, and it is equivalent to D(t, t′) = −2i〈TCXi(t)Xi(t

′)〉 in the lattice problem.
The most important part in DMFT is how to solve the effective impurity problem. In principle, even in a non-

equilibrium setup, one can solve the problem with a quantum Monte Carlo (QMC) impurity solver.32,33 However,
because of a dynamical sign problem33 it is difficult to access timescales needed to study the relatively slow dynamics
of phonons and order parameters. In order to avoid this difficulty, we employ the self-consistent (renormalized)
Migdal approximation,34–42 which is justified when the phonon frequency ω0 is small compared to the electronic
bandwidth.34–36,38,40 In the self-consistent Migdal approximation the electron self-energy (Σ̂) and phonon self-energy
(Π) in the effective impurity model are given by

Σ̂(t, t′) = ig2Dimp(t, t
′)σ̂3Ĝimp(t, t

′)σ̂3, (3a)

Π(t, t′) = −ig2tr[σ̂3Ĝimp(t, t
′)σ̂3Ĝimp(t

′, t)]. (3b)

In equilibrium, we choose the s-wave SC order parameter φ ≡ 〈c↑c↓〉 ∈ R. In the following, we consider an infinitely

coordinated Bethe lattice, which has a semi-elliptic density of states, N(ω) = 1
2πv2

∗

√

4v2∗ − ǫ2, and we set v∗ = 1,

i.e. the electron bandwidth W is 4. We focus on half-filling, a small enough phonon frequency ω0 = 0.4, and the
coupling regime λeff . 2, where the Migdal approximation should give qualitatively correct results. Here λeff is
the dimensionless electron-phonon coupling defined from the dressed phonon propagator, see Appendix A. We have
confirmed that the results for a lower frequency ω0 = 0.2 are qualitatively similar to those for ω0 = 0.4 in Appendix B.
In this paper, we consider two types of excitation protocols. The first protocol is a perturbation Hamiltonian

Hex(t) = Fex(t)B0 with B0 =
∑

i(c
†
i↑c

†
i↓ + ci↓ci↑) and Fex(t) = dfδ(t). Explanation about the implementation are

provided in Appendix C. This external field is used to evaluate the dynamical pair susceptibility,

χR
pair(t− t′) = −iθ(t− t′)〈[B0(t), B0(t

′)]〉. (4)

We note that this susceptibility is relevant to the dynamics of the amplitude of the SC order parameter, since we take
φ to be real.58 In order to obtain the susceptibility we choose a small enough df . The second protocol is a modulation

of the hopping parameter, Hex(t) = −δv(t)
∑

〈i,j〉,σ(c
†
i,σcj,σ + h.c.), which mimics the effective band renormalization

of a strong and high frequency laser.43
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We now elaborate on the dynamical pair susceptibility evaluated from DMFT+self-consistent Migdal approximation.
In general, we can express the dynamical pair susceptibility as the retarded part of a response function on the KB
contour,

χpair(t, t
′) ≡ δC [−itr{σ̂1Ĝ(t, t+ 0+C )}]

δC [Fex(t′)]

∣

∣

∣

∣

∣

Fex=0

=

− i

∫

C
dt1dt2tr

[

σ̂1
1

N

∑

k

Ĝk(t, t1)Γ̂(t1, t2; t
′)Ĝk(t2, t+ 0+C )

]

, (5)

where k is a momentum and δC [...]/δC [...] is the functional derivative on the KB contour. The diagrammatic expression

for χpair(t, t
′) is shown in Fig. 1 (a). Here Γ̂ is a renormalized vertex, which can be expressed as

Γ̂(t, t′; t′′) = Γ̂(0)(t, t′; t′′) +
δC [Σ̂(t, t′)]

δC [Fex(t′′)]

∣

∣

∣

∣

∣

Fex=0

, (6)

where Γ̂(0)(t, t′; t′′) ≡ σ̂1δC(t′′, t)δC(t′′, t′) is the bare vertex, δC(t, t′) is the delta function on the KB contour, while
the second term is the vertex correction. In perturbative approximations the expression for the self-energy is known,
hence we can evaluate δ[Σ̂(t, t′)]/δ[Fex(t

′′)] explicitly.
In the case of DMFT+self-consistent Migdal approximation, the vertex part is given as

Γ̂(t, t′; t′′) = σ̂1δC(t
′′, t)δC(t

′′, t′) + ig2D(t, t′)Λ̂(t, t′; t′′)

+ g4σ̂3Ĝ(t, t′)σ̂3

∫

C
dt3dt4D(t, t3)D(t4, t

′)×
{

tr[Λ̂(t3, t4; t
′′)Ĝ(t4, t3)] + tr[Ĝ(t3, t4)Λ̂(t4, t3; t

′′)]
}

. (7)

Here N is the number of sites, and Λ̂(t, t′; t′′) ≡ 1
N

∑

k

∫

C dt1dt2σ̂3Ĝk(t, t1)Γ̂(t1, t2; t
′′)Ĝk(t2, t

′)σ̂3. The diagrams for
the vertex part Γ are displayed in Fig. 1(c) and a detailed derivation of the expression is given in Appendix D.
In contrast to our treatment, the BCS and unrenormalized Migdal approximations20,21 describe a situation where

the phonons always stay in equilibrium. In these two cases the equation for the vertex part contains only the 1st and
2nd diagrams in Fig. 1(c) with the dressed phonon propagator replaced by the BCS interaction or the unrenormalized
phonon propagator. In the unrenormalized Migdal approximation, the expression for the self-energy reduces to

Σ̂uMig(t, t′) = ig2D0(t, t
′)σ̂3Ĝimp(t, t

′)σ̂3, (8)

and we have

Γ̂(t, t′; t′′) = Γ̂(0)(t, t′; t′′) + ig2D0(t, t
′)Λ̂(t, t′; t′′). (9)

This equation is illustrated in Fig. 1(b). Thus the 3rd and 4th diagrams in Fig. 1(c) represent the feedback from the
phonon dynamics and have not been taken into account in the previous papers on collective modes.

III. RESULTS

A. Dynamical pair susceptibility and collective amplitude modes

We now discuss the behavior of the pair susceptibility χpair in the strongly-coupled SC. Figure 2(a)(b) displays

χR
pair(t). Also plotted is the bubble contribution χR

0,pair(t), which is obtained by approximating Γ̂ ≈ σ̂1δC(t′′, t)δC(t′′, t′).

While χR
0,pair(t) damps quickly (within t ∼ 1/W ), χR

pair(t) exhibits long-lived oscillations. Since χ0,pair only includes
the contribution from the single-particle excitations, this indicates that the long-lived oscillations result from collective
excitations. A further finding is that, in contrast to the BCS dynamics, the oscillation contains multiple modes, which
becomes more evident as we increase the el-ph coupling.
We can capture the nature of the collective modes by comparing in Fig. 2(c)(d) the electron spectrum A(ω) =

− 1
π
GR(ω), the phonon spectrum B(ω) = − 1

π
DR(ω) and −ImχR

pair(ω) = −Im
∫ tmax

0
dtχR

pair(t)e
iωt with tmax = 200.

First, we note that the strong el-ph coupling makes the gap edge smooth unlike in the BCS theory, and we define
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the gap size by the energy where A(∆SC) = N(0). We also note that, when the renormalized phonon frequency is
comparable to the SC gap, the strong el-ph coupling leads to a highly asymmetric renormalized phonon spectrum in
the SC state with a sharp peak below the SC gap, see Fig. 2(c)(d) and Appendix A. In the normal state, on the other
hand, the phonon spectrum exhibits an almost symmetric single peak with a low-energy tail, and the renormalized
phonon frequency is softened by the el-ph coupling.34,39 These features in the phonon spectra have indeed been
experimentally observed in some strongly-coupled SCs,44–48 and theoretically explained as an effect of the phonon
self-energy49 (phonon anomaly).
Figure. 2(c)(d) show that there exist two different modes in −ImχR

pair(ω) at frequencies we call ωH and ωH2 (ωH <

ωH2). The lower-frequency peak is always located near the SC gap energy (ω/2 ≃ ∆SC), and this also holds as we
approach the BCS regime, see the inset of Fig. 3(b). We can thus identify this mode as the amplitude (Higgs) mode of
the strongly-coupled SC. In other words, the BCS relation, ωH = 2∆SC, is found to hold to a good approximation even
when the el-ph coupling is strong and the phonon energy is comparable to the gap. The higher-frequency mode at ωH2

[Fig. 2(c)(d)], on the other hand, is a new collective amplitude mode. This mode becomes more prominent as the el-ph
coupling increases and is absent both in the BCS1–3,5,6,9–13,17,19,22–24 and unrenormalized Migdal analyses.20,21 These
facts suggest that it does not exist in the weak-coupling regime, where the BCS treatment should be justified, and
originates from the phonon dynamics. However, ωH2 does not have a simple relation with the renormalized phonon
frequency ωr, which is defined as the peak position in the phonon spectrum.
In order to obtain a full picture, we plot the mode energies against T in Fig. 3. As for the Higgs amplitude mode,

we can see that the relation ωH ≃ 2∆SC is indeed robust for the whole region of T studied here.59 We consider that
the relation between ωH and 2∆SC is not obvious in the strongly-coupled regime. This is because, in principle, the
Higgs mode can hybridize with other collective modes. One example is the Higgs mode in a coexistence region of SC
and charge order, where the hybridization with the amplitude mode of the charge order can push the Higgs mode
below the SC gap.5,19 In the present case, as demonstrated below, the Higgs mode hybridizes with the ωH2 mode,
which makes it slightly softened, but this effect is relatively small for λeff . 2, so that ωH remains close to 2∆SC. One
important consequence of the relation ωH ≃ 2∆SC is that the damping channel to quasi-particles remains small, which
retains the amplitude Higgs mode long-lived. This consequence is applicable especially at low temperatures, where
the gap edge is sharp enough and energy of quasi-particle excitations are lower-bounded at 2∆SC. As we increase the
temperature toward Tc, the quasi-particle lifetime from the strong el-ph coupling increases and the gap edge becomes
more smooth. Hence the quasi-particle excitation is not strictly lower-bounded at 2∆SC, which should lead to shorter
lifetime of the Higgs oscillation. Detailed analysis of the damping of the Higgs mode will be shown elsewhere.50 In
addition, we note that a possible relaxation channel from the Higgs mode into two phonons is restricted due to the
suppression of the phonon spectral weight in the low-energy regime, which is associated with the phonon anomaly.
Now we turn to the ωH2 mode. Both the ωH and ωH2 modes are absent in the dynamical pair susceptibility in the

normal state. On the other hand, the latter mode is closely related to the coherent phonon oscillation that persists at
T > Tc. In Fig. 3, we display ωXX, the frequency of coherent oscillations in the response of 〈XX〉 (i.e., the fluctuation
of the phonon displacement) after a small hopping quench. We can see that ωXX coincides with ωH2 in the SC phase,
which indicates that the oscillations in these two different susceptibilities originate from the same collective mode.
Hence this mode intertwines both the phonon dynamics and superconducting amplitude oscillations. With decreasing
temperature, ωXX softens in the normal phase, while it hardens in the SC. If the ωH2, or ωXX, mode were merely a
coherent phonon mode, the frequency would be equal to 2ωr, where ωr is the renormalized phonon frequency defined
as the position of the dominant peak in the phonon spectrum, see Appendix A. The factor 2 appears because the
present excitation does not induce any average phonon displacement.60 This naive expectation (ωXX = 2ωr) is satisfied
in the normal state with not too strong el-ph couplings, while in the SC phase ωH2 (= ωXX) drastically deviates from
2ωr, see Fig. 3.

B. Diagrammatic analysis

In this section, we address (1) the effect of the phonon dynamics on the amplitude Higgs mode, and (2) the origin
of the discrepancy between ωH2 and 2ωr in the SC. To gain some insights, we evaluate the contributions from certain
subsets of the diagrams for χpair. The first subset is χel−ladder, which is illustrated in Fig. 4(a). In the BCS and
unrenormalized Migdal approximations, where the non-equilibrium dynamics of the phonons is neglected, the vertex
Γ̂ includes the first two diagrams in Fig. 1(c), which leads to ladder diagrams with electron legs. Hence we can regard
χel−ladder as the contribution without phonon dynamics. Indeed, this subset is evaluated by considering the time
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evolution with

Σ̂(t, t′) = ig2Deq
imp(t, t

′)σ̂3Ĝimp(t, t
′)σ̂3, (10a)

Π(t, t′) = −ig2tr[σ̂3Ĝ
eq
imp(t, t

′)σ̂3Ĝ
eq
imp(t

′, t)]. (10b)

Here, “eq” indicates that the functions are fixed to their equilibrium value. On the other hand, the 3rd and 4th
diagrams for the vertex in Fig. 1(c) only appear in the self-consistent Migdal approximation, and thus represent the
effect of the phonon dynamics. By eliminating the 2nd diagram in the vertex in Fig. 1(c), we obtain a set of diagrams
for the pair susceptibility, which is illustrated as χph−ladder in Fig. 4(a) and represents the contribution from the
phonon dynamics. We can evaluate χph−ladder by computing the time evolution with

Σ̂(t, t′) = ig2Dimp(t, t
′)σ̂3Ĝ

eq
imp(t, t

′)σ̂3, (11a)

Π(t, t′) = −ig2tr[σ̂3Ĝimp(t, t
′)σ̂3Ĝimp(t

′, t)]. (11b)

In Fig. 4(b)(c), we plot χR
pair, χ

R
el−ladder and χR

ph−ladder in the time and frequency domain. It turns out that each

of χR
el−ladder(t) and χR

ph−ladder(t) exhibits oscillations with a single characteristic frequency, which agrees well with
ωH and ωH2, respectively. Hence ωH and ωH2 are mainly determined by the processes represented by χel−ladder and
χph−ladder, respectively.
As for question (1), even though the response without phonon dynamics mainly sets the energy scale of the Higgs

mode, we do observe effects from the phonon dynamics, in the form of a phase shift in the Higgs oscillation between
χR
pair(t) and χR

el−ladder(t), and also in the form of an overestimation of ωH in the latter approximation by several

percent, see Fig. 4(b)(c). In addition, larger intensity in χR
pair(ω) at ωH than in χR

el−ladder(ω) is consistent with that
the damping of the Higgs oscillation should be slower in the former because the softened ωH value leads to suppression
of available quasi-particle relaxation channels. These differences can be attributed to the remaining diagrams in χpair,
which are not included in χel−ladder and χph−ladder. These diagrams hybridize electron ladders and phonon ladders,
and the decrease of ωH estimated from the χel−ladder can be ascribed to an effect of the hybridization between the
Higgs mode in χel−ladder and the phonon-origin mode in χph−ladder.
As for question (2), we first note that 2ωr-oscillations are expected from the two parallel phonon propagators in

the 2nd and 3rd diagrams for χph−ladder. Therefore, the notable hardening of ωH2 from 2ωr in the SC is attributed
to what we can call the “electron-mediated phonon-phonon interactions” [the shaded rectangle in Fig. 4(a)], while in
the normal phase this effect is weaker.
We can also confirm the effect of the phonon-phonon (ph-ph) interaction mentioned above in another susceptibility.

Here, we focus on κR(t) ≡ −iθ(t)〈[XX(t), B0]〉 (response of XX against the external pair field). This quantity can be
expressed in terms of Ω(t, t′; t′′) defined in Eq. (D6) in Appendix D. Now, we evaluate a subset of diagrams, κph−ladder,
which corresponds to χph−ladder in that the dynamics is described by Eq. (11). The diagrammatic expression for
κph−ladder is shown in Fig. 5(a). Here one can note that the 1st diagram in κph−ladder corresponds to the 2nd and 3rd
ones in χph−ladder. In the following, we denote the contribution from the 1st diagram as κph−lowest. In Fig. 5(b)(c)
we compare all four of the κR(ω) from the full dynamics in the self-consistent Migdal approximation, κR

ph−lowest(ω),

κR
ph−ladder(ω), and the phonon spectrum B(ω/2). From the result one finds that κR

ph−lowest(ω) indeed exhibits a
peak at 2ωr, which deviates from ωH2. However, if one takes account of the effect of the ph-ph interaction as in
κR
ph−ladder(ω), there emerges a peak around ωH2.
The different effects of the ph-ph interaction in the SC and normal states can be attributed to the difference in its

behavior in these phases. The expression for the ph-ph interaction on the KB contour is

Iph(t1, t2, t3, t4) ≡
g4

N

∑

k

{

tr[σ̂3Ĝ(t1, t2)σ̂3Ĝk(t2, t4)σ̂3Ĝ(t4, t3)σ̂3Ĝk(t3, t1)]

+ tr[σ̂3Ĝ(t1, t2)σ̂3Ĝk(t2, t3)σ̂3Ĝ(t3, t4)σ̂3Ĝk(t4, t1)]
}

. (12)
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In particular, the Matsubara components are

IMph(τ1, τ2, τ3) ≡
g4

N

∑

k

{

tr[σ̂3Ĝ(τ1 − τ2)σ̂3Ĝk(τ2)σ̂3Ĝ(−τ3)σ̂3Ĝk(τ3 − τ1)]

+ tr[σ̂3Ĝ(τ1 − τ2)σ̂3Ĝk(τ2 − τ3)σ̂3Ĝ(τ3)σ̂3Ĝk(−τ1)]
}

, (13)

and

IMph(iνn1
, iνn2

, iνn3
) ≡

∫ β

0

dτ1dτ2dτ3e
iνn1

τ1eiνn2
τ2eiνn3

τ3IMph(τ1, τ2, τ3), (14)

where νnα
= 2nαπ/β. Now, in order to clarify the difference in the ph-ph interaction in the normal and SC phases, we

directly evaluate IMph(iνn1
, iνn2

, iνn3
). In Fig. 6, we show the results for the normal and SC cases for g = 0.45, ω0 =

0.4, β = 80. In order to obtain the result for the normal state, we suppress SC by hand. First we note that
IMph(iνn1

, iνn2
, iνn3

) is real. In the normal state, the ph-ph interaction strongly depends on the Matsubara frequency
and has a clear sign change. On the other hand, the SC phase has a drastically different behavior: In the frequency
regime comparable to the SC gap, the frequency dependence becomes much weaker and the sign change almost
disappears. This allows us to approximate IMph(iνn1

, iνn2
, iνn3

) by a constant in the SC state. From a comparison
with diagrams that appear in the perturbation expansion for a simple phonon model with an anharmonic term,
Heff

ph = ωpha
†a + I4X

4, it turns out that an approximate constant IMph(iνn1
, iνn2

, iνn3
) corresponds to the case of

I4 > 0. Since the anharmonic term makes the potential steeper, the frequency of the coherent oscillations increases
for I4 > 0. This analysis is indeed consistent with our observation of the hardening from 2ωr to ωH2 in the SC phase.
In the normal state, it is expected that the cancellation from the sign change in the frequency dependence reduces
this effect.

C. Time-resolved photoemission spectroscopy

Although the dynamical pair correlation is not a direct observable in experiments, here we discuss that these modes
can be observed in pump-probe spectroscopy measurements. We focus on the dynamics of the spectral function
observed in time-resolved photoemission spectroscopy (tr-PES),51

APES(tprobe, ω) ≡
1

π
Im

∫

dtdt′s(t− tprobe)s(t
′ − tprobe)e

iω(t−t′)G<(t, t′). (15)

Here tprobe is the center of the probe pulse and s(t) is its envelope, for which we use a Gaussian with sufficiently large

cutoff time tc, i.e. s(t) =
1√

2πσprobe

exp(− t2

2σ2
probe

)θ(tc − |t|). We note that a previous study with equilibrium phonons

has pointed out the possibility of detecting the amplitude mode in the time-resolved photoemission signal near the
Fermi level.20 Here we focus on a wider energy range and the new amplitude mode. The pump is mimicked by a
modulation of the hopping,

v(t) = v0 + δv exp

[

− (t− tpump)
2

2σ2
pump

]

, (16)

where σpump and tpump respectively denote the width and the center of the pump pulse. This type of pump can be
effectively realized with a strong laser through an effective band renormalization43 or through light-induced lattice
distortions.21,52,53 In the following, we choose tpump = 5.0, σpump = 1.0, and tc = 25. In Fig. 7(a)(b)(c), we plot the
difference between the spectra with and without a pump normalized by the pump strength δv,

A′
PES(tprobe, ω) ≡

lim
δv→0

APES(tprobe, ω; δv)−APES(tprobe, ω; 0)

δv
, (17)
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where we add the third argument for APES, which indicates the strength of the pump. Clear oscillations are seen in
a wide energy range for ω . 0. One can see that for smaller σprobe the resolution for ω decreases, while for tprobe it
increases. The Fourier transform along tprobe,

A′
PES(ωt, ω) ≡

∫ tmax−tc

tc

dtA′
PES(t, ω)e

iωtt, (18)

reveals that the dominant oscillations are the ωH and ωH2 components, see Fig. 7(d)(e)(f). These signals are visible
in a wide energy range for ω . 0 as bundles at the corresponding energies, especially near the band edge (ω ≃ W/2)
and the gap edge (ω ≃ ∆SC).
Finally, we demonstrate that the oscillations in the tr-PES spectra cannot be explained by single particle excitations,

i.e. the contribution from the bubble diagram. In the linear-response regime, we have to consider a quantity for the
tr-PES spectrum,

δC [Ĝk(t, t
′)]

δC [v(t′′)]

∣

∣

∣

∣

∣

v(t)=v

=

∫

C
dt1dt2Ĝk(t, t1)Γ̂hop,k(t1, t2; t

′′)Ĝk(t2, t
′). (19)

Following the same procedure as for the pair susceptibility, we obtain the expression for the vertex part as

Γ̂hop,k(t, t
′; t′′) = Γ̂

(0)
hop,k(t, t

′; t′′) +
δC [Σ̂(t, t′)]

δC [v(t′′)]

∣

∣

∣

∣

∣

v(t)=v

. (20)

Here, Γ̂
(0)
hop,k(t, t

′; t′′) = ǫk
v0
σ̂3δC(t′′, t)δC(t′′, t′) and the second term is the vertex correction. The result for the tr-PES

spectrum, A′
PES(tprobe, ω), evaluated with the bubble contribution (without the vertex correction) is displayed in

Fig. 8. While during the pump it shows a similar behavior as the full dynamics in Fig. 7, there is no oscillation after
the pump. Hence we again conclude that the oscillations in the photoemission spectra do originate from collective
excitations, and we predict that they can be observed in pump-probe experiments in a wide range of ω.

IV. CONCLUSION

We have investigated the properties of collective amplitude modes in strongly-coupled SC in the Holstein model
using the non-equilibrium DMFT implemented with the self-consistent Migdal approximation. The BCS relation
between the SC gap and the Higgs energy turns out to be robust beyond the BCS regime. Besides the Higgs mode,
we have unraveled another amplitude mode involving the dynamics of the phonons. The frequency of this mode,
higher than twice the renormalized phonon frequency in the superconducting phase, was shown to reflect a strong
electron-mediated phonon-phonon interaction. We have also predicted that both collective modes should be observable
as oscillations of the PES spectrum in a wide energy range after a strong laser pump. Even though the new mode
involving the dynamics of the SC order parameter and the phonon dynamics has not yet been observed in real materials,
these information would be helpful for searching for such a mode. We stress that the Holstein model is a fundamental
model describing the essential physics of electron-phonon systems with a local coupling. In addition, our approximate
method, the non-equilibrium DMFT+ self-consistent Migdal approximation, is the non-equilibrium extension of the
Migdal-Eliashberg theory, which has been successful in describing strongly-coupled conventional SCs, in the limit of
infinite spatial dimensions. Hence we believe that the present study for a fundamental model with a fundamental
approximation will be a milestone for further analyses for collective excitations beyond the BCS limit. An interesting
future direction is to study these collective modes in more realistic setups, such as multi-band systems54–56, models
with local and nonlocal Coulomb interactions, and more general el-ph couplings. In order to deal with these setups,
further development of impurity solvers and/or extension of the DMFT framework are required. We also note that it
has been recently pointed out that, depending on details of the pump excitation, there can be significant contributions
from quasi-particle excitations to the third-harmonic generation with a strong THz excitation.57 Therefore, systematic
studies of how the contributions from quasi-particle excitations and collective excitations depend on the excitation
protocols and observables would also be important future works.
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41 N. Säkkinen, Y. Peng, H. Appel, and R. v. Leeuwen, arXiv:1507.04726 (2015).
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Appendix A: Renormalized phonons

Here we explain the dimensionless el-ph coupling for renormalized phonons and the behavior of the phonon spectrum
in SC. The dimensionless el-ph coupling is defined as

λeff ≡ 2

∫ ∞

0

dω
α2F (ω)

ω
, (A1)

α2F (ω) = N(0)g2B(ω), (A2)

where N(0) is the DOS at the Fermi level, B(ω) = − 1
π
ImDR(ω) and we obtain λ = N(0)g2DM (iνn = 0). Here the

superscript M indicates the Matsubara component. So called strong-coupling superconductors correspond to cases
of λeff ∼ 1. The λeff for the parameters employed in the paper is show in Fig. 9. In all cases, the temperature
dependence is weak.
In Fig. 10, we show the detailed temperature dependence of the phonon spectrums for the cases corresponding to

Fig. 3 as well as the electron spectra for the whole energy range. For both couplings, β = 30 is in the normal state,
and the phonon spectrums exhibit an almost symmetric structure around a peak at ωr. In the SC phase, the SC gap
develops as we decrease the temperature. At the same time, there occurs a drastic change of the phonon spectrum.
In particular, the spectral weight in the low energy regime is strongly suppressed and a sharp peak develops below
the SC gap. The former is attributed to the fact that scattering of phonons with quasi-particles is suppressed below
the SC gap energy.

Appendix B: Results for ω0 = 0.2

In Fig. 11, we show the result for ω0 = 0.2. The result involves totally similar features as for ω0 = 0.4, see Fig. 2.
This fact indicates that the discussions made in the main part are applicable to lower phonon frequencies, where the
Migdal approximation becomes quantitatively more reliable. However, we note that systematic analyses for lower
phonon frequencies than ω = 0.4 are difficult. This is because all dynamics involved becomes slower and hence
numerical simulation becomes more demanding.

Appendix C: Implementation of the pulse field

The Dyson equations involved in DMFT of the Holstein model with the pair potential, Hex(t) = Fex(t)
∑

i(c
†
i↑c

†
i↓ +

ci↓ci↑), are

D(t, t′) = D0(t, t
′) + [D0 ∗Π ∗D](t, t′), (C1)

[

i∂t + µ −Fex(t)
−Fex(t) i∂t − µ

]

Ĝ(t, t′)− [(Σ̂ + ∆̂) ∗ Ĝ](t, t′) = ÎδC(t, t
′), (C2)

[

i∂t + µ −Fex(t)
−Fex(t) i∂t − µ

]

Ĝ0(t, t
′)− [∆̂ ∗ Ĝ0](t, t

′) = ÎδC(t, t
′). (C3)

Here Î is the identity matrix, and ∆̂(t, t′) is the hybridization function, which is v2σ̂3Ĝ(t, t′)σ̂3 on the Bethe lattice.
When we take Fex(t) = dfδ(t), one finds from the above Dyson equations that the effect of the external field leads to
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a jump in Ĝ0 and Ĝ around t = 0:

ĜR(0+, 0+) = −iÎ, (C4)

Ĝ⌉(0+, τ ′) = M̂Ĝ⌉(0−, τ ′), (C5)

Ĝ<(0+, 0+) = M̂Ĝ<(0−, 0−)M̂ †, (C6)

where we have defined the matrix M̂ ,

M̂ ≡ 1

1 +
d2
f

4

[

1− d2
f

4 −idf

−idf 1− d2
f

4

]

. (C7)

The expressions for the discontinuity of the Weiss Green’s functions are obtained by replacing G with G0 in Eq. (C4),
(C5), (C6). On the other hand, the phonon Green’s function (D) is continuous there.

Appendix D: Dynamical pair susceptibility

The dynamical pair susceptibility can be expressed by the response of the Green’s functions to modulations of the
pair potential as in Eq. (5). Hence we want to calculate the quantity,

Λ̂k(t, t
′; t′′) ≡ δC [Ĝk(t, t

′)]

δC [Fex(t′′)]

∣

∣

∣

∣

∣

Fex(t)=0

. (D1)

In the case of a free system, this quantity becomes

Λ̂0,k(t, t
′; t′′) = Ĝ0,k(t, t

′′)σ̂1Ĝ0,k(t
′′, t′), (D2)

where the suffix 0 denotes bare propagators. For general interacting cases, we introduce the vertex part Γ̂k as

Λ̂k(t, t
′; t′′) =

∫

C
dt1dt2Ĝk(t, t1)Γ̂k(t1, t2; t

′′)Ĝk(t2, t
′). (D3)

In the following, we assume that the self-energy is momentum independent (DMFT approximation). From the Dyson

equation for Ĝk, it then follows that

Λ̂k(t, t
′; t′′) = Λ̂0,k(t, t

′; t′′)

+

∫

C
dt1dt2Λ̂0,k(t, t1; t

′′)Σ̂(t1, t2)Ĝk(t2, t
′)

+

∫

C
dt1dt2Ĝ0,k(t, t1)

δC [Σ̂(t1, t2)]

δC [Fex(t′′)]

∣

∣

∣

∣

∣

Fex=0

Ĝk(t2, t
′)

+

∫

C
dt1dt2Ĝ0,k(t, t1)Σ̂(t1, t2)Λ̂k(t2, t

′; t′′). (D4)

From Eqs. (D3),(D4) and the Dyson equation, we obtain the expression for the vertex part Eq. (6). One notices that
the vertex does not depend on k, either.
For diagrammatic approximations we explicitly know the expression for the self-energy, hence we can directly

determine the vertex correction, δC[Σ̂(t,t′)]
δC[Fex(t′′)]

∣

∣

∣

Fex=0
from it. In the present case of DMFT+self-consistent Migdal ap-

proximation, the self-energies for electrons (Σ̂) and phonons (Π) are expressed as Eq. 3. From this we obtain

δC [Σ̂(t, t′)]

δC [Fex(t′′)]
=ig2D(t, t′)Λ̂(t, t′; t′′)

+ ig2Ω(t, t′; t′′)σ̂3Ĝ(t, t′)σ̂3, (D5)
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where we have defined

Ω(t, t′; t′′) ≡ δC [D(t, t′)]

δC [Fex(t′′)]

≡
∫

C
dt1dt2D(t, t1)Θ(t1, t2; t

′′)D(t2, t
′) (D6)

and, as in the main text, Λ̂(t, t′; t′′) ≡ 1
N

∑

k

∫

C dt1dt2σ̂3Ĝk(t, t1)Γ̂(t1, t2; t
′′)Ĝk(t2, t

′)σ̂3. From the Dyson equation for

the phonon Green’s function Eq. (C1) and with the same procedures as for Λ̂k, we find

Θ(t, t′; t′′) =
δC [Π(t, t′)]

δC [Fex(t′′)]

= −ig2{tr[Λ̂(t, t′; t′′)Ĝ(t′, t)] + tr[Ĝ(t, t′)Λ̂(t′, t; t′′)]}. (D7)

Hence the final expression for the vertex function becomes Eq. (7) in the main part. The derivation of Eq. (9) for the
unrenormalized Migdal approximation is similar but much simpler.

Figures

(a) (b) Unrenormalized Migdal

(c) Self-consistent Migdal

Λ

FIG. 1: Diagrammatic expressions in the Nambu formalism for (a) the dynamical pair susceptibility, (b) the vertex within
the unrenormalized Migdal approximation, and (c) the vertex within the self-consistent Migdal approximation. Open circles

represent Γ̂, solid dots σ̂1 (bare vertex), and green parts Λ̂ defined in the text. Solid double lines indicate dressed electron
Green’s functions, wavy double lines dressed phonon Green’s functions, and wavy single lines bare phonon Green’s functions.
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FIG. 2: (a)(b) Dynamical pair susceptibility against t evaluated with the full dynamics in the self-consistent Migdal approxima-
tion [χpair(t)] and with the bubble diagrams [χ0,pair(t)] for g = 0.45, β = 80 (λeff = 1.38) (a) and g = 0.47, β = 80 (λeff = 1.89)
(b). (c)(d) Comparison of the electron spectrum A(ω/2), the phonon spectrum B(ω), −ImχR

0,pair(ω) and −ImχR
pair(ω) for

g = 0.45, β = 80 (c) and g = 0.47, β = 80 (d). χpair(ω) and χ0,pair(ω) are evaluated from the data at t ∈ [0, 200]. The factor of
2 in A(ω/2) facilitates a comparison between 2∆SC and ωH.
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FIG. 3: Characteristic energies against temperature (T ) at g = 0.45, ω0 = 0.4 (a) and g = 0.47, ω0 = 0.4 (b). Vertical lines
indicate Tc. The inset shows the el-ph coupling (λeff) dependence of ωH and 2∆SC at β = 80.(a)
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FIG. 4: (a) Diagrammatic expression for χel−ladder and χph−ladder with the electron-mediated phonon-phonon interaction
(shaded box). Comparison of contributions from different sets of diagrams for χ(t) (b) and −Imχ(ω) (c) with g = 0.45, ω0 =
0.4, β = 80.
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FIG. 5: (a) Diagrammatic expression for κph−ladder and κph−lowest. The data at t ∈ [0, 200] is used. (b)(c) Comparison of
κR(ω) evaluated from different sets of diagrams and the phonon spectrum, B(ω), for g = 0.45, ω0 = 0.4, β = 80 (b) and
g = 0.47, ω0 = 0.4, β = 60 (c).
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0.4, β = 80. For the normal state, we suppress SC by hand.

FIG. 7: (a)(b)(c) A′

PES(t, ω) against t and ω for various values of σprobe for g = 0.45, ω0 = 0.4, β = 80. (d)(e)(f) |A′

PES(ωt, ω)|
against t and ω for various values of σprobe for g = 0.45, ω0 = 0.4, β = 80. The white vertical lines in (d)(e)(f) indicate ωH and
ωH2. The condition for the pump and probe is tpump = 5.0, σpump = 1.0 and tc = 25.
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Bubble contribution to A’PES(tprobe,ω) for σprobe=π 
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FIG. 8: Contribution of the bubble diagrams to A′

PES(tprobe, ω) at g = 0.45, ω0 = 0.4, β = 80. The condition for the pump and
probe is tpump = 5.0, σpump = 1.0, tc = 25 and σprobe = π.
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FIG. 9: The dimensionless el-ph coupling λeff against T for various values of g.
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the peak positions (ωr). (c)(d) Election spectrum at various temperatures for ω0 = 0.4, g = 0.45 (c) and ω0 = 0.4, g = 0.47
(d). In all cases, the system is in the normal phase at β = 30, while in the SC phase at other temperatures.
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FIG. 11: (a) Dynamical pair susceptibility against t evaluated with the full dynamics in the self-consistent Migdal approximation
[χpair(t)] and with the bubble diagrams [χ0,pair(t)] for ω0 = 0.2, g = 0.32, β = 120 (λeff = 1.65). (b) Comparison of the electron
spectrum A(ω/2), the phonon spectrum B(ω), −ImχR

0,pair(ω) and −ImχR
pair(ω) for ω0 = 0.2, g = 0.32, β = 120. χpair(ω) and

χ0,pair(ω) are evaluated from the data at t ∈ [0, 300].


