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In the pseudogap regime of the cuprates, charge order breaks a Z2 symmetry, reflecting a broken translational

symmetry. Therefore, the interaction of charge order and quenched disorder due to potential scattering, can, in

principle, be treated as a random field Ising model. A numerical analysis of the ground state of such a random

field Ising model reveals local, glassy dynamics in both 2D and 3D. The dynamics are treated in the glassy

limit as a heat bath which couple to the itinerant electrons, leading to an unusual electronic non-Fermi liquid.

If the dynamics are strong enough, the electron spectral function has no quasiparticle peak and the effective

mass diverges at the Fermi surface, precluding quantum oscillations. In contrast to charge density, d-density

wave order (reflecting staggered circulating currents) does not directly couple to potential disorder, allowing it

to support quantum oscillations. At fourth order in Landau theory, there is a term consisting of the square of the

d-density wave order parameter, and the square of the charge order. This coupling could induce parasitic charge

order, which may be weak enough for the Fermi liquid behavior to remain uncorrupted. Here, we argue that this

distinction must be made clear, as one interprets quantum oscillations in cuprates.

PACS numbers: 74.72.Kf, 71.10.Hf, 73.22.Gk

I. INTRODUCTION

Recent experiments have observed an incommensurate

charge density wave (ICDW) order in the underdoped regime

of the cuprates1–9, inspiring an explanation for the underly-

ing order in underdoped cuprates. However one should note

the distinction between the low-field regime and the high field

regime where quantum oscillations are observed. Here, we

take a critical view of CDW as the underlying order in terms

of its ability to support quantum oscillations, which are gener-

ally agreed to reflect a Fermi surface reconstruction10–12, and

therefore a Fermi liquid ground state, at least in the sense of

continuity13. To date, there is no general agreement as to the

precise nature of this reconstruction.

Because strict ICDW does not have a sharply defined Fermi

surface14, there can be no quantum oscillations that are truly

a periodic function of 1/B (where B is the magnetic field).

The central result of the paper is a proof of principle argu-

ment that even commensurate charge density wave (CDW)

order—chosen for simplicity to be of period-2—in the pres-

ence of disorder may not be able to explain a Fermi surface re-

construction and consequently quantum oscillations. In short,

ubiquitous potential disorder necessarily couples to CDW or-

der, leading to a non-Fermi liquid electron spectral function

without quasiparticles. Unless disorder is weak and the CDW

order very long ranged15, the principal order that leads to

quantum oscillations could not be CDW.

Another possibility for quantum oscillations is the d-

density wave (DDW) proposed previously16. This order, il-

lustrated in Fig. 1 in its period-8 version, reflects staggered,

circulating currents, making it impervious to direct poten-

tial scattering. To the extent that period-8 DDW can in-

duce period-4 CDW, the DDW can be affected by poten-

tial disorder—but only at 4th order in Landau theory. Ex-

perimentally, the situation is unclear: some neutron scatter-

ing results17,18 are consistent with DDW order, but nuclear

magnetic resonance (NMR) measurements find no circulat-

ing currents19 (see, however, Ref. 20 for a dissenting opin-
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FIG. 1. Current pattern for period-8 DDW, reproduced from Ref. 21.

The wave vector Q = ( 3π
4a
, π

a
), where a is the lattice constant21,22.

In Landau theory, it can couple to CDW of period 2Q. The relative

magnitudes of the currents are depicted by the thickness of the arrows

in the legend. Note the antiphase domain wall structure.

ion). The period-8 DDW has one electron pocket and two

smaller hole pockets in the reduced Brillouin zone, thus pro-

viding an explanation of the quantum oscillations of the Hall

coefficients21.

The paper’s approach is to first introduce the random field

ising model, and derive its behaviors when exposed to Z2

symmetry breaking disorder, in particular the dynamic sus-

ceptibility χ(ω), in section II. Next, this dynamic susceptibil-

ity is used to calculate the imaginary part of the skeleton graph

perturbative correction to the electronic self energy ImΣ(ω)
in Section III. The results are related back to the more real-

istic case of an anisotropic system with a mean-field theory

argument interpolating between two- and three-dimensional

systems in Section IV. Concluding remarks are made in Sec-

tion V.

II. RANDOM FIELD ISISING MODEL

For simplicity, we focus on period-2 CDW, which breaks

Z2 symmetry and necessarily couples to potential disorder.
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FIG. 2. Scaling of Pdw in the one-dimensional case. The collapse

works as expected for x = (J/σ)2/L = ζ2/L; the logarithmic

correction factor (1 + A logL) is found to have little effect: A =
0± 0.3. The best fit parameters to Equation (3) are x0 = 0.0596 ±

0.0007, λ = −0.0103± 0.0005 and θ = 0.034± 0.002. All points

correspond to averages performed over 2048 disorder realizations.

On symmetry grounds, the effective Hamiltonian is modeled

by a random field Ising model (RFIM),23

H0 = −J
∑

〈ij〉

szi s
z
j −

∑

i

hzi s
z
i , (1)

where J is the coupling between the Ising spins, and {hzi } is

a set of uncorrelated, uniformly distributed (rectangular dis-

tribution) random variables with zero mean and variance σ2.

The notation 〈ij〉 denotes nearest neighbors. It is not clear that

doping immediately destroys commensurability, but if it does,

by the Imry-Ma argument, ICDWs can only be more suscep-

tible to disorder because of the continuous symmetry implied

by the ICDW. If one wishes, the Ising variable can be thought

of as szi = ni−
1

2
, where ni = 0, 1 is the charge density at site

i. Double occupancy is naturally forbidden in the underdoped,

high-Tc cuprates, because of large U . The model is controlled

by a single dimensionless number, ζ = J
σ

, which we treat as

a phenomenological parameter.

The disorder in a RFIM drives fluctuations on many length

scales, and consequently many time scales, producing glassy

dynamics and a frequency-dependent susceptibility24 χ(ω).
This result is recapitulated, with improved precision here for

the two-dimensional (2D) case and extended to the essen-

tial three-dimensional (3D) case. Analogous to the thermally

driven fluctuation of an Ising system at finite temperature, the

RFIM has disorder driven fluctuations at zero temperature. A

distribution p(L) (defined below more precisely) of domain

walls of scale L arises from the domains in the ground state

of the RFIM, playing a crucial role in our work, and is new.

The appearance of domain walls in RFIM is identified nu-

merically by converting the RFIM to a network flow model25,

and solving the “minimum-cut” problem, for which there are

efficient algorithms26. Briefly, by careful choice of the pa-

rameters of the flow-network and the addition of two fictional

source and sink nodes, each cut is made to correspond to a

spin configuration such that the minimal cut corresponds to

the RFIM ground state configuration. The probability that a

domain wall of linear dimension L exists in the ground state,

Pdw(L), is determined by averaging over many disorder re-

alizations. To help understand the meaning of this quantity,

notice that, in the 1D case, a domain wall is just a spin flip.

In the disorder-free case, creating a single spin flip costs en-

ergy ∼ 2J , an energy that, by Jordan-Wigner transformation,

can be thought of as a fermion gap. The spin flip can move

throughout the system at no energy cost. In the 1D case, the

Imry-Ma argument shows that the ordered domains scale like

L ∼ (J/σ)2, presented numerically in FIG. 2.

In higher dimensions, the analogy is less precise, but the

presence of a domain wall results in the collapse of the gap in

the Ising system. Most importantly, the size of the domains

is controlled by locations of these domain walls. In particu-

lar, Pdw is the cumulative distribution function of the ordered

domains or “clusters” of linear dimension L, and therefore

p(L) =
dPdw

dL
. (2)

Pdw is found to lie on a universal curve24 which is an asym-

metric sigmoid,

Pdw ≈ f(x) =
1

(

1 + exp
[

x0−x
λ

])θ
(3)

where x = logL− (ζ/ζ0)
k

and ζ0 is numerically fit, and sets

a scale for the strength of the disorder. In 2D, k is set to 2
as in Ref. 24, in agreement with the analytical result27 for the

special case Pdw = 1/2. In 3D, k is numerically fit. The

sigmoid’s best fit parameters x0 and λ control its center and

width, respectively, while θ controls the asymmetry. Phys-

ically, x0 determines the onset of the occurrence of domain

walls, and λ how quickly the regime is dominated by the ex-

istence of at least one domain wall. The numerical results are

summarized in Fig. 3 and Table I.

The distribution p(L) is important because, in the limit of

glassy RFIM dynamics in which we work, it controls the (nec-

essarily local) susceptibility24,28

Imχ(ω) ∼

∫

dL p(L)δ
(

ω − ω0e
−cLα

)

(4)

This phenomenological argument for the susceptibility cap-

tures the essential glassy characteristics resulting from p(L).
In principle, the attempt frequency ω0, the fractal dimen-

sion α, and the length scale c are microscopic parameters,

which are left undetermined. Notice that the fractal dimen-

sion α ≤ D, where D is the ambient spatial dimension. For

2D and 3D, the integral simplifies in the small ω limit to

Imχ(ω) → χ0

ω0

ω
Ωψ, (5)



3

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
logL−(

ζ/ζ0
)2

0.0

0.2

0.4

0.6

0.8

1.0
P
d
w

L2

202

402

802

1602

15 10 5 0
logL−(

ζ/ζ0
)k

0.0

0.2

0.4

0.6

0.8

1.0

P
d
w

L3

103

203

403

803

1603

FIG. 3. Scaling of Pdw in 2D and 3D. All points are averages over

2048 disorder realizations, except in 3D for L = 40 and L = 80,

with 1024 realizations and for L = 160, with 512 realizations.

We have put Ω = 1/
(

log ω0

ω

)

for clarity and compactness;

Ω(ω) is strictly increasing for 0 < ω < ω0, and vanishes as

ω → 0. The exponent

ψ = 1 + 1/ (λα) > 1 (6)

depends only on the fractal dimension of the domains α and

on their distribution of sizes via the parameter λ. Moreover, in

both 2D and 3D, the numerical value of λ was found to lead

to ψ > 2 (see Table I).

D x0 λ θ ζ0 k
2 1.41(4) 0.28(2) 0.31(2) 0.75(2) 2
3 0.2(1) 0.33(1) 0.137(6) 0.47(9) 5.6(1)

TABLE I. Best fit parameters for Pdw in FIG. 3 and Eq. 3.

III. THE ELECTRON SELF ENERGY

We now focus on the interaction of the itinerant electrons

with the emergent glassy CDW order, assumed to enter as a

heat bath of fluctuations of the RFIM. The self energyΣ of the

electrons is calculated to leading order in perturbation theory

(see FIG. 4), assuming some coupling γ of the RFIM fluctua-

tions to the electrons, from the form of χ in Eq. 5 in a reduced

graph expansion29. It is unnecessary to use the matrix formal-

ism corresponding to the charge order, because, as we shall

see, there are no quasiparticles, and hence no possible Fermi

surface reconstruction. In terms of the energy of quasiparti-

cles ω,

ImΣ(ω) = −γ2
∫

dω′

π

∑

q

ImG(k − q, ω − ω′)Imχ(q, ω′)

× [b(ω′) + f(ω − ω′)] (7)

The Fermi and Bose functions f(ω) and b(ω) restrict the ω′

integration to [0, ω] in the zero-temperature limit we are con-

sidering, making the integral vanish for ω < 0. Because the

susceptibility is local the self energy is also local, and the sum

over q reduces to the density of states at the Fermi surface, ν:

ImΣ(ω) = −γ2ν

∫ ω

0

Imχ(ω′) dω′ = −
Σ0

ψ − 1
Ωψ−1

where Σ0 = γ2νχ0ω0, and ω > 0. From the Kramers-Kronig

relations:

ReΣ(ω) =
2

π
P

∫ ∞

0

ω′ImΣ(ω′)

ω′2 − ω2
dω′

= −
2Σ0

π(ψ − 1)
P

∫ Λ

0

ω′

ω′2 − ω2
Ωψ−1 dω′ (8)

where we have introduced a cutoff Λ. Because Ω is slowly

varying, we approximate it as a constant with ω′ = ω:

ReΣ(ω) ≈
2ImΣ(ω)

π
ln
ω0

ω
= −

2Σ0

π(ψ − 1)
Ωψ−2 (9)

where we have taken the largest possible value of the cutoff,

Λ → ω0, and discarded the subdominant terms in the limit

ω → 0. Because ψ > 2, as ω → 0, both the real and the

imaginary part of the self energy vanish.

The spectral functionA(k = kF , ω) is plotted in FIG. 5 for

several values of ψ. The emergent behavior is of an unusual

non-Fermi liquid; for k = kF and in the ω → 0 limit,

A(kF , ω) →
π

4

ψ − 1

Σ0

Ω3−ψ. (10)

Provided that ψ < 3 or equivalently30 α > (2λ)−1, the spec-

tral function vanishes as ω → 0. The falloff is extremely
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FIG. 4. Leading order (one-loop) self energy graph. The fermion

couples to the bath of RFIM fluctuations.
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FIG. 5. Plot of spectral density as a function of frequency relative

to the chemical potential, with wave vector k = kF . Several values

of the exponent ψ are plotted. The relative scale of each curve is

arbitrary: the unspecified prefactor Σ0 is not included.

slow, behaving as a fractional power of a logarithm. Further-

more, and despite the slow falloff, the quasiparticle weight

always vanishes, and equivalently the effective mass diverges,

as ω → 0:

Z−1 = 1− Re
∂Σ

∂ω
= 1 +

2Σ0

πω

ψ − 2

ψ − 1
Ωψ−1 (11)

IV. STACKS OF TWO DIMENSIONAL LAYERS

Cuprates are reasonably modeled as weakly coupled stacks

of 2D layers31. The above work addresses isotropic coupling;

we now argue that anisotropy will not materially affect the

results. Consider the Hamiltonian

Hstacked = −J‖
∑

〈ij〉
xy

szi s
z
j − Jz

∑

〈ij〉
z

szi s
z
j −

∑

i

hzi s
z
i (12)

where J‖ is the in-plane coupling and Jz the interplane cou-

pling. 〈ij〉z denotes nearest neighbors in the z direction, and

〈ij〉xy the neighbors in the xy plane. The random fields hzi
are as before.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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J

z

/
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FIG. 6. Phase diagram for the stacked problem. The 3D isotropic

case corresponds to the dashed diagonal line Jz = J‖. For each

value of Jz considered, the numerically identified phase transition

is a red ×. The mean field result, Eq. 14, is the red line (includ-

ing an approximate scale factor). The ordered phase is above the ×

symbols.

Unlike 2D, in 3D there is a order-disorder phase transition.

In the isotropic case, i.e., J = Jz = J‖, the zero temperature

phase transition occurs at a finite ζ = J
σ

, found numerically

to be ζc = 0.446 ± 0.001, in good agreement with previous

results32.

The anisotropic case (with Jz 6= J‖) is illustrated in Fig. 6.

Numerically, a particular value of Jz is fixed, and J‖ is varied

to identify the phase boundary in the Jz-J‖ plane. A simple

mean field theory result is also illustrated: as shown earlier24,

in 2D the correlation length

ξ2D[J/σ] ∼ exp

[

(

J/σ

ζ0

)2
]

(13)

with ζ0 ≈ 0.75. Treating the 3D system as a stack of cou-

pled 2D planes, a mean field theory argument suggests the

crossover from purely 2D (at weak enough Jz) to 3D occurs

for

Jz & J‖/ξ
2

2D. (14)

The qualitative features are readily understood. When

J‖ → 0 the system decouples as a 1D RFIM, which can-

not order (a scenario irrelevant to the cuprates). On the other

hand, when Jz → 0 the case simplifies to the 2D RFIM,

which while it also cannot order, has an exponentially large

crossover scale. It is in the latter regime that the fully 3D and

stacked 2D results overlap. For weak Jz , the system is dis-

ordered and the total energetic contribution from the Jz cou-

pling can be made small relative to the in-plane J‖ terms. An

interpolation between the 2D and 3D cases is expected in the

anisotropic case, which should always result in the supression

of a quasiparticle peak.
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V. CONCLUSION

In conclusion, random field disorder is significant even in

the apparently well ordered materials of high temperature su-

perconductors, but its effect is quite different for the two or-

ders, CDW and DDW. Because the Z2 symmetry is broken for

period-2 CDW, it is susceptible to random field disorder, de-

stroying the Fermi surface, as we have found here by treating

it as a RFIM. The disorder results in the glassy susceptibility

Imχ(ω) of Eq. 5, producing a quite unusual non-Fermi liq-

uid. Physically, the glassy dynamics are due to the wide range

of scales over which domain walls exist in the ground states

of the 2D and 3D RFIM and are characterized by the parame-

ter ψ, which controls susceptibility and in turn the non-Fermi

liquid behavior. No Fermi-surface reconstruction can in prin-

ciple occur, precluding quantum oscillations, up to some im-

portant caveats: the coupling parameter Σ0 must not be too

small, and the CDW correlation length cannot be too large

relative to the cyclotron radius (see Ref. 33). Truly incom-

mensurate order in the presence of disorder is far too complex

a problem and was not addressed in the present work. In any

case, ICDW destroys strict quantum oscillations14 even with-

out disorder, only making the situation worse.

In contrast, DDW modulates bond currents—a Hartree-

Fock calculation of DDW is given by Laughlin34—which can-

not directly couple to potential disorder, even though the order

breaks translational symmetry. No non-Fermi liquid behavior

is expected. Higher periodicity DDW (for example, period-8)

can induce parasitic charge order that can couple to disorder.

Being a higher order effect in Landau theory, this coupling

may be weak. However, the observed weak CDW involves

such a small motion of the atoms, it is hard to believe that it

could be the cause of a large magnitude pseudogap. In any

case, the short range nature of the CDW order15 combined

with RFIM disorder cannot explain quantum oscillations, at

least if the resulting electronic state is a non-Fermi liquid. As

a third option, if we neglect disorder and assume very long-

ranged CDW, (perhaps infinitely long-ranged), Fermi surface

reconstruction and quantum oscillation have been shown to

be possible35–38. The current experiments, however, do not

support long-ranged order, nor is there any reason to neglect

disorder.
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